A rare-earth-containing compound, ytterbium aluminium antimonide, Yb3AlSb3 (Ca3AlAs3-type structure), has been successfully synthesized within the Yb–Al–Sb system through flux methods. According to the Zintl formalism, this structure is nominally made up of (Yb2+)3[(Al1−)(1b – Sb2−)2(2b – Sb1−)], where 1b and 2b indicate 1-bonded and 2-bonded, respectively, and Al is treated as part of the covalent anionic network. The crystal structure features infinite corner-sharing AlSb4 tetrahedra, [AlSb2Sb2/2]6−, with Yb2+ cations residing between the tetrahedra to provide charge balance. Herein, the synthetic conditions, the crystal structure determined from single-crystal X-ray diffraction data, and electronic structure calculations are reported.
Supporting information
CCDC reference: 2083846
Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: SHELXTL (Bruker, 2016); software used to prepare material for publication: SHELXTL (Bruker, 2016) and XPREP (Sheldrick, 2008).
Ytterbium aluminium antimonide
top
Crystal data top
AlSb3Yb3 | Dx = 7.468 Mg m−3 |
Mr = 911.35 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 9949 reflections |
a = 12.803 (3) Å | θ = 2.9–30.6° |
b = 4.4751 (9) Å | µ = 44.11 mm−1 |
c = 14.148 (3) Å | T = 100 K |
V = 810.6 (3) Å3 | Needle, black |
Z = 4 | 0.06 × 0.05 × 0.03 mm |
F(000) = 1504 | |
Data collection top
Bruker APEXII CCD diffractometer | 1283 reflections with I > 2σ(I) |
Radiation source: microsource | Rint = 0.038 |
φ and ω scans | θmax = 30.6°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −18→18 |
Tmin = 0.100, Tmax = 0.201 | k = −6→6 |
16634 measured reflections | l = −20→20 |
1395 independent reflections | |
Refinement top
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0144P)2 + 1.4011P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.016 | (Δ/σ)max = 0.002 |
wR(F2) = 0.034 | Δρmax = 1.39 e Å−3 |
S = 1.17 | Δρmin = −1.38 e Å−3 |
1395 reflections | Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
44 parameters | Extinction coefficient: 0.00046 (3) |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Single-crystal X-ray diffraction data were collected from a Bruker
X-ray diffractometer with Mo radiation and processed by APEX 3 and SADABS (see
Table 1) (Bruker, 2016). The black needle crystals were selected and
cut to appropriate dimensions in Paratone-N oil. The space group Pnma
was determined by XPREP automatically (Sheldrick, 2008). The structure was
solved by direct methods in the SHELXTL suite of programs (Sheldrick, 2008).
During the refinement cycles, unphysical atomic positions based on van der
Waals radius were ignored manually, with the final refinement cycles obtained
a highest residue peak 2.725 e-/Å3 and a deepest hole of -1.784 e-/Å3. The absorption correction was further employed in the refinement
using SADABS (Bruker, 2016) resulting in a drop in the R1 factor to 1.58 %
with highest residue peak 1.389 e-/Å3 and the deepest hole -1.378 e-/Å3. Atomic coordinates were standardized using the STRUCTURE TIDY
program (Gelato & Parthé, 1987). |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Yb1 | 0.55940 (2) | 0.250000 | 0.61179 (2) | 0.00583 (6) | |
Yb2 | 0.27262 (2) | 0.250000 | 0.72127 (2) | 0.00586 (6) | |
Yb3 | 0.35004 (2) | 0.250000 | 0.00587 (2) | 0.00623 (6) | |
Sb1 | 0.25645 (3) | 0.250000 | 0.38116 (2) | 0.00527 (7) | |
Sb2 | 0.11386 (3) | 0.250000 | 0.10925 (2) | 0.00517 (7) | |
Sb3 | 0.04007 (3) | 0.250000 | 0.64920 (2) | 0.00543 (8) | |
Al1 | 0.06670 (12) | 0.250000 | 0.29703 (12) | 0.0061 (3) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Yb1 | 0.00605 (10) | 0.00642 (11) | 0.00503 (11) | 0.000 | −0.00007 (8) | 0.000 |
Yb2 | 0.00642 (10) | 0.00572 (11) | 0.00543 (11) | 0.000 | 0.00049 (8) | 0.000 |
Yb3 | 0.00714 (10) | 0.00650 (11) | 0.00505 (11) | 0.000 | −0.00028 (8) | 0.000 |
Sb1 | 0.00581 (15) | 0.00496 (15) | 0.00504 (16) | 0.000 | −0.00015 (12) | 0.000 |
Sb2 | 0.00593 (15) | 0.00540 (16) | 0.00418 (16) | 0.000 | −0.00035 (12) | 0.000 |
Sb3 | 0.00601 (15) | 0.00547 (15) | 0.00480 (16) | 0.000 | 0.00029 (12) | 0.000 |
Al1 | 0.0072 (7) | 0.0050 (7) | 0.0061 (7) | 0.000 | 0.0010 (6) | 0.000 |
Geometric parameters (Å, º) top
Yb1—Sb2i | 3.1509 (5) | Yb2—Al1ii | 3.2230 (12) |
Yb1—Sb2ii | 3.1509 (5) | Yb2—Al1i | 3.2230 (12) |
Yb1—Sb2iii | 3.2039 (7) | Yb2—Yb3i | 4.0939 (6) |
Yb1—Sb1iv | 3.2520 (5) | Yb2—Yb3ii | 4.0939 (6) |
Yb1—Sb1v | 3.2520 (5) | Yb2—Yb3vii | 4.1466 (8) |
Yb1—Sb3vi | 3.3906 (8) | Yb3—Sb1viii | 3.1589 (5) |
Yb1—Yb2vi | 3.6097 (6) | Yb3—Sb1ix | 3.1589 (5) |
Yb1—Yb2 | 3.9849 (8) | Yb3—Sb3iii | 3.2760 (6) |
Yb1—Yb3iii | 4.0764 (8) | Yb3—Sb3ix | 3.3313 (5) |
Yb1—Yb1v | 4.1623 (7) | Yb3—Sb3viii | 3.3313 (5) |
Yb1—Yb1iv | 4.1623 (7) | Yb3—Sb2 | 3.3590 (7) |
Yb2—Sb2i | 3.1034 (5) | Sb1—Al1 | 2.7053 (17) |
Yb2—Sb2ii | 3.1034 (5) | Sb2—Al1 | 2.7245 (18) |
Yb2—Sb3 | 3.1470 (7) | Sb3—Al1x | 2.7302 (10) |
Yb2—Sb1ii | 3.2034 (5) | Sb3—Al1xi | 2.7302 (10) |
Yb2—Sb1i | 3.2034 (5) | | |
| | | |
Sb2i—Yb1—Sb2ii | 90.493 (19) | Sb1viii—Yb3—Sb3iii | 86.932 (15) |
Sb2i—Yb1—Sb2iii | 98.168 (9) | Sb1ix—Yb3—Sb3iii | 86.932 (14) |
Sb2ii—Yb1—Sb2iii | 98.168 (9) | Sb1viii—Yb3—Sb3ix | 176.402 (9) |
Sb2i—Yb1—Sb1iv | 177.931 (9) | Sb1ix—Yb3—Sb3ix | 92.665 (16) |
Sb2ii—Yb1—Sb1iv | 91.267 (18) | Sb3iii—Yb3—Sb3ix | 95.394 (15) |
Sb2iii—Yb1—Sb1iv | 82.658 (9) | Sb1viii—Yb3—Sb3viii | 92.665 (16) |
Sb2i—Yb1—Sb1v | 91.267 (17) | Sb1ix—Yb3—Sb3viii | 176.402 (9) |
Sb2ii—Yb1—Sb1v | 177.931 (9) | Sb3iii—Yb3—Sb3viii | 95.394 (15) |
Sb2iii—Yb1—Sb1v | 82.658 (9) | Sb3ix—Yb3—Sb3viii | 84.393 (17) |
Sb1iv—Yb1—Sb1v | 86.954 (19) | Sb1viii—Yb3—Sb2 | 81.643 (13) |
Sb2i—Yb1—Sb3vi | 87.708 (9) | Sb1ix—Yb3—Sb2 | 81.643 (13) |
Sb2ii—Yb1—Sb3vi | 87.708 (9) | Sb3iii—Yb3—Sb2 | 163.769 (12) |
Sb2iii—Yb1—Sb3vi | 171.614 (12) | Sb3ix—Yb3—Sb2 | 96.612 (14) |
Sb1iv—Yb1—Sb3vi | 91.275 (9) | Sb3viii—Yb3—Sb2 | 96.612 (14) |
Sb1v—Yb1—Sb3vi | 91.275 (9) | Sb1viii—Yb3—Yb1xiii | 51.533 (8) |
Sb2i—Yb1—Yb2vi | 122.672 (11) | Sb1ix—Yb3—Yb1xiii | 51.533 (8) |
Sb2ii—Yb1—Yb2vi | 122.672 (10) | Sb3iii—Yb3—Yb1xiii | 113.857 (16) |
Sb2iii—Yb1—Yb2vi | 118.297 (14) | Sb3ix—Yb3—Yb1xiii | 129.349 (8) |
Sb1iv—Yb1—Yb2vi | 55.363 (11) | Sb3viii—Yb3—Yb1xiii | 129.349 (8) |
Sb1v—Yb1—Yb2vi | 55.363 (10) | Sb2—Yb3—Yb1xiii | 49.912 (14) |
Sb3vi—Yb1—Yb2vi | 53.317 (12) | Sb1viii—Yb3—Yb2ix | 129.596 (14) |
Sb2i—Yb1—Yb2 | 49.896 (10) | Sb1ix—Yb3—Yb2ix | 82.131 (16) |
Sb2ii—Yb1—Yb2 | 49.896 (10) | Sb3iii—Yb3—Yb2ix | 141.571 (8) |
Sb2iii—Yb1—Yb2 | 125.444 (10) | Sb3ix—Yb3—Yb2ix | 48.834 (12) |
Sb1iv—Yb1—Yb2 | 130.999 (11) | Sb3viii—Yb3—Yb2ix | 94.358 (16) |
Sb1v—Yb1—Yb2 | 130.999 (11) | Sb2—Yb3—Yb2ix | 47.977 (7) |
Sb3vi—Yb1—Yb2 | 62.942 (8) | Yb1xiii—Yb3—Yb2ix | 87.353 (12) |
Yb2vi—Yb1—Yb2 | 116.259 (15) | Sb1viii—Yb3—Yb2viii | 82.131 (15) |
Sb2i—Yb1—Yb3iii | 129.639 (10) | Sb1ix—Yb3—Yb2viii | 129.596 (14) |
Sb2ii—Yb1—Yb3iii | 129.639 (10) | Sb3iii—Yb3—Yb2viii | 141.571 (8) |
Sb2iii—Yb1—Yb3iii | 53.330 (8) | Sb3ix—Yb3—Yb2viii | 94.358 (16) |
Sb1iv—Yb1—Yb3iii | 49.514 (10) | Sb3viii—Yb3—Yb2viii | 48.834 (12) |
Sb1v—Yb1—Yb3iii | 49.514 (10) | Sb2—Yb3—Yb2viii | 47.977 (7) |
Sb3vi—Yb1—Yb3iii | 118.284 (10) | Yb1xiii—Yb3—Yb2viii | 87.353 (12) |
Yb2vi—Yb1—Yb3iii | 64.967 (15) | Yb2ix—Yb3—Yb2viii | 66.263 (15) |
Yb2—Yb1—Yb3iii | 178.774 (8) | Sb1viii—Yb3—Yb2xiv | 49.793 (9) |
Sb2i—Yb1—Yb1v | 49.636 (9) | Sb1ix—Yb3—Yb2xiv | 49.793 (9) |
Sb2ii—Yb1—Yb1v | 96.654 (14) | Sb3iii—Yb3—Yb2xiv | 61.789 (14) |
Sb2iii—Yb1—Yb1v | 48.532 (11) | Sb3ix—Yb3—Yb2xiv | 133.789 (9) |
Sb1iv—Yb1—Yb1v | 131.158 (12) | Sb3viii—Yb3—Yb2xiv | 133.789 (9) |
Sb1v—Yb1—Yb1v | 85.317 (12) | Sb2—Yb3—Yb2xiv | 101.980 (13) |
Sb3vi—Yb1—Yb1v | 136.991 (10) | Yb1xiii—Yb3—Yb2xiv | 52.068 (6) |
Yb2vi—Yb1—Yb1v | 140.673 (8) | Yb2ix—Yb3—Yb2xiv | 129.133 (11) |
Yb2—Yb1—Yb1v | 87.635 (12) | Yb2viii—Yb3—Yb2xiv | 129.133 (11) |
Yb3iii—Yb1—Yb1v | 91.331 (13) | Al1—Sb1—Yb3ii | 81.84 (3) |
Sb2i—Yb1—Yb1iv | 96.654 (14) | Al1—Sb1—Yb3i | 81.84 (3) |
Sb2ii—Yb1—Yb1iv | 49.636 (9) | Yb3ii—Sb1—Yb3i | 90.199 (17) |
Sb2iii—Yb1—Yb1iv | 48.532 (11) | Al1—Sb1—Yb2viii | 65.48 (2) |
Sb1iv—Yb1—Yb1iv | 85.317 (12) | Yb3ii—Sb1—Yb2viii | 147.037 (15) |
Sb1v—Yb1—Yb1iv | 131.158 (13) | Yb3i—Sb1—Yb2viii | 81.343 (15) |
Sb3vi—Yb1—Yb1iv | 136.991 (10) | Al1—Sb1—Yb2ix | 65.48 (2) |
Yb2vi—Yb1—Yb1iv | 140.673 (8) | Yb3ii—Sb1—Yb2ix | 81.343 (15) |
Yb2—Yb1—Yb1iv | 87.635 (12) | Yb3i—Sb1—Yb2ix | 147.037 (15) |
Yb3iii—Yb1—Yb1iv | 91.331 (13) | Yb2viii—Sb1—Yb2ix | 88.613 (19) |
Yb1v—Yb1—Yb1iv | 65.038 (15) | Al1—Sb1—Yb1iv | 131.650 (17) |
Sb2i—Yb2—Sb2ii | 92.274 (18) | Yb3ii—Sb1—Yb1iv | 78.953 (14) |
Sb2i—Yb2—Sb3 | 106.117 (12) | Yb3i—Sb1—Yb1iv | 141.550 (14) |
Sb2ii—Yb2—Sb3 | 106.117 (12) | Yb2viii—Sb1—Yb1iv | 125.910 (14) |
Sb2i—Yb2—Sb1ii | 156.728 (12) | Yb2ix—Sb1—Yb1iv | 67.994 (11) |
Sb2ii—Yb2—Sb1ii | 84.917 (16) | Al1—Sb1—Yb1v | 131.650 (17) |
Sb3—Yb2—Sb1ii | 96.828 (11) | Yb3ii—Sb1—Yb1v | 141.550 (14) |
Sb2i—Yb2—Sb1i | 84.917 (16) | Yb3i—Sb1—Yb1v | 78.953 (14) |
Sb2ii—Yb2—Sb1i | 156.728 (12) | Yb2viii—Sb1—Yb1v | 67.994 (11) |
Sb3—Yb2—Sb1i | 96.828 (11) | Yb2ix—Sb1—Yb1v | 125.910 (14) |
Sb1ii—Yb2—Sb1i | 88.613 (19) | Yb1iv—Sb1—Yb1v | 86.955 (19) |
Sb2i—Yb2—Al1ii | 111.80 (3) | Al1—Sb2—Yb2ix | 66.78 (2) |
Sb2ii—Yb2—Al1ii | 50.97 (3) | Al1—Sb2—Yb2viii | 66.78 (2) |
Sb3—Yb2—Al1ii | 135.37 (2) | Yb2ix—Sb2—Yb2viii | 92.272 (18) |
Sb1ii—Yb2—Al1ii | 49.79 (3) | Al1—Sb2—Yb1viii | 80.38 (3) |
Sb1i—Yb2—Al1ii | 108.92 (3) | Yb2ix—Sb2—Yb1viii | 146.707 (14) |
Sb2i—Yb2—Al1i | 50.97 (3) | Yb2viii—Sb2—Yb1viii | 79.157 (14) |
Sb2ii—Yb2—Al1i | 111.80 (3) | Al1—Sb2—Yb1ix | 80.38 (3) |
Sb3—Yb2—Al1i | 135.37 (2) | Yb2ix—Sb2—Yb1ix | 79.157 (14) |
Sb1ii—Yb2—Al1i | 108.92 (3) | Yb2viii—Sb2—Yb1ix | 146.707 (14) |
Sb1i—Yb2—Al1i | 49.79 (3) | Yb1viii—Sb2—Yb1ix | 90.493 (19) |
Al1ii—Yb2—Al1i | 87.93 (4) | Al1—Sb2—Yb1xiii | 154.63 (4) |
Sb2i—Yb2—Yb1xii | 133.498 (8) | Yb2ix—Sb2—Yb1xiii | 126.898 (9) |
Sb2ii—Yb2—Yb1xii | 133.498 (8) | Yb2viii—Sb2—Yb1xiii | 126.898 (9) |
Sb3—Yb2—Yb1xii | 59.773 (15) | Yb1viii—Sb2—Yb1xiii | 81.833 (9) |
Sb1ii—Yb2—Yb1xii | 56.642 (10) | Yb1ix—Sb2—Yb1xiii | 81.833 (9) |
Sb1i—Yb2—Yb1xii | 56.642 (10) | Al1—Sb2—Yb3 | 128.61 (4) |
Al1ii—Yb2—Yb1xii | 105.37 (3) | Yb2ix—Sb2—Yb3 | 78.506 (13) |
Al1i—Yb2—Yb1xii | 105.37 (3) | Yb2viii—Sb2—Yb3 | 78.506 (13) |
Sb2i—Yb2—Yb1 | 50.948 (9) | Yb1viii—Sb2—Yb3 | 129.695 (11) |
Sb2ii—Yb2—Yb1 | 50.948 (9) | Yb1ix—Sb2—Yb3 | 129.695 (11) |
Sb3—Yb2—Yb1 | 138.219 (14) | Yb1xiii—Sb2—Yb3 | 76.758 (13) |
Sb1ii—Yb2—Yb1 | 112.428 (9) | Al1x—Sb3—Al1xi | 110.08 (6) |
Sb1i—Yb2—Yb1 | 112.428 (9) | Al1x—Sb3—Yb2 | 112.54 (3) |
Al1ii—Yb2—Yb1 | 62.69 (3) | Al1xi—Sb3—Yb2 | 112.54 (3) |
Al1i—Yb2—Yb1 | 62.69 (3) | Al1x—Sb3—Yb3xiii | 79.33 (4) |
Yb1xii—Yb2—Yb1 | 162.008 (8) | Al1xi—Sb3—Yb3xiii | 79.33 (4) |
Sb2i—Yb2—Yb3i | 53.517 (12) | Yb2—Sb3—Yb3xiii | 156.866 (14) |
Sb2ii—Yb2—Yb3i | 101.160 (15) | Al1x—Sb3—Yb3i | 80.25 (3) |
Sb3—Yb2—Yb3i | 52.836 (7) | Al1xi—Sb3—Yb3i | 158.67 (4) |
Sb1ii—Yb2—Yb3i | 149.637 (11) | Yb2—Sb3—Yb3i | 78.329 (12) |
Sb1i—Yb2—Yb3i | 95.699 (16) | Yb3xiii—Sb3—Yb3i | 84.607 (15) |
Al1ii—Yb2—Yb3i | 150.67 (3) | Al1x—Sb3—Yb3ii | 158.67 (4) |
Al1i—Yb2—Yb3i | 96.49 (3) | Al1xi—Sb3—Yb3ii | 80.25 (3) |
Yb1xii—Yb2—Yb3i | 101.360 (15) | Yb2—Sb3—Yb3ii | 78.329 (12) |
Yb1—Yb2—Yb3i | 93.673 (12) | Yb3xiii—Sb3—Yb3ii | 84.607 (15) |
Sb2i—Yb2—Yb3ii | 101.160 (15) | Yb3i—Sb3—Yb3ii | 84.392 (17) |
Sb2ii—Yb2—Yb3ii | 53.517 (12) | Al1x—Sb3—Yb1xii | 76.03 (4) |
Sb3—Yb2—Yb3ii | 52.836 (7) | Al1xi—Sb3—Yb1xii | 76.03 (4) |
Sb1ii—Yb2—Yb3ii | 95.699 (16) | Yb2—Sb3—Yb1xii | 66.909 (9) |
Sb1i—Yb2—Yb3ii | 149.637 (11) | Yb3xiii—Sb3—Yb1xii | 136.224 (14) |
Al1ii—Yb2—Yb3ii | 96.49 (3) | Yb3i—Sb3—Yb1xii | 125.189 (10) |
Al1i—Yb2—Yb3ii | 150.67 (3) | Yb3ii—Sb3—Yb1xii | 125.189 (11) |
Yb1xii—Yb2—Yb3ii | 101.360 (14) | Sb1—Al1—Sb2 | 103.30 (5) |
Yb1—Yb2—Yb3ii | 93.673 (11) | Sb1—Al1—Sb3x | 109.09 (4) |
Yb3i—Yb2—Yb3ii | 66.263 (14) | Sb2—Al1—Sb3x | 112.50 (4) |
Sb2i—Yb2—Yb3vii | 112.578 (11) | Sb1—Al1—Sb3xi | 109.09 (4) |
Sb2ii—Yb2—Yb3vii | 112.578 (11) | Sb2—Al1—Sb3xi | 112.50 (4) |
Sb3—Yb2—Yb3vii | 122.737 (9) | Sb3x—Al1—Sb3xi | 110.08 (6) |
Sb1ii—Yb2—Yb3vii | 48.862 (10) | Sb1—Al1—Yb2ix | 64.73 (3) |
Sb1i—Yb2—Yb3vii | 48.862 (10) | Sb2—Al1—Yb2ix | 62.24 (3) |
Al1ii—Yb2—Yb3vii | 61.61 (3) | Sb3x—Al1—Yb2ix | 168.88 (5) |
Al1i—Yb2—Yb3vii | 61.61 (3) | Sb3xi—Al1—Yb2ix | 80.983 (17) |
Yb1xii—Yb2—Yb3vii | 62.964 (14) | Sb1—Al1—Yb2viii | 64.73 (3) |
Yb1—Yb2—Yb3vii | 99.044 (12) | Sb2—Al1—Yb2viii | 62.24 (3) |
Yb3i—Yb2—Yb3vii | 144.539 (8) | Sb3x—Al1—Yb2viii | 80.983 (17) |
Yb3ii—Yb2—Yb3vii | 144.539 (8) | Sb3xi—Al1—Yb2viii | 168.88 (5) |
Sb1viii—Yb3—Sb1ix | 90.197 (17) | Yb2ix—Al1—Yb2viii | 87.93 (4) |
Symmetry codes: (i) −x+1/2, −y, z+1/2; (ii) −x+1/2, −y+1, z+1/2; (iii) x+1/2, y, −z+1/2; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y, −z+1; (vi) x+1/2, y, −z+3/2; (vii) x, y, z+1; (viii) −x+1/2, −y, z−1/2; (ix) −x+1/2, −y+1, z−1/2; (x) −x, −y, −z+1; (xi) −x, −y+1, −z+1; (xii) x−1/2, y, −z+3/2; (xiii) x−1/2, y, −z+1/2; (xiv) x, y, z−1. |
Fractional atomic coordinates (× 104) and equivalent isotropic
displacement parameters (Å2 × 103)
Ueq is defined as one third of the trace of the orthogonalized
Uij tensor top | x | y | z | Ueq |
Yb1 | 5594 (1) | 2500 | 6118 (1) | 6(1) |
Yb2 | 2726 (1) | 2500 | 7213 (1) | 6(1) |
Yb3 | 3500 (1) | 2500 | 59 (1) | 6(1) |
Sb1 | 2564 (1) | 2500 | 3812 (1) | 5(1) |
Sb2 | 1139 (1) | 2500 | 1092 (1) | 5(1) |
Sb3 | 401 (1) | 2500 | 6492 (1) | 5(1) |
Al1 | 667 (1) | 2500 | 2970 (1) | 6(1) |
Anisotropic displacement parameters (Å2 × 103) top | U11 | U22 | U33 | U23 | U13 | U12 |
Yb1 | 6(1) | 6(1) | 5(1) | 0 | 0(1) | 0 |
Yb2 | 6(1) | 6(1) | 5(1) | 0 | 0(1) | 0 |
Yb3 | 7(1) | 6(1) | 5(1) | 0 | 0(1) | 0 |
Sb1 | 6(1) | 5(1) | 5(1) | 0 | 0(1) | 0 |
Sb2 | 6(1) | 5(1) | 4(1) | 0 | 0(1) | 0 |
Sb3 | 6(1) | 5(1) | 5(1) | 0 | 0(1) | 0 |
Al1 | 7(1) | 5(1) | 6(1) | 0 | 1(1) | 0 |