research papers
High-throughput protein crystallography projects pushed forward the development of automated crystallization platforms that are now commonly used. This created an urgent need for adapted and automated equipment for crystal analysis. However, first these crystals have to be harvested, cryo-protected and flash-cooled, operations that can fail or negatively impact on the crystal. In situ X-ray diffraction analysis has become a valid alternative to these operations, and a growing number of users apply it for crystal screening and to solve structures. Nevertheless, even this shortcut may require a significant amount of beam time. In this in situ high-throughput approach, the centering of crystals relative to the beam represents the bottleneck in the analysis process. In this article, a new method to accelerate this process, by recording accurately the local geometry coordinates for each crystal in the crystallization plate, is presented. Subsequently, the crystallization plate can be presented to the X-ray beam by an automated plate-handling device, such as a six-axis robot arm, for an automated crystal centering in the beam, in situ screening or data collection. Here the preliminary results of such a semi-automated pipeline are reported for two distinct test proteins.