Download citation
Download citation
link to html
The syntheses of new myo-inositol derivatives have received much attention due to their important biological activities. 1,2-O-Cyclo­hexyl­idene-myo-inositol is an important inter­mediate formed during the syntheses of certain myo-inositol derivatives. We report herein the crystal structure of 1,2-O-cyclo­hexyl­idene-myo-inositol dihydrate, C12H20O6·2H2O, which is an inter­mediate formed during the syntheses of myo-inositol phosphate derivatives, to demonstrate the participation of water mol­ecules and hy­droxy groups in the formation of several inter­molecular O—H...O inter­actions, and to determine a low-energy conformation. The title myo-inositol derivative crystallizes with two water mol­ecules in the asymmetric unit in the space group C2/c, with Z = 8. The water mol­ecules facilitate the formation of an extensive O—H...O hydrogen-bonding network that assists in the formation of a dense crystal packing. Furthermore, geometrical optimization and frequency analysis was carried out using density functional theory (DFT) calculations with B3LYP hybrid functionals and 6-31G(d), 6-31G(d,p) and 6-311G(d,p) basis sets. The theoretical and experimental structures were found to be very similar, with only slight deviations. The inter­molecular inter­actions were qu­anti­tatively analysed using Hirshfeld surface analysis and 2D (two-dimensional) fingerplot plots, and the total lattice energy was calculated.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229616018581/qs3056sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616018581/qs3056Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229616018581/qs3056sup3.pdf
Extra synthesis details and NMR spectra

CCDC reference: 1518275

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2012); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008) in WinGX (Farrugia, 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) in WinGX (Farrugia, 2012); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), CAMERON (Watkin & Prout, 1993) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

1,2-O-Cyclohexylidene-myo-inositol dihydrate top
Crystal data top
C12H20O6·2H2OF(000) = 1272
Mr = 296.31Dx = 1.447 Mg m3
Monoclinic, C2/cMelting point: 454 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 38.459 (3) ÅCell parameters from 8730 reflections
b = 8.6208 (7) Åθ = 2.4–26.1°
c = 8.2420 (7) ŵ = 0.12 mm1
β = 95.371 (2)°T = 298 K
V = 2720.6 (4) Å3Block, white
Z = 80.45 × 0.35 × 0.35 mm
Data collection top
Bruker APEXII CCD
diffractometer
2347 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.129
φ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 5151
Tmin = 0.935, Tmax = 0.972k = 1111
38263 measured reflectionsl = 1110
3391 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.8204P]
where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max < 0.001
3391 reflectionsΔρmax = 0.20 e Å3
261 parametersΔρmin = 0.21 e Å3
Special details top

Experimental. The data was collected with the Bruker cryosystem a low-temperature attachment.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Various restraints, for example riding model, were used on the hydrogen atoms. All hydrogen atom evident from the difference maps. There appears to be disorder among the hydrogen atoms on atoms O5, O6, and the two water molecules O7 and O8. Successive trials with placement and refinement of hydrogen atoms resulted in the model deposited, with only one short H···H contact distance.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13181 (3)0.11890 (16)0.82458 (16)0.0139 (4)
O20.14165 (3)0.32282 (16)0.65515 (16)0.0138 (4)
O30.08365 (4)0.55158 (15)0.70889 (16)0.0160 (4)
O40.03829 (4)0.43349 (16)0.93025 (16)0.0144 (4)
O50.02128 (3)0.11220 (16)0.89709 (17)0.0170 (4)
O60.07640 (4)0.08649 (15)0.81162 (17)0.0157 (4)
C10.10407 (5)0.1245 (2)0.6947 (2)0.0120 (6)
C20.10464 (5)0.2942 (2)0.6505 (2)0.0121 (6)
C30.08820 (5)0.3984 (2)0.7725 (2)0.0117 (6)
C40.05265 (5)0.3387 (2)0.8116 (2)0.0116 (6)
C50.05495 (5)0.1712 (2)0.8713 (2)0.0117 (6)
C60.07008 (5)0.0650 (2)0.7490 (2)0.0117 (6)
C70.15910 (5)0.2109 (2)0.7687 (2)0.0146 (6)
O70.02069 (4)0.25520 (17)0.39098 (17)0.0170 (5)
C80.17810 (6)0.2966 (3)0.9113 (3)0.0191 (7)
C90.20799 (6)0.3936 (3)0.8548 (3)0.0254 (7)
C100.23303 (6)0.2941 (3)0.7669 (3)0.0292 (8)
C110.21388 (6)0.2082 (3)0.6237 (3)0.0233 (7)
C120.18374 (6)0.1127 (3)0.6789 (3)0.0185 (6)
O80.14014 (5)0.2676 (2)0.3013 (2)0.0245 (6)
H10.1103 (6)0.058 (2)0.609 (3)0.015 (6)*
H20.0948 (6)0.321 (3)0.541 (3)0.019 (6)*
H30.1049 (6)0.400 (3)0.878 (3)0.022 (6)*
H3A0.102290.601780.728550.0240*
H40.0361 (6)0.343 (3)0.711 (3)0.015 (5)*
H4A0.051880.434351.016200.0216*
H50.010590.177410.949580.0254*
H5A0.0696 (5)0.172 (2)0.976 (3)0.014 (5)*
H60.0517 (5)0.058 (2)0.648 (2)0.007 (5)*
H6A0.088220.136560.748750.0235*
H8A0.1883 (6)0.210 (3)0.989 (3)0.021 (6)*
H8B0.1612 (6)0.365 (3)0.963 (3)0.016 (6)*
H9A0.2201 (7)0.445 (3)0.951 (3)0.030 (7)*
H9B0.1967 (6)0.477 (3)0.790 (3)0.027 (7)*
H10A0.2438 (7)0.212 (3)0.846 (3)0.034 (7)*
H10B0.2503 (7)0.351 (3)0.732 (3)0.032 (7)*
H11A0.2294 (7)0.141 (3)0.569 (3)0.033 (7)*
H11B0.2042 (7)0.284 (3)0.538 (3)0.042 (8)*
H12A0.1929 (5)0.025 (3)0.754 (2)0.011 (5)*
H12B0.1706 (6)0.064 (3)0.596 (3)0.026 (7)*
H7A0.0239 (7)0.351 (2)0.406 (3)0.033 (7)*
H8C0.1319 (8)0.188 (4)0.306 (4)0.056 (12)*
H8D0.1447 (8)0.300 (4)0.406 (4)0.061 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0107 (7)0.0172 (8)0.0137 (7)0.0012 (6)0.0001 (5)0.0041 (6)
O20.0114 (7)0.0164 (7)0.0138 (7)0.0001 (6)0.0023 (5)0.0032 (6)
O30.0185 (8)0.0104 (7)0.0186 (7)0.0026 (6)0.0007 (6)0.0038 (6)
O40.0183 (8)0.0138 (7)0.0115 (7)0.0020 (6)0.0031 (6)0.0028 (5)
O50.0145 (8)0.0138 (7)0.0242 (8)0.0004 (6)0.0104 (6)0.0027 (6)
O60.0175 (8)0.0093 (7)0.0208 (8)0.0036 (6)0.0048 (6)0.0004 (6)
C10.0113 (10)0.0143 (10)0.0102 (9)0.0022 (8)0.0006 (8)0.0001 (8)
C20.0112 (10)0.0143 (10)0.0111 (10)0.0012 (8)0.0021 (8)0.0005 (8)
C30.0145 (10)0.0089 (10)0.0116 (9)0.0006 (8)0.0001 (8)0.0019 (8)
C40.0137 (10)0.0120 (10)0.0091 (9)0.0007 (8)0.0019 (8)0.0020 (8)
C50.0112 (10)0.0132 (10)0.0106 (9)0.0024 (8)0.0013 (8)0.0000 (8)
C60.0136 (10)0.0091 (10)0.0123 (9)0.0000 (8)0.0006 (8)0.0012 (8)
C70.0123 (10)0.0169 (11)0.0146 (10)0.0006 (8)0.0009 (8)0.0044 (8)
O70.0210 (8)0.0113 (8)0.0189 (8)0.0008 (6)0.0028 (6)0.0007 (6)
C80.0157 (11)0.0223 (12)0.0192 (11)0.0014 (9)0.0008 (9)0.0008 (9)
C90.0203 (12)0.0272 (13)0.0278 (12)0.0076 (11)0.0020 (10)0.0001 (11)
C100.0148 (12)0.0387 (16)0.0343 (14)0.0084 (11)0.0028 (10)0.0033 (12)
C110.0168 (12)0.0270 (13)0.0271 (12)0.0012 (10)0.0073 (10)0.0016 (10)
C120.0162 (11)0.0177 (11)0.0217 (11)0.0002 (9)0.0029 (9)0.0010 (9)
O80.0274 (10)0.0224 (10)0.0242 (9)0.0018 (8)0.0056 (7)0.0020 (8)
Geometric parameters (Å, º) top
O1—C11.440 (2)C10—C111.524 (3)
O1—C71.426 (2)C11—C121.526 (3)
O2—C21.442 (2)C1—H10.96 (2)
O2—C71.463 (2)C2—H20.97 (2)
O3—C31.426 (2)C3—H31.03 (2)
O4—C41.425 (2)C4—H41.00 (2)
O5—C51.426 (2)C5—H5A0.99 (2)
O6—C61.417 (2)C6—H61.042 (17)
O3—H3A0.8400O7—H7A0.843 (18)
O4—H4A0.8400C8—H8B1.00 (2)
O5—H50.8400C8—H8A1.04 (3)
O6—H6A0.8400C9—H9A0.99 (3)
C1—C61.511 (3)C9—H9B0.97 (3)
C1—C21.508 (2)C10—H10B0.90 (3)
C2—C31.529 (2)C10—H10A1.02 (3)
C3—C41.523 (3)C11—H11A0.97 (3)
C4—C51.525 (2)C11—H11B1.01 (3)
C5—C61.517 (2)C12—H12A1.02 (2)
C7—C81.517 (3)C12—H12B0.91 (2)
C7—C121.515 (3)O8—H8C0.76 (3)
C8—C91.529 (3)O8—H8D0.91 (3)
C9—C101.523 (3)
C1—O1—C7104.94 (13)C3—C2—H2108.8 (15)
C2—O2—C7107.27 (13)O3—C3—H3110.1 (14)
C3—O3—H3A109.00C2—C3—H3107.4 (14)
C4—O4—H4A109.00C4—C3—H3109.1 (13)
C5—O5—H5109.00O4—C4—H4106.9 (14)
C6—O6—H6A109.00C3—C4—H4109.1 (14)
O1—C1—C6111.71 (13)C5—C4—H4108.5 (15)
C2—C1—C6115.69 (15)O5—C5—H5A109.0 (12)
O1—C1—C2100.70 (14)C4—C5—H5A106.7 (10)
O2—C2—C3110.49 (14)C6—C5—H5A111.3 (11)
C1—C2—C3113.26 (14)O6—C6—H6108.5 (10)
O2—C2—C1101.32 (14)C1—C6—H6108.9 (10)
O3—C3—C2110.28 (14)C5—C6—H6107.0 (10)
O3—C3—C4108.00 (15)C7—C8—H8A104.8 (14)
C2—C3—C4112.04 (14)C7—C8—H8B109.4 (14)
O4—C4—C3111.39 (14)C9—C8—H8A109.3 (13)
C3—C4—C5111.22 (15)C9—C8—H8B110.1 (14)
O4—C4—C5109.63 (14)H8A—C8—H8B113 (2)
O5—C5—C4111.09 (15)C8—C9—H9A108.2 (15)
O5—C5—C6107.09 (14)C8—C9—H9B105.2 (14)
C4—C5—C6111.79 (14)C10—C9—H9A111.3 (15)
C1—C6—C5112.84 (15)C10—C9—H9B115.1 (15)
O6—C6—C1107.29 (15)H9A—C9—H9B105 (2)
O6—C6—C5112.18 (14)C9—C10—H10A108.8 (14)
O1—C7—C8109.66 (15)C9—C10—H10B111.5 (17)
O1—C7—C12111.11 (16)C11—C10—H10A107.2 (14)
O2—C7—C8109.48 (15)C11—C10—H10B109.7 (16)
O1—C7—O2105.43 (14)H10A—C10—H10B108 (2)
O2—C7—C12109.06 (15)C10—C11—H11A112.1 (15)
C8—C7—C12111.89 (18)C10—C11—H11B110.4 (15)
C7—C8—C9110.60 (19)C12—C11—H11A109.5 (16)
C8—C9—C10111.3 (2)C12—C11—H11B108.5 (15)
C9—C10—C11111.16 (19)H11A—C11—H11B105 (2)
C10—C11—C12110.9 (2)C7—C12—H12A108.3 (11)
C7—C12—C11111.8 (2)C7—C12—H12B107.2 (15)
O1—C1—H1108.0 (14)C11—C12—H12A110.6 (11)
C2—C1—H1113.1 (12)C11—C12—H12B114.1 (16)
C6—C1—H1107.4 (13)H12A—C12—H12B104 (2)
O2—C2—H2106.3 (14)H8C—O8—H8D106 (3)
C1—C2—H2116.2 (15)
C7—O1—C1—C243.11 (16)C2—C3—C4—C555.05 (18)
C7—O1—C1—C6166.48 (14)C2—C3—C4—O4177.68 (14)
C1—O1—C7—C1291.05 (17)O3—C3—C4—O460.68 (17)
C1—O1—C7—O226.96 (16)O3—C3—C4—C5176.70 (13)
C1—O1—C7—C8144.73 (16)O4—C4—C5—O560.37 (18)
C2—O2—C7—C12120.33 (16)C3—C4—C5—C656.44 (19)
C7—O2—C2—C126.72 (16)O4—C4—C5—C6179.93 (15)
C7—O2—C2—C393.59 (15)C3—C4—C5—O5176.00 (13)
C2—O2—C7—O10.95 (17)C4—C5—C6—C151.3 (2)
C2—O2—C7—C8116.94 (16)O5—C5—C6—O665.51 (18)
C6—C1—C2—C344.6 (2)O5—C5—C6—C1173.16 (14)
C6—C1—C2—O2162.97 (14)C4—C5—C6—O6172.60 (15)
C2—C1—C6—O6169.97 (14)O1—C7—C8—C9178.85 (17)
O1—C1—C6—O655.56 (18)O2—C7—C8—C965.9 (2)
O1—C1—C6—C568.50 (18)C12—C7—C8—C955.1 (2)
O1—C1—C2—O242.40 (15)O1—C7—C12—C11177.88 (17)
C2—C1—C6—C545.9 (2)O2—C7—C12—C1166.3 (2)
O1—C1—C2—C375.94 (18)C8—C7—C12—C1154.9 (2)
O2—C2—C3—O377.97 (18)C7—C8—C9—C1055.7 (3)
C1—C2—C3—O3169.16 (15)C8—C9—C10—C1156.1 (3)
C1—C2—C3—C448.8 (2)C9—C10—C11—C1255.1 (3)
O2—C2—C3—C4161.70 (14)C10—C11—C12—C754.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O8i0.841.892.724 (2)170
O4—H4A···O3i0.841.912.754 (2)177
O5—H5···O40.842.462.853 (2)109
O5—H5···O7ii0.841.982.776 (2)158
O6—H6A···O8iii0.842.302.914 (2)130
O7—H7A···O4iv0.843 (18)1.944 (18)2.779 (2)171 (3)
O8—H8C···O6v0.76 (3)2.31 (3)2.914 (2)137 (3)
O8—H8D···O20.91 (3)2.08 (3)2.950 (3)161 (3)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y, z+3/2; (iii) x, y, z+1/2; (iv) x, y+1, z1/2; (v) x, y, z1/2.
Comparison of selected experimental and calculated bond lengths (Å) of (1) top
Functional/Basis setO4—C4C4—C3O3—C3C3—C2C2—O2O2—C7C7—C8C8—C9
B3LYP 6-31G(d)1.42971.52171.42461.52961.44331.46211.51571.5267
B3LYP 6-31G(d,p)1.42971.52171.42461.52961.44331.46211.51571.5267
B3LYP 6-311G(d,p)1.42971.52171.42461.52961.44331.46211.51571.5267
SCXRD1.4251.5231.4261.5291.4421.4631.5171.529
Comparison of selected experimental and calculated bond angles (°) of (1) top
Functional/Basis setC5—O4—C4O4—C4—C3C4—C3—O3O3—C3—C2C3—C2—O2C2—O2—C7O2—C7—C8C7—C8—C9
B3LYP 6-31G(d)109.5531111.326108.0938110.2346110.5034107.1887109.5274110.6744
B3LYP 6-31G(d,p)109.5531111.326108.0938110.2346110.5034107.1887109.5274110.6744
B3LYP 6-311G(d,p)109.5531111.326108.0938110.2346110.5034107.1887109.5274110.6744
SCXRD109.63111.39108.00110.2110.49107.27109.48110.60
Comparison of selected experimental and calculated torsion angles (°) of (1) top
Functional/Basis setO5—C5—C4—O4O4—C4—C3—O3O3—C3—C2—O2C2—O2—C7—C8O2—C7—C8—C9C7—C8—C9—C10
B3LYP 6-31G(d)60.40-60.737778.0022-117.1225-65.6377-55.7909
B3LYP 6-31G(d,p)60.40-60.737778.0022-117.1225-65.6377-55.7909
B3LYP 6-311G(d,p)60.40-60.737778.0022-117.1225-65.6377-55.7909
SCXRD60.37-60.6877.97-116.94-65.9-55.7
Lattice energy from CLP (in kcal mol-1) for (1) top
CompoundEcolEPolEDispERepETot
(1)-28.9-59.6-106.346.7-151.6
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds