Bis(5-amino-1,2,4-triazol-4-ium-3-yl)methane dichloride (BATZM·Cl2 or C5H10N82+·2Cl−) was synthesized and crystallized, and the crystal structure was characterized by single-crystal X-ray diffraction; it belongs to the space group C2/c (monoclinic) with Z = 4. The structure of BATZM·Cl2 can be described as a V-shaped molecule with reasonable chemical geometry and no disorder, and its one-dimensional structure can be described as a rhombic helix. The specific molar heat capacity (Cp,m) of BATZM·Cl2 was determined using the continuous Cp mode of a microcalorimeter and theoretical calculations, and the Cp,m value is 276.18 J K−1 mol−1 at 298.15 K. The relative deviations between the theoretical and experimental values of Cp,m, HT – H298.15K and ST – S298.15K of BATZM·Cl2 are almost equivalent at each temperature. The detonation velocity (D) and detonation pressure (P) of BATZM·Cl2 were estimated using the nitrogen equivalent equation according to the experimental density; BATZM·Cl2 has a higher detonation velocity (7143.60 ± 3.66 m s−1) and detonation pressure (21.49 ± 0.03 GPa) than TNT. The above results for BATZM·Cl2 are compared with those of bis(5-amino-1,2,4-triazol-3-yl)methane (BATZM) and the effect of salt formation on them is discussed.
Supporting information
CCDC reference: 1060497
Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Bis(5-amino-1,2,4-triazol-4-ium-3-yl)methane dichloride
top
Crystal data top
C5H10N82+·2Cl− | F(000) = 520 |
Mr = 253.11 | Dx = 1.608 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 18.962 (2) Å | Cell parameters from 2030 reflections |
b = 5.9225 (7) Å | θ = 3.5–27.2° |
c = 11.6649 (15) Å | µ = 0.60 mm−1 |
β = 127.027 (1)° | T = 296 K |
V = 1045.8 (2) Å3 | Rodlike, colourless |
Z = 4 | 0.37 × 0.31 × 0.21 mm |
Data collection top
Bruker APEXII CCD diffractometer | 1075 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.027 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | θmax = 27.2°, θmin = 3.5° |
Tmin = 0.810, Tmax = 0.882 | h = −24→23 |
2863 measured reflections | k = −6→7 |
1140 independent reflections | l = −14→13 |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | All H-atom parameters refined |
wR(F2) = 0.072 | w = 1/[σ2(Fo2) + (0.0346P)2 + 0.6221P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
1140 reflections | Δρmax = 0.30 e Å−3 |
90 parameters | Δρmin = −0.16 e Å−3 |
0 restraints | Extinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.049 (3) |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cl | 0.10191 (2) | 0.20091 (6) | 0.02328 (4) | 0.03403 (17) | |
N2 | 0.34191 (7) | −0.17966 (18) | 0.10735 (13) | 0.0292 (3) | |
N1 | 0.29098 (7) | −0.0173 (2) | 0.10993 (12) | 0.0293 (3) | |
C1 | 0.34034 (8) | 0.1360 (2) | 0.21100 (14) | 0.0278 (3) | |
N3 | 0.42443 (7) | 0.07293 (19) | 0.27632 (12) | 0.0265 (3) | |
C2 | 0.42214 (8) | −0.1206 (2) | 0.20957 (13) | 0.0263 (3) | |
N4 | 0.31125 (10) | 0.3135 (2) | 0.23856 (18) | 0.0440 (4) | |
C3 | 0.500000 | −0.2549 (4) | 0.250000 | 0.0361 (5) | |
H1 | 0.2360 (12) | −0.023 (3) | 0.0545 (18) | 0.031 (4)* | |
H3 | 0.4699 (13) | 0.136 (3) | 0.344 (2) | 0.040 (5)* | |
H4B | 0.3441 (14) | 0.399 (4) | 0.300 (2) | 0.049 (5)* | |
H4A | 0.2563 (16) | 0.332 (4) | 0.188 (2) | 0.054 (6)* | |
H3A | 0.4805 (13) | −0.348 (3) | 0.171 (2) | 0.046 (5)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cl | 0.0248 (2) | 0.0361 (2) | 0.0306 (2) | 0.00612 (12) | 0.01106 (17) | 0.00698 (12) |
N2 | 0.0190 (5) | 0.0294 (6) | 0.0311 (6) | −0.0025 (4) | 0.0108 (5) | −0.0058 (4) |
N1 | 0.0158 (5) | 0.0348 (6) | 0.0294 (6) | −0.0034 (4) | 0.0095 (5) | −0.0085 (5) |
C1 | 0.0221 (6) | 0.0326 (7) | 0.0270 (6) | −0.0062 (5) | 0.0140 (5) | −0.0048 (5) |
N3 | 0.0181 (5) | 0.0301 (6) | 0.0228 (5) | −0.0069 (4) | 0.0077 (5) | −0.0037 (4) |
C2 | 0.0192 (6) | 0.0267 (6) | 0.0264 (6) | −0.0035 (5) | 0.0102 (5) | 0.0005 (5) |
N4 | 0.0287 (7) | 0.0466 (8) | 0.0484 (9) | −0.0061 (6) | 0.0188 (7) | −0.0232 (6) |
C3 | 0.0203 (9) | 0.0277 (9) | 0.0430 (12) | 0.000 | 0.0100 (9) | 0.000 |
Geometric parameters (Å, º) top
N2—C2 | 1.2938 (17) | N3—H3 | 0.827 (19) |
N2—N1 | 1.3759 (16) | C2—C3 | 1.4819 (17) |
N1—C1 | 1.3271 (17) | N4—H4B | 0.79 (2) |
N1—H1 | 0.834 (18) | N4—H4A | 0.84 (2) |
C1—N4 | 1.314 (2) | C3—H3A | 0.934 (19) |
C1—N3 | 1.3412 (17) | C3—H3Ai | 0.933 (19) |
N3—C2 | 1.3717 (17) | | |
| | | |
C2—N2—N1 | 104.02 (11) | N2—C2—C3 | 122.78 (12) |
C1—N1—N2 | 111.63 (10) | N3—C2—C3 | 125.66 (11) |
C1—N1—H1 | 126.9 (11) | C1—N4—H4B | 121.3 (15) |
N2—N1—H1 | 121.4 (11) | C1—N4—H4A | 117.2 (15) |
N4—C1—N1 | 126.11 (13) | H4B—N4—H4A | 121 (2) |
N4—C1—N3 | 127.90 (13) | C2i—C3—C2 | 115.07 (17) |
N1—C1—N3 | 105.99 (11) | C2i—C3—H3A | 110.9 (12) |
C1—N3—C2 | 106.85 (10) | C2—C3—H3A | 105.9 (12) |
C1—N3—H3 | 128.1 (13) | C2i—C3—H3Ai | 105.9 (12) |
C2—N3—H3 | 125.1 (13) | C2—C3—H3Ai | 110.9 (12) |
N2—C2—N3 | 111.51 (12) | H3A—C3—H3Ai | 108 (2) |
| | | |
C2—N2—N1—C1 | 0.59 (15) | N1—N2—C2—C3 | 177.35 (11) |
N2—N1—C1—N4 | 178.84 (15) | C1—N3—C2—N2 | 0.10 (15) |
N2—N1—C1—N3 | −0.54 (15) | C1—N3—C2—C3 | −177.58 (12) |
N4—C1—N3—C2 | −179.10 (15) | N2—C2—C3—C2i | 142.26 (15) |
N1—C1—N3—C2 | 0.27 (14) | N3—C2—C3—C2i | −40.31 (10) |
N1—N2—C2—N3 | −0.41 (15) | | |
Symmetry code: (i) −x+1, y, −z+1/2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4A···Cl | 0.84 (2) | 2.47 (2) | 3.2408 (16) | 153.4 (19) |
N4—H4B···Clii | 0.79 (2) | 2.44 (2) | 3.1911 (15) | 159.9 (19) |
N3—H3···Cliii | 0.827 (19) | 2.30 (2) | 3.1213 (11) | 175.3 (18) |
N1—H1···N2iv | 0.834 (18) | 2.342 (16) | 2.8815 (16) | 122.9 (14) |
N1—H1···Cl | 0.834 (18) | 2.691 (17) | 3.3438 (12) | 136.3 (14) |
Symmetry codes: (ii) −x+1/2, y+1/2, −z+1/2; (iii) x+1/2, −y+1/2, z+1/2; (iv) −x+1/2, −y−1/2, −z. |
Thermodynamic properties of BATZM·Cl2 at a pressure of 101.3 kPa topT (K) | Cp,m (J K-1 mol-1 | | RD | HT − H298.15K (kJ mol-1) | | RD | ST − S298.15K (J K-1 mol-1) | | RD |
| Exp | Calc | | Exp | Calc | | Exp | Calc | |
288.15 | 267.79 | 239.53 | 10.55 | -2.72 | -2.43 | 10.87 | -9.29 | -8.28 | 10.83 |
293.15 | 272.30 | 242.67 | 10.88 | -1.37 | -1.22 | 10.98 | -4.64 | -4.13 | 10.94 |
298.15 | 276.18 | 245.80 | 11.00 | – | – | – | – | – | – |
303.15 | 279.55 | 248.91 | 10.96 | 1.39 | 1.24 | 11.02 | 4.62 | 4.11 | 10.97 |
308.15 | 282.50 | 252.00 | 10.80 | 2.79 | 2.49 | 10.96 | 9.22 | 8.21 | 10.92 |
313.15 | 285.14 | 255.07 | 10.55 | 4.21 | 3.76 | 10.87 | 13.79 | 12.29 | 10.83 |
318.15 | 287.60 | 258.12 | 10.25 | 5.65 | 5.04 | 10.74 | 18.32 | 16.36 | 10.73 |
323.15 | 289.96 | 261.16 | 9.93 | 7.09 | 6.34 | 10.60 | 22.83 | 20.41 | 10.60 |
328.15 | 292.34 | 264.17 | 9.64 | 8.55 | 7.65 | 10.45 | 27.30 | 24.44 | 10.48 |
333.15 | 294.85 | 267.17 | 9.39 | 10.01 | 8.98 | 10.29 | 31.74 | 28.45 | 10.35 |
338.15 | 297.59 | 270.15 | 9.22 | 11.49 | 10.33 | 10.14 | 36.15 | 32.45 | 10.23 |
343.15 | 300.68 | 273.10 | 9.17 | 12.99 | 11.69 | 10.01 | 40.54 | 36.43 | 10.13 |
348.15 | 304.22 | 276.04 | 9.26 | 14.50 | 13.07 | 9.89 | 44.91 | 40.40 | 10.06 |
Notes: `Exp' is the result of an experimental determination; `Calc' is the
result of a theoretical calculation;
RD = 1062(XExp – XCalc)/XExp;
HT – H298.15K is the enthalpy change of taking
298.15 K as the benchmark;
ST – S298.15K is the
entropy change of taking 298.15 K as the benchmark. |
Nitrogen equivalents of different detonation products topDetonation product | C | H2 | N2 | CO | CO2 | Cl2 |
Nitrogen equivalent index | 0.15 | 0.29 | 1 | 0.78 | 1.35 | 0.876 |