Download citation
Download citation
link to html
Properties related to the size and shape of Hirshfeld surfaces provide insight into the nature and strength of inter­actions among the building blocks of mol­ecular crystals. In this work, we demonstrate that functions derived from the curvatures of the surface at a point, namely, shape index (S) and curvedness (C), as well as the distances from the surface to the nearest external (de) and inter­nal (di) nuclei, can be used to help understand metal–ligand inter­actions in coordination polymers. The crystal structure of catena-poly[[[(1,10-phenanthroline-κ2N,N′)copper(II)]-μ-4-nitro­phthalato-κ2O1:O2] trihydrate], {[Cu(C8H3NO6)(C12H8N2)]·3H2O}n, described here for the first time, was used as a prototypical system for our analysis. Decomposition of the coordination polymer into its metal centre and ligand mol­ecules followed by joint analysis of the Hirshfeld surfaces generated for each part unveil qualitative and semi-qu­anti­tative information that cannot be easily obtained either from conventional crystal packing analysis or from Hirshfeld surface analysis of the entire polymeric units. The shape index function S is particularly sensitive to the coordination details and its mapping on the surface of the metallic centre is highly dependent on the nature of the ligand and the coordination bond distance. Correlations are established between the shape of the Hirshfeld surface of the metal and the geometry of the metal–ligand contacts in the crystals. This could be applied not only to estimate limiting coordination distances in metal–organic compounds, but also to help establish structure–property relationships potentially useful for the crystal engineering of such materials.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619005874/ov3127sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619005874/ov3127Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229619005874/ov3127sup3.pdf
Structural tables, Hirshfeld surface figures and correlation graphics

CCDC reference: 1912697

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: PROGRAM FOR GRAPHICS?; software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b) and PLATON (Spek, 2009).

catena-Poly[[[(1,10-phenanthroline-κ2N,N')copper(II)]-µ-4-nitrophthalato-κ2O1:O2] trihydrate] top
Crystal data top
[Cu(C8H3NO6)(C12H8N2)]·3H2OF(000) = 1036
Mr = 506.91Dx = 1.68 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3666 reflections
a = 16.6652 (12) Åθ = 3.8–28.7°
b = 6.6975 (3) ŵ = 1.15 mm1
c = 18.6763 (12) ÅT = 298 K
β = 105.963 (7)°Needle, blue
V = 2004.2 (2) Å30.67 × 0.09 × 0.05 mm
Z = 4
Data collection top
Rigaku Xcalibur Atlas Gemini ultra
diffractometer
3508 reflections with I > 2σ(I)
Detector resolution: 10.4186 pixels mm-1Rint = 0.082
ω scansθmax = 29.5°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 1921
Tmin = 0.821, Tmax = 1.000k = 86
14972 measured reflectionsl = 2323
4952 independent reflections
Refinement top
Refinement on F211 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.3946P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4952 reflectionsΔρmax = 0.55 e Å3
316 parametersΔρmin = 0.60 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Single-crystal X-ray diffraction data were collected on an Xcalibur Atlas Gemini Ultra diffractometer and reduced using the CrysAlisPro software (Rigaku, 2018). The structure was solved by direct methods in SHELXS and refined with a full-matrix least-squares procedure using SHELXL-2016/6 (Sheldrick, 2015). All non-hydrogen atoms were refined with anisotropic atomic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.29521 (2)0.04033 (5)0.83969 (2)0.02400 (13)
O10.24972 (14)0.3215 (3)0.74930 (12)0.0354 (5)
O20.36098 (14)0.1280 (3)0.79494 (12)0.0300 (5)
O30.32293 (14)0.7274 (3)0.79076 (12)0.0313 (5)
O40.25333 (15)0.8232 (3)0.67656 (13)0.0425 (6)
O50.51248 (16)0.0458 (3)0.60593 (16)0.0475 (7)
O60.55854 (15)0.3089 (4)0.56354 (13)0.0439 (6)
O70.08459 (17)0.2360 (4)0.72494 (19)0.0598 (8)
H7A0.1351 (4)0.228 (3)0.7518 (7)0.072*
H7B0.068 (2)0.355 (2)0.712 (2)0.072*
O80.08378 (18)0.0981 (4)0.63726 (19)0.0637 (8)
H8A0.1324 (12)0.151 (5)0.653 (2)0.076*
H8B0.084 (2)0.008 (4)0.663 (2)0.076*
O90.0044 (2)0.0833 (4)0.8264 (2)0.0693 (9)
H9A0.036 (2)0.116 (6)0.799 (2)0.083*
H9B0.028 (2)0.181 (4)0.829 (3)0.083*
N10.28942 (16)0.1565 (3)0.91839 (13)0.0257 (6)
N20.20930 (16)0.1796 (3)0.87686 (14)0.0261 (6)
N30.51521 (16)0.2269 (4)0.59854 (15)0.0312 (6)
C10.3302 (2)0.3265 (4)0.93652 (17)0.0318 (7)
H10.3672580.3665150.910060.038*
C20.3197 (2)0.4479 (4)0.99395 (19)0.0366 (8)
H20.3495060.5665381.0053590.044*
C30.2656 (2)0.3921 (5)1.03325 (18)0.0365 (8)
H30.2583460.4720861.0717080.044*
C40.2206 (2)0.2122 (4)1.01518 (16)0.0301 (7)
C50.23488 (19)0.1003 (4)0.95724 (16)0.0247 (6)
C60.1605 (2)0.1402 (5)1.05078 (19)0.0415 (9)
H60.150030.2129091.0896710.05*
C70.1188 (2)0.0316 (5)1.0288 (2)0.0423 (9)
H70.0799680.0745321.0529290.051*
C80.19115 (19)0.0820 (4)0.93460 (16)0.0258 (6)
C90.1325 (2)0.1500 (5)0.96934 (18)0.0315 (7)
C100.0912 (2)0.3274 (5)0.9422 (2)0.0402 (8)
H100.0511210.3785090.9633560.048*
C110.1095 (2)0.4258 (5)0.8848 (2)0.0394 (8)
H110.0821470.544220.8669260.047*
C120.1692 (2)0.3486 (5)0.85311 (18)0.0346 (7)
H120.1814820.4173610.8141420.041*
C130.3220 (2)0.2712 (4)0.75496 (16)0.0243 (6)
C140.37110 (18)0.3767 (4)0.70923 (15)0.0212 (6)
C150.35810 (18)0.5781 (4)0.68943 (15)0.0222 (6)
C160.3997 (2)0.6611 (4)0.64177 (17)0.0298 (7)
H160.3919020.7954940.6292520.036*
C170.4525 (2)0.5487 (4)0.61252 (17)0.0295 (7)
H170.479850.6050430.5802680.035*
C180.46332 (19)0.3519 (4)0.63230 (16)0.0252 (6)
C190.42458 (19)0.2633 (4)0.68105 (16)0.0243 (6)
H190.4344160.1299220.6945130.029*
C200.3049 (2)0.7186 (4)0.72018 (17)0.0254 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0309 (2)0.0197 (2)0.0269 (2)0.00178 (14)0.01712 (17)0.00112 (13)
O10.0270 (13)0.0369 (12)0.0473 (14)0.0007 (10)0.0185 (11)0.0021 (10)
O20.0357 (13)0.0257 (11)0.0358 (12)0.0010 (9)0.0218 (11)0.0066 (9)
O30.0469 (15)0.0258 (11)0.0267 (12)0.0045 (9)0.0194 (11)0.0013 (8)
O40.0430 (16)0.0440 (14)0.0400 (14)0.0182 (12)0.0104 (12)0.0080 (11)
O50.0465 (16)0.0332 (14)0.0728 (19)0.0042 (11)0.0332 (15)0.0100 (12)
O60.0465 (16)0.0572 (15)0.0394 (14)0.0095 (12)0.0312 (13)0.0087 (11)
O70.0378 (16)0.0531 (16)0.093 (2)0.0064 (13)0.0248 (16)0.0153 (16)
O80.0407 (18)0.0568 (18)0.095 (2)0.0091 (14)0.0207 (17)0.0148 (16)
O90.073 (2)0.0598 (19)0.081 (2)0.0078 (16)0.0312 (19)0.0077 (16)
N10.0292 (15)0.0226 (12)0.0285 (14)0.0025 (10)0.0134 (12)0.0020 (10)
N20.0289 (15)0.0211 (12)0.0308 (14)0.0029 (10)0.0127 (12)0.0012 (10)
N30.0255 (15)0.0403 (16)0.0303 (15)0.0053 (12)0.0120 (12)0.0015 (11)
C10.035 (2)0.0287 (16)0.0330 (18)0.0066 (14)0.0125 (15)0.0030 (13)
C20.044 (2)0.0263 (16)0.0361 (19)0.0073 (15)0.0056 (17)0.0080 (13)
C30.045 (2)0.0360 (18)0.0269 (17)0.0057 (15)0.0066 (16)0.0081 (13)
C40.0333 (19)0.0343 (17)0.0231 (16)0.0054 (14)0.0087 (14)0.0020 (12)
C50.0258 (17)0.0270 (15)0.0233 (15)0.0015 (12)0.0098 (13)0.0033 (11)
C60.053 (2)0.051 (2)0.0301 (19)0.0058 (18)0.0262 (18)0.0000 (15)
C70.044 (2)0.057 (2)0.036 (2)0.0004 (18)0.0272 (18)0.0068 (16)
C80.0271 (17)0.0293 (15)0.0233 (15)0.0030 (12)0.0105 (14)0.0041 (11)
C90.0286 (18)0.0367 (17)0.0328 (18)0.0029 (14)0.0143 (15)0.0112 (13)
C100.032 (2)0.044 (2)0.049 (2)0.0078 (15)0.0175 (17)0.0106 (16)
C110.035 (2)0.0313 (18)0.051 (2)0.0118 (14)0.0092 (18)0.0020 (15)
C120.037 (2)0.0309 (17)0.0357 (19)0.0048 (14)0.0102 (16)0.0036 (13)
C130.0311 (18)0.0200 (14)0.0252 (16)0.0058 (12)0.0135 (14)0.0036 (11)
C140.0230 (16)0.0209 (14)0.0218 (15)0.0014 (11)0.0098 (13)0.0003 (11)
C150.0236 (16)0.0236 (14)0.0204 (14)0.0010 (11)0.0080 (13)0.0003 (11)
C160.040 (2)0.0248 (15)0.0296 (17)0.0032 (13)0.0180 (15)0.0071 (12)
C170.0327 (19)0.0328 (16)0.0278 (17)0.0009 (14)0.0164 (15)0.0065 (13)
C180.0266 (17)0.0300 (16)0.0224 (15)0.0001 (12)0.0123 (13)0.0030 (12)
C190.0285 (17)0.0204 (14)0.0266 (16)0.0020 (12)0.0121 (14)0.0002 (11)
C200.0282 (18)0.0197 (14)0.0310 (17)0.0023 (12)0.0128 (14)0.0013 (11)
Geometric parameters (Å, º) top
Cu1—O21.9168 (19)C3—H30.93
Cu1—O3i1.9237 (19)C4—C51.389 (4)
Cu1—N21.987 (2)C4—C61.430 (4)
Cu1—N11.997 (2)C5—C81.425 (4)
O1—C131.226 (4)C6—C71.349 (5)
O2—C131.278 (4)C6—H60.93
O3—C201.270 (4)C7—C91.432 (5)
O4—C201.228 (4)C7—H70.93
O5—N31.223 (3)C8—C91.391 (4)
O6—N31.229 (3)C9—C101.396 (5)
O7—H7A0.855 (5)C10—C111.362 (5)
O7—H7B0.857 (5)C10—H100.93
O8—H8A0.860 (5)C11—C121.391 (4)
O8—H8B0.861 (5)C11—H110.93
O9—H9A0.861 (5)C12—H120.93
O9—H9B0.859 (5)C13—C141.511 (4)
N1—C11.321 (4)C14—C191.381 (4)
N1—C51.363 (4)C14—C151.400 (4)
N2—C121.327 (4)C15—C161.386 (4)
N2—C81.364 (4)C15—C201.510 (4)
N3—C181.465 (4)C16—C171.379 (4)
C1—C21.395 (4)C16—H160.93
C1—H10.93C17—C181.367 (4)
C2—C31.362 (5)C17—H170.93
C2—H20.93C18—C191.386 (4)
C3—C41.410 (5)C19—H190.93
O2—Cu1—O3i91.58 (9)C9—C7—H7119
O2—Cu1—N2169.02 (10)N2—C8—C9123.3 (3)
O3i—Cu1—N294.40 (9)N2—C8—C5116.0 (2)
O2—Cu1—N194.69 (9)C9—C8—C5120.6 (3)
O3i—Cu1—N1161.86 (10)C8—C9—C10116.6 (3)
N2—Cu1—N182.38 (9)C8—C9—C7117.6 (3)
C13—O2—Cu1115.85 (19)C10—C9—C7125.8 (3)
C20—O3—Cu1ii120.74 (18)C11—C10—C9120.2 (3)
H7A—O7—H7B114 (2)C11—C10—H10119.9
H8A—O8—H8B107 (2)C9—C10—H10119.9
H9A—O9—H9B109 (2)C10—C11—C12119.8 (3)
C1—N1—C5118.2 (2)C10—C11—H11120.1
C1—N1—Cu1129.2 (2)C12—C11—H11120.1
C5—N1—Cu1112.57 (19)N2—C12—C11121.9 (3)
C12—N2—C8118.2 (3)N2—C12—H12119.1
C12—N2—Cu1128.9 (2)C11—C12—H12119.1
C8—N2—Cu1112.91 (18)O1—C13—O2125.9 (3)
O5—N3—O6123.3 (3)O1—C13—C14119.6 (3)
O5—N3—C18118.3 (2)O2—C13—C14114.4 (3)
O6—N3—C18118.4 (3)C19—C14—C15119.9 (2)
N1—C1—C2122.3 (3)C19—C14—C13117.7 (2)
N1—C1—H1118.8C15—C14—C13122.1 (2)
C2—C1—H1118.8C16—C15—C14119.2 (3)
C3—C2—C1119.7 (3)C16—C15—C20116.4 (2)
C3—C2—H2120.1C14—C15—C20124.4 (2)
C1—C2—H2120.1C17—C16—C15121.4 (3)
C2—C3—C4119.5 (3)C17—C16—H16119.3
C2—C3—H3120.2C15—C16—H16119.3
C4—C3—H3120.2C18—C17—C16118.1 (3)
C5—C4—C3117.0 (3)C18—C17—H17121
C5—C4—C6118.2 (3)C16—C17—H17121
C3—C4—C6124.8 (3)C17—C18—C19122.7 (3)
N1—C5—C4123.2 (3)C17—C18—N3119.0 (2)
N1—C5—C8116.1 (2)C19—C18—N3118.3 (3)
C4—C5—C8120.7 (3)C14—C19—C18118.7 (3)
C7—C6—C4121.0 (3)C14—C19—H19120.6
C7—C6—H6119.5C18—C19—H19120.6
C4—C6—H6119.5O4—C20—O3125.8 (3)
C6—C7—C9122.0 (3)O4—C20—C15118.7 (3)
C6—C7—H7119O3—C20—C15115.3 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O10.855 (10)2.023 (10)2.7239 (2)138.7 (14)
O7—H7B···O9iii0.856 (18)1.96 (2)2.7838 (2)161 (1)
O8—H8A···O4i0.86 (3)1.95 (2)2.7676 (2)159 (1)
O8—H8B···O70.86 (3)1.91 (3)2.7706 (2)177 (3)
O9—H9A···O70.86 (4)1.96 (4)2.7960 (2)165 (4)
O9—H9B···O8iii0.86 (3)1.94 (3)2.7788 (2)165 (4)
C1—H1···O5iv0.932.423.2867 (2)154
C3—H3···O4v0.932.413.3380 (2)175
C12—H12···O1i0.932.563.4453 (2)158
Symmetry codes: (i) x, y+1, z; (iii) x, y1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x, y3/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds