Download citation
Download citation
link to html
Bis(5-amino-1,2,4-triazol-4-ium-3-yl)methane dichloride (BATZM·Cl2 or C5H10N82+·2Cl) was synthesized and crystallized, and the crystal structure was characterized by single-crystal X-ray diffraction; it belongs to the space group C2/c (monoclinic) with Z = 4. The structure of BATZM·Cl2 can be described as a V-shaped mol­ecule with reasonable chemical geometry and no disorder, and its one-dimensional structure can be described as a rhombic helix. The specific molar heat capacity (Cp,m) of BATZM·Cl2 was determined using the continuous Cp mode of a microcalorimeter and theoretical calculations, and the Cp,m value is 276.18 J K−1 mol−1 at 298.15 K. The relative deviations between the theoretical and experimental values of Cp,m, HTH298.15K and STS298.15K of BATZM·Cl2 are almost equivalent at each temperature. The detonation velocity (D) and detonation pressure (P) of BATZM·Cl2 were estimated using the nitro­gen equivalent equation according to the experimental density; BATZM·Cl2 has a higher detonation velocity (7143.60 ± 3.66 m s−1) and detonation pressure (21.49 ± 0.03 GPa) than TNT. The above results for BATZM·Cl2 are com­pared with those of bis­(5-amino-1,2,4-triazol-3-yl)methane (BATZM) and the effect of salt formation on them is discussed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229620009924/qs3092sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620009924/qs3092Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229620009924/qs3092Isup3.cml
Supplementary material

CCDC reference: 1060497

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis(5-amino-1,2,4-triazol-4-ium-3-yl)methane dichloride top
Crystal data top
C5H10N82+·2ClF(000) = 520
Mr = 253.11Dx = 1.608 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 18.962 (2) ÅCell parameters from 2030 reflections
b = 5.9225 (7) Åθ = 3.5–27.2°
c = 11.6649 (15) ŵ = 0.60 mm1
β = 127.027 (1)°T = 296 K
V = 1045.8 (2) Å3Rodlike, colourless
Z = 40.37 × 0.31 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
1075 reflections with I > 2σ(I)
φ and ω scansRint = 0.027
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 27.2°, θmin = 3.5°
Tmin = 0.810, Tmax = 0.882h = 2423
2863 measured reflectionsk = 67
1140 independent reflectionsl = 1413
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026All H-atom parameters refined
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0346P)2 + 0.6221P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1140 reflectionsΔρmax = 0.30 e Å3
90 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.049 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.10191 (2)0.20091 (6)0.02328 (4)0.03403 (17)
N20.34191 (7)0.17966 (18)0.10735 (13)0.0292 (3)
N10.29098 (7)0.0173 (2)0.10993 (12)0.0293 (3)
C10.34034 (8)0.1360 (2)0.21100 (14)0.0278 (3)
N30.42443 (7)0.07293 (19)0.27632 (12)0.0265 (3)
C20.42214 (8)0.1206 (2)0.20957 (13)0.0263 (3)
N40.31125 (10)0.3135 (2)0.23856 (18)0.0440 (4)
C30.5000000.2549 (4)0.2500000.0361 (5)
H10.2360 (12)0.023 (3)0.0545 (18)0.031 (4)*
H30.4699 (13)0.136 (3)0.344 (2)0.040 (5)*
H4B0.3441 (14)0.399 (4)0.300 (2)0.049 (5)*
H4A0.2563 (16)0.332 (4)0.188 (2)0.054 (6)*
H3A0.4805 (13)0.348 (3)0.171 (2)0.046 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0248 (2)0.0361 (2)0.0306 (2)0.00612 (12)0.01106 (17)0.00698 (12)
N20.0190 (5)0.0294 (6)0.0311 (6)0.0025 (4)0.0108 (5)0.0058 (4)
N10.0158 (5)0.0348 (6)0.0294 (6)0.0034 (4)0.0095 (5)0.0085 (5)
C10.0221 (6)0.0326 (7)0.0270 (6)0.0062 (5)0.0140 (5)0.0048 (5)
N30.0181 (5)0.0301 (6)0.0228 (5)0.0069 (4)0.0077 (5)0.0037 (4)
C20.0192 (6)0.0267 (6)0.0264 (6)0.0035 (5)0.0102 (5)0.0005 (5)
N40.0287 (7)0.0466 (8)0.0484 (9)0.0061 (6)0.0188 (7)0.0232 (6)
C30.0203 (9)0.0277 (9)0.0430 (12)0.0000.0100 (9)0.000
Geometric parameters (Å, º) top
N2—C21.2938 (17)N3—H30.827 (19)
N2—N11.3759 (16)C2—C31.4819 (17)
N1—C11.3271 (17)N4—H4B0.79 (2)
N1—H10.834 (18)N4—H4A0.84 (2)
C1—N41.314 (2)C3—H3A0.934 (19)
C1—N31.3412 (17)C3—H3Ai0.933 (19)
N3—C21.3717 (17)
C2—N2—N1104.02 (11)N2—C2—C3122.78 (12)
C1—N1—N2111.63 (10)N3—C2—C3125.66 (11)
C1—N1—H1126.9 (11)C1—N4—H4B121.3 (15)
N2—N1—H1121.4 (11)C1—N4—H4A117.2 (15)
N4—C1—N1126.11 (13)H4B—N4—H4A121 (2)
N4—C1—N3127.90 (13)C2i—C3—C2115.07 (17)
N1—C1—N3105.99 (11)C2i—C3—H3A110.9 (12)
C1—N3—C2106.85 (10)C2—C3—H3A105.9 (12)
C1—N3—H3128.1 (13)C2i—C3—H3Ai105.9 (12)
C2—N3—H3125.1 (13)C2—C3—H3Ai110.9 (12)
N2—C2—N3111.51 (12)H3A—C3—H3Ai108 (2)
C2—N2—N1—C10.59 (15)N1—N2—C2—C3177.35 (11)
N2—N1—C1—N4178.84 (15)C1—N3—C2—N20.10 (15)
N2—N1—C1—N30.54 (15)C1—N3—C2—C3177.58 (12)
N4—C1—N3—C2179.10 (15)N2—C2—C3—C2i142.26 (15)
N1—C1—N3—C20.27 (14)N3—C2—C3—C2i40.31 (10)
N1—N2—C2—N30.41 (15)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···Cl0.84 (2)2.47 (2)3.2408 (16)153.4 (19)
N4—H4B···Clii0.79 (2)2.44 (2)3.1911 (15)159.9 (19)
N3—H3···Cliii0.827 (19)2.30 (2)3.1213 (11)175.3 (18)
N1—H1···N2iv0.834 (18)2.342 (16)2.8815 (16)122.9 (14)
N1—H1···Cl0.834 (18)2.691 (17)3.3438 (12)136.3 (14)
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z.
Thermodynamic properties of BATZM·Cl2 at a pressure of 101.3 kPa top
T (K)Cp,m (J K-1 mol-1RDHT &minus; H298.15K (kJ mol-1)RDST &minus; S298.15K (J K-1 mol-1)RD
ExpCalcExpCalcExpCalc
288.15267.79239.5310.55-2.72-2.4310.87-9.29-8.2810.83
293.15272.30242.6710.88-1.37-1.2210.98-4.64-4.1310.94
298.15276.18245.8011.00
303.15279.55248.9110.961.391.2411.024.624.1110.97
308.15282.50252.0010.802.792.4910.969.228.2110.92
313.15285.14255.0710.554.213.7610.8713.7912.2910.83
318.15287.60258.1210.255.655.0410.7418.3216.3610.73
323.15289.96261.169.937.096.3410.6022.8320.4110.60
328.15292.34264.179.648.557.6510.4527.3024.4410.48
333.15294.85267.179.3910.018.9810.2931.7428.4510.35
338.15297.59270.159.2211.4910.3310.1436.1532.4510.23
343.15300.68273.109.1712.9911.6910.0140.5436.4310.13
348.15304.22276.049.2614.5013.079.8944.9140.4010.06
Notes: `Exp' is the result of an experimental determination; `Calc' is the result of a theoretical calculation; RD = 1062(XExpXCalc)/XExp; HTH298.15K is the enthalpy change of taking 298.15 K as the benchmark; STS298.15K is the entropy change of taking 298.15 K as the benchmark.
Nitrogen equivalents of different detonation products top
Detonation productCH2N2COCO2Cl2
Nitrogen equivalent index0.150.2910.781.350.876
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds