The reaction of Cs2S3, Ta and S yields single crystals of the new caesium tantalum chalcogenide hexacaesium tetratantalum docosasulfide, Cs6Ta4S22, which is isotypic with Rb6Ta4S22 and the niobium compounds A6Nb4S22 (A = Rb, Cs). The structure consists of discrete [Ta4S22]6- anions and Cs+ cations.
Supporting information
Data collection: IPDS (Stoe & Cie, 1998); cell refinement: IPDS; data reduction: IPDS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: CIFTAB in SHELXL97.
Crystal data top
Cs6Ta4S22 | F(000) = 1948 |
Mr = 2226.58 | Dx = 3.947 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.1251 (10) Å | Cell parameters from 8000 reflections |
b = 8.1320 (5) Å | θ = 6–60° |
c = 19.5195 (15) Å | µ = 18.62 mm−1 |
β = 103.230 (9)° | T = 293 K |
V = 1873.6 (2) Å3 | Polyhedra, red–orange |
Z = 2 | 0.1 × 0.05 × 0.02 mm |
Data collection top
Stoe Imaging Plate Diffraction System diffractometer | 5393 independent reflections |
Radiation source: fine-focus sealed tube | 4878 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
Phi scans | θmax = 30.3°, θmin = 3.1° |
Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1997) | h = −17→17 |
Tmin = 0.339, Tmax = 0.689 | k = −10→11 |
22679 measured reflections | l = −27→27 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | w = 1/[σ2(Fo2) + (0.0317P)2 + 3.9178P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.059 | (Δ/σ)max = 0.002 |
S = 1.07 | Δρmax = 1.13 e Å−3 |
5393 reflections | Δρmin = −1.45 e Å−3 |
146 parameters | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 9.3E-4 (10) |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Ta1 | 0.791758 (14) | 0.64358 (2) | 0.343166 (8) | 0.01792 (5) | |
Ta2 | 0.694568 (12) | 0.77701 (2) | 0.493858 (8) | 0.01488 (5) | |
S1 | 0.73403 (12) | 0.43515 (18) | 0.27073 (7) | 0.0334 (3) | |
S2 | 0.97445 (12) | 0.7180 (2) | 0.31895 (8) | 0.0379 (3) | |
S3 | 0.98377 (10) | 0.57344 (18) | 0.40867 (7) | 0.0315 (3) | |
S4 | 0.70936 (10) | 0.89309 (16) | 0.28387 (6) | 0.0254 (2) | |
S5 | 0.61034 (8) | 0.77534 (14) | 0.34393 (5) | 0.01959 (19) | |
S6 | 0.75598 (9) | 0.50739 (14) | 0.45343 (5) | 0.01995 (19) | |
S7 | 0.58528 (9) | 0.52245 (14) | 0.45580 (6) | 0.0218 (2) | |
S8 | 0.86590 (9) | 0.87293 (14) | 0.46049 (5) | 0.02084 (19) | |
S9 | 0.74885 (10) | 1.05628 (15) | 0.46933 (6) | 0.0255 (2) | |
S10 | 0.75161 (10) | 0.74865 (18) | 0.60914 (6) | 0.0284 (2) | |
S11 | 0.49805 (8) | 0.87659 (14) | 0.48567 (6) | 0.01999 (19) | |
Cs1 | 0.50617 (3) | 0.18185 (4) | 0.337240 (15) | 0.02835 (7) | |
Cs2 | 0.72897 (3) | 0.18585 (5) | 0.120154 (17) | 0.03661 (9) | |
Cs3 | 0.96245 (3) | 0.15806 (4) | 0.357399 (19) | 0.03488 (8) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Ta1 | 0.01770 (8) | 0.02042 (9) | 0.01640 (8) | 0.00231 (6) | 0.00551 (5) | −0.00177 (5) |
Ta2 | 0.01449 (8) | 0.01526 (9) | 0.01555 (7) | −0.00049 (5) | 0.00483 (5) | −0.00159 (5) |
S1 | 0.0409 (7) | 0.0292 (7) | 0.0275 (5) | 0.0049 (5) | 0.0022 (5) | −0.0117 (5) |
S2 | 0.0283 (6) | 0.0497 (9) | 0.0418 (7) | 0.0010 (5) | 0.0206 (5) | 0.0035 (6) |
S3 | 0.0206 (5) | 0.0374 (7) | 0.0351 (6) | 0.0060 (5) | 0.0035 (4) | −0.0019 (5) |
S4 | 0.0294 (5) | 0.0256 (6) | 0.0214 (4) | 0.0010 (4) | 0.0062 (4) | 0.0042 (4) |
S5 | 0.0179 (4) | 0.0217 (5) | 0.0187 (4) | 0.0018 (4) | 0.0034 (3) | −0.0027 (3) |
S6 | 0.0215 (4) | 0.0176 (5) | 0.0217 (4) | 0.0032 (4) | 0.0068 (3) | 0.0011 (3) |
S7 | 0.0207 (4) | 0.0190 (5) | 0.0268 (5) | −0.0040 (4) | 0.0080 (4) | −0.0019 (4) |
S8 | 0.0178 (4) | 0.0241 (5) | 0.0214 (4) | −0.0039 (4) | 0.0061 (3) | −0.0008 (4) |
S9 | 0.0290 (5) | 0.0171 (5) | 0.0311 (5) | −0.0020 (4) | 0.0084 (4) | −0.0025 (4) |
S10 | 0.0249 (5) | 0.0436 (7) | 0.0167 (4) | −0.0009 (5) | 0.0050 (4) | 0.0002 (4) |
S11 | 0.0157 (4) | 0.0180 (5) | 0.0269 (5) | −0.0002 (3) | 0.0061 (4) | −0.0043 (4) |
Cs1 | 0.03135 (14) | 0.03026 (16) | 0.02281 (12) | 0.00705 (11) | 0.00489 (10) | 0.00018 (10) |
Cs2 | 0.03321 (16) | 0.0432 (2) | 0.02932 (14) | 0.00985 (13) | −0.00126 (12) | −0.00817 (13) |
Cs3 | 0.03249 (16) | 0.03121 (18) | 0.03879 (17) | −0.00575 (12) | 0.00367 (13) | 0.00659 (13) |
Geometric parameters (Å, º) top
Ta1—S1 | 2.2156 (13) | S8—Cs3vi | 3.4459 (11) |
Ta1—S4 | 2.4342 (12) | S8—Cs3iii | 3.6939 (12) |
Ta1—S2 | 2.4446 (13) | S9—Cs1vi | 3.5883 (13) |
Ta1—S5 | 2.4499 (10) | S9—Cs2vii | 3.6671 (12) |
Ta1—S3 | 2.4531 (12) | S9—Cs3vi | 3.8414 (12) |
Ta1—S6 | 2.5445 (11) | S10—Cs3iii | 3.4621 (13) |
Ta1—S8 | 2.9306 (11) | S10—Cs2ii | 3.5543 (15) |
Ta1—Cs3 | 4.4369 (5) | S10—Cs1iv | 3.5610 (12) |
Ta1—Cs1i | 4.4412 (6) | S11—S11viii | 2.081 (2) |
Ta2—S10 | 2.2098 (11) | S11—Cs2i | 3.4128 (11) |
Ta2—S9 | 2.4422 (12) | S11—Cs1iv | 3.5011 (12) |
Ta2—S8 | 2.4428 (10) | S11—Cs1vi | 3.8337 (12) |
Ta2—S7 | 2.4784 (11) | Cs1—S11iv | 3.5011 (11) |
Ta2—S11 | 2.4869 (10) | Cs1—S5ix | 3.5306 (12) |
Ta2—S6 | 2.5007 (11) | Cs1—S4x | 3.5414 (13) |
Ta2—S5 | 2.8706 (10) | Cs1—S10iv | 3.5610 (12) |
Ta2—Cs2ii | 4.4663 (5) | Cs1—S5x | 3.5766 (11) |
Ta2—Cs3iii | 4.5251 (6) | Cs1—S9ix | 3.5883 (13) |
Ta2—Cs1iv | 4.5363 (5) | Cs1—S4ix | 3.7207 (13) |
S1—Cs2 | 3.5596 (12) | Cs1—S1x | 3.7602 (15) |
S1—Cs3 | 3.6695 (14) | Cs1—S11ix | 3.8337 (12) |
S1—Cs1i | 3.7602 (14) | Cs1—Ta1x | 4.4412 (6) |
S1—Cs1 | 3.8991 (16) | Cs2—S11x | 3.4128 (11) |
S2—S3 | 2.091 (2) | Cs2—S2xi | 3.5293 (15) |
S2—Cs2v | 3.5293 (15) | Cs2—S10xii | 3.5543 (15) |
S2—Cs3vi | 3.6661 (18) | Cs2—S9xiii | 3.6671 (12) |
S2—Cs3v | 3.7252 (15) | Cs2—S7xii | 3.6930 (12) |
S3—Cs3 | 3.5157 (15) | Cs2—S6xii | 3.6954 (11) |
S3—Cs2v | 3.7656 (13) | Cs2—S3xi | 3.7656 (13) |
S4—S5 | 2.0921 (16) | Cs2—S7x | 3.9871 (12) |
S4—Cs1i | 3.5414 (13) | Cs2—S4ix | 4.0355 (12) |
S4—Cs1vi | 3.7207 (13) | Cs2—Ta2xii | 4.4663 (5) |
S4—Cs3vi | 3.7555 (13) | Cs2—Cs3 | 4.8487 (7) |
S4—Cs2vi | 4.0355 (12) | Cs3—S8ix | 3.4459 (11) |
S5—Cs1vi | 3.5306 (12) | Cs3—S10iii | 3.4621 (13) |
S5—Cs1i | 3.5766 (11) | Cs3—S2ix | 3.6661 (18) |
S6—S7 | 2.0844 (15) | Cs3—S8iii | 3.6939 (12) |
S6—Cs2ii | 3.6953 (11) | Cs3—S2xi | 3.7252 (15) |
S7—Cs1 | 3.5961 (12) | Cs3—S4ix | 3.7555 (13) |
S7—Cs2ii | 3.6930 (12) | Cs3—S9ix | 3.8414 (12) |
S7—Cs2i | 3.9871 (12) | Cs3—Ta2iii | 4.5251 (6) |
S8—S9 | 2.0927 (17) | | |
| | | |
S1—Ta1—S4 | 107.39 (5) | S5ix—Cs1—S5x | 107.01 (2) |
S1—Ta1—S2 | 103.53 (5) | S4x—Cs1—S5x | 34.18 (3) |
S4—Ta1—S2 | 89.61 (5) | S10iv—Cs1—S5x | 94.72 (3) |
S1—Ta1—S5 | 100.69 (4) | S11iv—Cs1—S9ix | 56.42 (3) |
S4—Ta1—S5 | 50.72 (4) | S5ix—Cs1—S9ix | 58.63 (3) |
S2—Ta1—S5 | 138.37 (5) | S4x—Cs1—S9ix | 167.47 (3) |
S1—Ta1—S3 | 106.16 (5) | S10iv—Cs1—S9ix | 117.68 (3) |
S4—Ta1—S3 | 132.76 (5) | S5x—Cs1—S9ix | 147.59 (3) |
S2—Ta1—S3 | 50.54 (5) | S11iv—Cs1—S7 | 62.04 (3) |
S5—Ta1—S3 | 147.66 (4) | S5ix—Cs1—S7 | 131.06 (3) |
S1—Ta1—S6 | 96.70 (5) | S4x—Cs1—S7 | 95.94 (3) |
S4—Ta1—S6 | 129.35 (4) | S10iv—Cs1—S7 | 79.13 (3) |
S2—Ta1—S6 | 127.50 (4) | S5x—Cs1—S7 | 117.35 (3) |
S5—Ta1—S6 | 81.84 (4) | S9ix—Cs1—S7 | 72.70 (3) |
S3—Ta1—S6 | 77.48 (4) | S11iv—Cs1—S4ix | 110.55 (3) |
S1—Ta1—S8 | 168.85 (4) | S5ix—Cs1—S4ix | 33.41 (2) |
S4—Ta1—S8 | 81.96 (4) | S4x—Cs1—S4ix | 123.641 (18) |
S2—Ta1—S8 | 82.19 (4) | S10iv—Cs1—S4ix | 149.81 (3) |
S5—Ta1—S8 | 80.34 (3) | S5x—Cs1—S4ix | 89.68 (3) |
S3—Ta1—S8 | 69.87 (4) | S9ix—Cs1—S4ix | 62.28 (3) |
S6—Ta1—S8 | 72.38 (3) | S7—Cs1—S4ix | 124.75 (3) |
S1—Ta1—Cs3 | 55.52 (4) | S11iv—Cs1—S1x | 107.25 (3) |
S4—Ta1—Cs3 | 155.00 (3) | S5ix—Cs1—S1x | 75.27 (3) |
S2—Ta1—Cs3 | 78.58 (4) | S4x—Cs1—S1x | 61.71 (3) |
S5—Ta1—Cs3 | 142.69 (3) | S10iv—Cs1—S1x | 68.29 (3) |
S3—Ta1—Cs3 | 52.19 (3) | S5x—Cs1—S1x | 58.62 (3) |
S6—Ta1—Cs3 | 74.16 (2) | S9ix—Cs1—S1x | 130.80 (3) |
S8—Ta1—Cs3 | 117.52 (2) | S7—Cs1—S1x | 146.10 (3) |
S1—Ta1—Cs1i | 57.78 (4) | S4ix—Cs1—S1x | 89.08 (3) |
S4—Ta1—Cs1i | 52.68 (3) | S11iv—Cs1—S11ix | 32.57 (3) |
S2—Ta1—Cs1i | 115.97 (4) | S5ix—Cs1—S11ix | 55.71 (2) |
S5—Ta1—Cs1i | 53.53 (2) | S4x—Cs1—S11ix | 132.53 (3) |
S3—Ta1—Cs1i | 158.79 (3) | S10iv—Cs1—S11ix | 72.82 (3) |
S6—Ta1—Cs1i | 115.85 (3) | S5x—Cs1—S11ix | 144.31 (3) |
S8—Ta1—Cs1i | 128.56 (2) | S9ix—Cs1—S11ix | 55.35 (2) |
Cs3—Ta1—Cs1i | 113.273 (8) | S7—Cs1—S11ix | 93.53 (3) |
S10—Ta2—S9 | 105.14 (5) | S4ix—Cs1—S11ix | 86.34 (2) |
S10—Ta2—S8 | 102.58 (4) | S1x—Cs1—S11ix | 85.85 (3) |
S9—Ta2—S8 | 50.73 (4) | S11iv—Cs1—S1 | 124.89 (3) |
S10—Ta2—S7 | 103.85 (5) | S5ix—Cs1—S1 | 103.43 (3) |
S9—Ta2—S7 | 150.17 (4) | S4x—Cs1—S1 | 89.56 (3) |
S8—Ta2—S7 | 128.01 (4) | S10iv—Cs1—S1 | 138.63 (3) |
S10—Ta2—S11 | 99.87 (4) | S5x—Cs1—S1 | 73.03 (3) |
S9—Ta2—S11 | 88.96 (4) | S9ix—Cs1—S1 | 82.10 (3) |
S8—Ta2—S11 | 137.70 (4) | S7—Cs1—S1 | 72.69 (3) |
S7—Ta2—S11 | 79.28 (4) | S4ix—Cs1—S1 | 71.04 (3) |
S10—Ta2—S6 | 100.57 (4) | S1x—Cs1—S1 | 127.748 (18) |
S9—Ta2—S6 | 129.82 (4) | S11ix—Cs1—S1 | 137.43 (3) |
S8—Ta2—S6 | 82.13 (4) | S11iv—Cs1—Ta1x | 125.47 (2) |
S7—Ta2—S6 | 49.49 (4) | S5ix—Cs1—Ta1x | 100.538 (18) |
S11—Ta2—S6 | 127.97 (4) | S4x—Cs1—Ta1x | 33.14 (2) |
S10—Ta2—S5 | 173.29 (4) | S10iv—Cs1—Ta1x | 68.58 (2) |
S9—Ta2—S5 | 81.57 (4) | S5x—Cs1—Ta1x | 33.426 (17) |
S8—Ta2—S5 | 81.69 (3) | S9ix—Cs1—Ta1x | 159.10 (2) |
S7—Ta2—S5 | 69.48 (3) | S7—Cs1—Ta1x | 127.81 (2) |
S11—Ta2—S5 | 79.86 (3) | S4ix—Cs1—Ta1x | 101.79 (2) |
S6—Ta2—S5 | 74.71 (3) | S1x—Cs1—Ta1x | 29.90 (2) |
S10—Ta2—Cs2ii | 51.83 (4) | S11ix—Cs1—Ta1x | 113.388 (18) |
S9—Ta2—Cs2ii | 153.71 (3) | S1—Cs1—Ta1x | 106.43 (2) |
S8—Ta2—Cs2ii | 116.01 (3) | S11x—Cs2—S2xi | 142.06 (3) |
S7—Ta2—Cs2ii | 55.77 (3) | S11x—Cs2—S10xii | 118.55 (3) |
S11—Ta2—Cs2ii | 106.08 (3) | S2xi—Cs2—S10xii | 90.41 (3) |
S6—Ta2—Cs2ii | 55.83 (2) | S11x—Cs2—S1 | 95.74 (3) |
S5—Ta2—Cs2ii | 121.68 (2) | S2xi—Cs2—S1 | 81.72 (3) |
S10—Ta2—Cs3iii | 48.03 (3) | S10xii—Cs2—S1 | 128.99 (3) |
S9—Ta2—Cs3iii | 76.58 (3) | S11x—Cs2—S9xiii | 56.38 (3) |
S8—Ta2—Cs3iii | 54.63 (3) | S2xi—Cs2—S9xiii | 88.79 (3) |
S7—Ta2—Cs3iii | 129.76 (3) | S10xii—Cs2—S9xiii | 119.98 (3) |
S11—Ta2—Cs3iii | 136.85 (3) | S1—Cs2—S9xiii | 110.20 (3) |
S6—Ta2—Cs3iii | 90.49 (3) | S11x—Cs2—S7xii | 61.83 (3) |
S5—Ta2—Cs3iii | 135.64 (2) | S2xi—Cs2—S7xii | 124.64 (3) |
Cs2ii—Ta2—Cs3iii | 77.770 (8) | S10xii—Cs2—S7xii | 61.26 (3) |
S10—Ta2—Cs1iv | 50.40 (3) | S1—Cs2—S7xii | 153.39 (3) |
S9—Ta2—Cs1iv | 106.70 (3) | S9xiii—Cs2—S7xii | 70.70 (3) |
S8—Ta2—Cs1iv | 143.20 (3) | S11x—Cs2—S6xii | 83.22 (3) |
S7—Ta2—Cs1iv | 86.58 (3) | S2xi—Cs2—S6xii | 92.25 (3) |
S11—Ta2—Cs1iv | 49.99 (3) | S10xii—Cs2—S6xii | 60.03 (2) |
S6—Ta2—Cs1iv | 122.82 (2) | S1—Cs2—S6xii | 168.86 (3) |
S5—Ta2—Cs1iv | 128.06 (2) | S9xiii—Cs2—S6xii | 60.05 (3) |
Cs2ii—Ta2—Cs1iv | 70.055 (8) | S7xii—Cs2—S6xii | 32.77 (2) |
Cs3iii—Ta2—Cs1iv | 95.293 (10) | S11x—Cs2—S3xi | 131.71 (3) |
Ta1—S1—Cs2 | 154.94 (6) | S2xi—Cs2—S3xi | 33.11 (3) |
Ta1—S1—Cs3 | 94.63 (4) | S10xii—Cs2—S3xi | 70.29 (3) |
Cs2—S1—Cs3 | 84.23 (3) | S1—Cs2—S3xi | 114.83 (3) |
Ta1—S1—Cs1i | 92.33 (4) | S9xiii—Cs2—S3xi | 77.64 (3) |
Cs2—S1—Cs1i | 88.64 (3) | S7xii—Cs2—S3xi | 91.58 (3) |
Cs3—S1—Cs1i | 172.78 (4) | S6xii—Cs2—S3xi | 59.59 (3) |
Ta1—S1—Cs1 | 109.64 (5) | S11x—Cs2—S7x | 49.95 (2) |
Cs2—S1—Cs1 | 95.42 (3) | S2xi—Cs2—S7x | 164.43 (3) |
Cs3—S1—Cs1 | 92.27 (3) | S10xii—Cs2—S7x | 74.14 (3) |
Cs1i—S1—Cs1 | 87.22 (3) | S1—Cs2—S7x | 109.35 (3) |
S3—S2—Ta1 | 64.94 (5) | S9xiii—Cs2—S7x | 97.17 (3) |
S3—S2—Cs2v | 79.67 (6) | S7xii—Cs2—S7x | 45.84 (3) |
Ta1—S2—Cs2v | 144.59 (6) | S6xii—Cs2—S7x | 78.49 (2) |
S3—S2—Cs3vi | 111.99 (7) | S3xi—Cs2—S7x | 134.54 (3) |
Ta1—S2—Cs3vi | 97.00 (4) | S11x—Cs2—S4ix | 124.19 (3) |
Cs2v—S2—Cs3vi | 95.08 (4) | S2xi—Cs2—S4ix | 90.98 (3) |
S3—S2—Cs3v | 135.83 (7) | S10xii—Cs2—S4ix | 58.72 (3) |
Ta1—S2—Cs3v | 122.22 (6) | S1—Cs2—S4ix | 71.04 (3) |
Cs2v—S2—Cs3v | 83.84 (3) | S9xiii—Cs2—S4ix | 178.69 (3) |
Cs3vi—S2—Cs3v | 110.06 (4) | S7xii—Cs2—S4ix | 108.41 (3) |
S2—S3—Ta1 | 64.52 (5) | S6xii—Cs2—S4ix | 118.67 (3) |
S2—S3—Cs3 | 108.39 (7) | S3xi—Cs2—S4ix | 101.49 (3) |
Ta1—S3—Cs3 | 94.35 (4) | S7x—Cs2—S4ix | 82.73 (3) |
S2—S3—Cs2v | 67.23 (5) | S11x—Cs2—Ta2xii | 95.07 (2) |
Ta1—S3—Cs2v | 131.73 (5) | S2xi—Cs2—Ta2xii | 101.98 (3) |
Cs3—S3—Cs2v | 101.59 (3) | S10xii—Cs2—Ta2xii | 29.261 (18) |
S5—S4—Ta1 | 65.03 (4) | S1—Cs2—Ta2xii | 156.57 (3) |
S5—S4—Cs1i | 73.83 (4) | S9xiii—Cs2—Ta2xii | 93.08 (2) |
Ta1—S4—Cs1i | 94.18 (4) | S7xii—Cs2—Ta2xii | 33.702 (17) |
S5—S4—Cs1vi | 68.30 (4) | S6xii—Cs2—Ta2xii | 34.049 (17) |
Ta1—S4—Cs1vi | 128.24 (4) | S3xi—Cs2—Ta2xii | 71.68 (2) |
Cs1i—S4—Cs1vi | 93.34 (3) | S7x—Cs2—Ta2xii | 63.468 (17) |
S5—S4—Cs3vi | 124.89 (5) | S4ix—Cs2—Ta2xii | 85.70 (2) |
Ta1—S4—Cs3vi | 94.93 (4) | S11x—Cs2—Cs3 | 144.39 (2) |
Cs1i—S4—Cs3vi | 161.27 (3) | S2xi—Cs2—Cs3 | 49.80 (2) |
Cs1vi—S4—Cs3vi | 93.81 (3) | S10xii—Cs2—Cs3 | 88.58 (2) |
S5—S4—Cs2vi | 149.22 (6) | S1—Cs2—Cs3 | 48.85 (2) |
Ta1—S4—Cs2vi | 140.91 (4) | S9xiii—Cs2—Cs3 | 131.46 (2) |
Cs1i—S4—Cs2vi | 85.74 (2) | S7xii—Cs2—Cs3 | 149.83 (2) |
Cs1vi—S4—Cs2vi | 90.70 (3) | S6xii—Cs2—Cs3 | 132.17 (2) |
Cs3vi—S4—Cs2vi | 76.88 (2) | S3xi—Cs2—Cs3 | 76.91 (2) |
S4—S5—Ta1 | 64.25 (4) | S7x—Cs2—Cs3 | 129.72 (2) |
S4—S5—Ta2 | 116.95 (5) | S4ix—Cs2—Cs3 | 48.967 (19) |
Ta1—S5—Ta2 | 84.13 (3) | Ta2xii—Cs2—Cs3 | 116.632 (10) |
S4—S5—Cs1vi | 78.29 (5) | S8ix—Cs3—S10iii | 119.78 (3) |
Ta1—S5—Cs1vi | 136.34 (4) | S8ix—Cs3—S3 | 119.54 (3) |
Ta2—S5—Cs1vi | 94.25 (3) | S10iii—Cs3—S3 | 74.37 (3) |
S4—S5—Cs1i | 71.99 (4) | S8ix—Cs3—S2ix | 59.83 (3) |
Ta1—S5—Cs1i | 93.04 (3) | S10iii—Cs3—S2ix | 99.65 (3) |
Ta2—S5—Cs1i | 167.66 (4) | S3—Cs3—S2ix | 172.91 (3) |
Cs1vi—S5—Cs1i | 96.05 (3) | S8ix—Cs3—S1 | 111.16 (3) |
S7—S6—Ta2 | 64.69 (4) | S10iii—Cs3—S1 | 124.75 (4) |
S7—S6—Ta1 | 110.83 (5) | S3—Cs3—S1 | 62.60 (3) |
Ta2—S6—Ta1 | 90.35 (4) | S2ix—Cs3—S1 | 124.48 (3) |
S7—S6—Cs2ii | 73.55 (4) | S8ix—Cs3—S8iii | 65.42 (3) |
Ta2—S6—Cs2ii | 90.12 (3) | S10iii—Cs3—S8iii | 60.93 (3) |
Ta1—S6—Cs2ii | 175.30 (4) | S3—Cs3—S8iii | 78.64 (3) |
S6—S7—Ta2 | 65.81 (4) | S2ix—Cs3—S8iii | 95.19 (3) |
S6—S7—Cs1 | 93.46 (5) | S8ix—Cs3—S2xi | 142.82 (3) |
Ta2—S7—Cs1 | 151.86 (4) | S10iii—Cs3—S2xi | 74.75 (3) |
S6—S7—Cs2ii | 73.68 (4) | S3—Cs3—S2xi | 96.89 (4) |
Ta2—S7—Cs2ii | 90.52 (3) | S2ix—Cs3—S2xi | 84.97 (3) |
Cs1—S7—Cs2ii | 102.07 (3) | S1—Cs3—S2xi | 77.68 (3) |
S6—S7—Cs2i | 151.71 (5) | S8iii—Cs3—S2xi | 135.11 (3) |
Ta2—S7—Cs2i | 103.47 (4) | S8ix—Cs3—S4ix | 58.67 (3) |
Cs1—S7—Cs2i | 85.75 (2) | S10iii—Cs3—S4ix | 153.28 (3) |
Cs2ii—S7—Cs2i | 134.16 (3) | S3—Cs3—S4ix | 131.34 (3) |
S9—S8—Ta2 | 64.62 (4) | S2ix—Cs3—S4ix | 55.18 (3) |
S9—S8—Ta1 | 115.17 (5) | S1—Cs3—S4ix | 73.24 (3) |
Ta2—S8—Ta1 | 82.97 (3) | S8iii—Cs3—S4ix | 124.04 (3) |
S9—S8—Cs3vi | 84.04 (5) | S2xi—Cs3—S4ix | 92.56 (3) |
Ta2—S8—Cs3vi | 142.55 (4) | S8ix—Cs3—S9ix | 32.81 (3) |
Ta1—S8—Cs3vi | 93.23 (3) | S10iii—Cs3—S9ix | 135.76 (3) |
S9—S8—Cs3iii | 102.28 (5) | S3—Cs3—S9ix | 93.46 (3) |
Ta2—S8—Cs3iii | 92.74 (3) | S2ix—Cs3—S9ix | 88.26 (3) |
Ta1—S8—Cs3iii | 135.49 (4) | S1—Cs3—S9ix | 81.87 (3) |
Cs3vi—S8—Cs3iii | 114.58 (3) | S8iii—Cs3—S9ix | 75.09 (3) |
S8—S9—Ta2 | 64.65 (4) | S2xi—Cs3—S9ix | 149.49 (3) |
S8—S9—Cs1vi | 127.13 (6) | S4ix—Cs3—S9ix | 59.70 (3) |
Ta2—S9—Cs1vi | 101.07 (4) | S8ix—Cs3—Ta1 | 114.80 (2) |
S8—S9—Cs2vii | 130.09 (6) | S10iii—Cs3—Ta1 | 104.45 (3) |
Ta2—S9—Cs2vii | 107.71 (4) | S3—Cs3—Ta1 | 33.46 (2) |
Cs1vi—S9—Cs2vii | 102.73 (3) | S2ix—Cs3—Ta1 | 153.58 (3) |
S8—S9—Cs3vi | 63.15 (4) | S1—Cs3—Ta1 | 29.85 (2) |
Ta2—S9—Cs3vi | 123.98 (4) | S8iii—Cs3—Ta1 | 105.84 (2) |
Cs1vi—S9—Cs3vi | 94.52 (3) | S2xi—Cs3—Ta1 | 90.99 (3) |
Cs2vii—S9—Cs3vi | 120.67 (3) | S4ix—Cs3—Ta1 | 99.09 (2) |
Ta2—S10—Cs3iii | 103.64 (4) | S9ix—Cs3—Ta1 | 82.06 (2) |
Ta2—S10—Cs2ii | 98.91 (4) | S8ix—Cs3—Ta2iii | 95.11 (2) |
Cs3iii—S10—Cs2ii | 107.11 (4) | S10iii—Cs3—Ta2iii | 28.331 (19) |
Ta2—S10—Cs1iv | 101.04 (4) | S3—Cs3—Ta2iii | 73.04 (2) |
Cs3iii—S10—Cs1iv | 144.91 (4) | S2ix—Cs3—Ta2iii | 99.88 (2) |
Cs2ii—S10—Cs1iv | 93.15 (3) | S1—Cs3—Ta2iii | 135.23 (2) |
S11viii—S11—Ta2 | 109.53 (7) | S8iii—Cs3—Ta2iii | 32.631 (17) |
S11viii—S11—Cs2i | 124.51 (7) | S2xi—Cs3—Ta2iii | 102.98 (2) |
Ta2—S11—Cs2i | 121.27 (4) | S4ix—Cs3—Ta2iii | 149.63 (2) |
S11viii—S11—Cs1iv | 82.54 (6) | S9ix—Cs3—Ta2iii | 107.49 (2) |
Ta2—S11—Cs1iv | 97.04 (3) | Ta1—Cs3—Ta2iii | 106.461 (9) |
Cs2i—S11—Cs1iv | 110.11 (3) | S8ix—Cs3—Cs2 | 112.76 (2) |
S11viii—S11—Cs1vi | 64.89 (6) | S10iii—Cs3—Cs2 | 120.70 (2) |
Ta2—S11—Cs1vi | 93.98 (3) | S3—Cs3—Cs2 | 102.47 (2) |
Cs2i—S11—Cs1vi | 89.63 (3) | S2ix—Cs3—Cs2 | 83.79 (3) |
Cs1iv—S11—Cs1vi | 147.43 (3) | S1—Cs3—Cs2 | 46.92 (2) |
S11iv—Cs1—S5ix | 85.55 (3) | S8iii—Cs3—Cs2 | 178.18 (2) |
S11iv—Cs1—S4x | 123.34 (3) | S2xi—Cs3—Cs2 | 46.36 (2) |
S5ix—Cs1—S4x | 133.00 (3) | S4ix—Cs3—Cs2 | 54.151 (19) |
S11iv—Cs1—S10iv | 61.27 (3) | S9ix—Cs3—Cs2 | 103.35 (2) |
S5ix—Cs1—S10iv | 117.93 (3) | Ta1—Cs3—Cs2 | 74.734 (8) |
S4x—Cs1—S10iv | 63.64 (3) | Ta2iii—Cs3—Cs2 | 149.017 (11) |
S11iv—Cs1—S5x | 155.97 (3) | | |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x, −y+1/2, z+1/2; (iii) −x+2, −y+1, −z+1; (iv) −x+1, −y+1, −z+1; (v) −x+2, y+1/2, −z+1/2; (vi) x, y+1, z; (vii) x, −y+3/2, z+1/2; (viii) −x+1, −y+2, −z+1; (ix) x, y−1, z; (x) −x+1, y−1/2, −z+1/2; (xi) −x+2, y−1/2, −z+1/2; (xii) x, −y+1/2, z−1/2; (xiii) x, −y+3/2, z−1/2. |