




Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S2056989016002875/rz5182sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S2056989016002875/rz5182Isup2.hkl |
![]() | Chemical Markup Language (CML) file https://doi.org/10.1107/S2056989016002875/rz5182Isup3.cml |
CCDC reference: 1454097
Key indicators
- Single-crystal X-ray study
- T = 293 K
- Mean
(C-C) = 0.003 Å
- R factor = 0.038
- wR factor = 0.122
- Data-to-parameter ratio = 12.8
checkCIF/PLATON results
No syntax errors found
Alert level C PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of C14 Check PLAT905_ALERT_3_C Negative K value in the Analysis of Variance ... -3.557 Report
Alert level G PLAT199_ALERT_1_G Reported _cell_measurement_temperature ..... (K) 293 Check PLAT200_ALERT_1_G Reported _diffrn_ambient_temperature ..... (K) 293 Check PLAT793_ALERT_4_G The Model has Chirality at C12 (Centro SPGR) S Verify PLAT793_ALERT_4_G The Model has Chirality at C16 (Centro SPGR) S Verify PLAT793_ALERT_4_G The Model has Chirality at C19 (Centro SPGR) S Verify PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) Still 42 % PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Th(Min) ... 2 Report PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density 4 Note
0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 2 ALERT level C = Check. Ensure it is not caused by an omission or oversight 8 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
The biological properties of spiro compounds containing cyclic structures are evident from their presence in many natural products (Molvi et al., 2014). This class of compounds possesses pharmacological and therapeutic properties which play a fundamental role in biological processes. Several spiro compounds show diverse biological activities such as anticancer (Chin et al., 2008), antibacterial (van der Sar et al., 2006), anticonvulsant (Obniska & Kaminski, 2006), antimicrobial (Pawar et al., 2009), antituberculosis (Chande et al., 2005), anti-oxidant (Sarma et al., 2010) and pain-relief agents (Frank et al., 2008). Some spiro compounds are used as pesticides (Wei et al., 2009) and laser dyes (Kreuder et al., 1999). They are also used as electroluminescent devices (Lupo et al., 1998). The spiropyrrolidine-3,3'-indole ring system is a recurring structural motif in a number of natural products such as vinblastine and yincristrine which act as cytostatics in cancer chemotherapy (Tan et al., 1992). Spiro pyrrolidines act as inhibitors of human NK—I receptor activity (Kumar, Perumal, Manju et al., 2009). They are also exhibit antimicrobial (Sureshbabu et al., 2008), anticonvulsant and neurotoxic properties (Obniska et al., 2006) and antiproliferative activities (Almansour et al., 2014). Acenaphthalyene derivatives are found to have anti-inflammatory (Smith et al., 1979), antimicrobial (El-Ayaan & Abdel-Aziz, 2005), antifungal (McDavids & Daniels, 1951), antitumor (El-Ayaan et al., 2007) and insecticidal activities (Chen et al., 2014). Dioxalane moieties play a significant role in stabilizing the mutant HIV-1 RT and nucleoside triphosphate. They successfully act as nucleoside reverse transcriptase inhibitors (NRTIs) (Liang et al., 2006).
An efficient synthesis of dispiroindenoquinoxaline pyrrolizidine derivatives was accomplished by one-pot four-component 1,3-dipolar cycloaddition reaction. A rare dispiroheterocyclic compound was synthesized through 1,3-dipolar cycloaddition of azomethine ylide for the purpose of designing a new class of complex dispiroheterocycles with potential biological activities. The reaction yielded a series of spiro [2, 2'] acenaphthen-1'-one-spiro[3,2'']indane −1',3''-dione-4-aryl pyrrolizidines (Sureshbabu & Raghunathan, 2006). Novel spiro cyclohexanones have been synthesized by 1,3-dipolar cycloaddition of azomethine ylides with antituberculosis activity (Kumar, Perumal, Senthilkumar et al., 2009). Twelve novel acenaphthene derivatives were reported with antitumor activity (Xie et al., 2011). Geometric cis, trans isomers derivatives of 2-substituted-1,3-dioxolanes and 2-substituted-1,3-dioxanes have been designed and studied as antimuscarinic agents (Marucci et al., 2005). A series of new enantiomerically pure and racemic 1,3-dioxolanes was synthesized in good yields by the reaction of salicyaldehyde with commercially available diols using a catalytic amount of Mont K10 (Küçük et al., 2011).
The crystal structures of several biologically significant monospiropyrrolidines (Chandralekha et al., 2014) and dispiropyrrolidines (Palani et al., 2006) have been reported in the literature, but only few reports are available on the crystal structure of trispiropyrrolidines. In continuation of our work in this field, the crystal structure of title trispiropyrrolidine is reported on herein.
In the title compound (Fig. 1), the methyl-substituted pyrrolidine ring (C12/C16/C17/N1/C19) is in a twist conformation with puckering parameters q2 = 0.3809 (18) Å, φ = −66.9 (3)°. The dioxalane ring (C10/O3/C14/C15/O4) also has a twist conformation [q2 = 0.327 (2) Å, φ = −58.7 (3)°], while the five-membered ring (C19/C20/C21/C26/C27) of the acenapnthylen-1-one ring system adopts a flattened envelope conformation [q2 = 0.0659 (18) Å, φ = −155.6 (16)°]. The six-membered cyclohexanone ring (C8–C13) adopts a boat conformation [QT = 0.616 (2) Å, θ = 75.36 (19)°, φ = 141.65 (18)°]. The least-squares mean plane through the pyrrolidine ring forms dihedral angles of 87.86 (6), 73.34 (7) and 87.81 (6)° with the mean planes of the attached benzene, cyclohexanone and cyclopentanone ring, respectively. The mean planes through the cyclohexanone and dioxalane rings form a dihedral angle of 77.99 (8)°. Bond lengths and angles are not unusual and in good agreement with the recently reported values of a related trispiropyrrolidine compound (Chandralekha et al., 2015). Three intramolecular C—H···O hydrogen bonds (Table 1) are present, involving both ketonic O atoms as acceptors.
In the crystal, centrosymmetrically related molecules are linked into dimers forming rings of R22(10) graph-set motif. The dimers are further connected by C—H···O contacts forming rings of R22(8) graph-set motif, producing chains parallel to the b axis (Fig. 2).
An equimolar mixture of 7,9-bis [(E)-benzylidine)]-1,4-dioxo-spiro[4,5]decane-8-ones (1 mmol) and sacrosine in methanol (25–30 ml) was refluxed for 4 h. After the completion of the reaction as indicated by TLC, the solid precipitate was filtered and washed with methanol to give the pure trispiropyrrolidine derivative. Single crystals suitable for the X-ray diffraction analysis were obtained by slow evaporation of the solvent at room temperature.
Crystal data, data collection and structure refinement details are summarized in Table 2. A l l H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å and refined using a riding model approximation, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was applied to the methyl groups.
The biological properties of spiro compounds containing cyclic structures are evident from their presence in many natural products (Molvi et al., 2014). This class of compounds possesses pharmacological and therapeutic properties which play a fundamental role in biological processes. Several spiro compounds show diverse biological activities such as anticancer (Chin et al., 2008), antibacterial (van der Sar et al., 2006), anticonvulsant (Obniska & Kaminski, 2006), antimicrobial (Pawar et al., 2009), antituberculosis (Chande et al., 2005), anti-oxidant (Sarma et al., 2010) and pain-relief agents (Frank et al., 2008). Some spiro compounds are used as pesticides (Wei et al., 2009) and laser dyes (Kreuder et al., 1999). They are also used as electroluminescent devices (Lupo et al., 1998). The spiropyrrolidine-3,3'-indole ring system is a recurring structural motif in a number of natural products such as vinblastine and yincristrine which act as cytostatics in cancer chemotherapy (Tan et al., 1992). Spiro pyrrolidines act as inhibitors of human NK—I receptor activity (Kumar, Perumal, Manju et al., 2009). They are also exhibit antimicrobial (Sureshbabu et al., 2008), anticonvulsant and neurotoxic properties (Obniska et al., 2006) and antiproliferative activities (Almansour et al., 2014). Acenaphthalyene derivatives are found to have anti-inflammatory (Smith et al., 1979), antimicrobial (El-Ayaan & Abdel-Aziz, 2005), antifungal (McDavids & Daniels, 1951), antitumor (El-Ayaan et al., 2007) and insecticidal activities (Chen et al., 2014). Dioxalane moieties play a significant role in stabilizing the mutant HIV-1 RT and nucleoside triphosphate. They successfully act as nucleoside reverse transcriptase inhibitors (NRTIs) (Liang et al., 2006).
An efficient synthesis of dispiroindenoquinoxaline pyrrolizidine derivatives was accomplished by one-pot four-component 1,3-dipolar cycloaddition reaction. A rare dispiroheterocyclic compound was synthesized through 1,3-dipolar cycloaddition of azomethine ylide for the purpose of designing a new class of complex dispiroheterocycles with potential biological activities. The reaction yielded a series of spiro [2, 2'] acenaphthen-1'-one-spiro[3,2'']indane −1',3''-dione-4-aryl pyrrolizidines (Sureshbabu & Raghunathan, 2006). Novel spiro cyclohexanones have been synthesized by 1,3-dipolar cycloaddition of azomethine ylides with antituberculosis activity (Kumar, Perumal, Senthilkumar et al., 2009). Twelve novel acenaphthene derivatives were reported with antitumor activity (Xie et al., 2011). Geometric cis, trans isomers derivatives of 2-substituted-1,3-dioxolanes and 2-substituted-1,3-dioxanes have been designed and studied as antimuscarinic agents (Marucci et al., 2005). A series of new enantiomerically pure and racemic 1,3-dioxolanes was synthesized in good yields by the reaction of salicyaldehyde with commercially available diols using a catalytic amount of Mont K10 (Küçük et al., 2011).
The crystal structures of several biologically significant monospiropyrrolidines (Chandralekha et al., 2014) and dispiropyrrolidines (Palani et al., 2006) have been reported in the literature, but only few reports are available on the crystal structure of trispiropyrrolidines. In continuation of our work in this field, the crystal structure of title trispiropyrrolidine is reported on herein.
In the title compound (Fig. 1), the methyl-substituted pyrrolidine ring (C12/C16/C17/N1/C19) is in a twist conformation with puckering parameters q2 = 0.3809 (18) Å, φ = −66.9 (3)°. The dioxalane ring (C10/O3/C14/C15/O4) also has a twist conformation [q2 = 0.327 (2) Å, φ = −58.7 (3)°], while the five-membered ring (C19/C20/C21/C26/C27) of the acenapnthylen-1-one ring system adopts a flattened envelope conformation [q2 = 0.0659 (18) Å, φ = −155.6 (16)°]. The six-membered cyclohexanone ring (C8–C13) adopts a boat conformation [QT = 0.616 (2) Å, θ = 75.36 (19)°, φ = 141.65 (18)°]. The least-squares mean plane through the pyrrolidine ring forms dihedral angles of 87.86 (6), 73.34 (7) and 87.81 (6)° with the mean planes of the attached benzene, cyclohexanone and cyclopentanone ring, respectively. The mean planes through the cyclohexanone and dioxalane rings form a dihedral angle of 77.99 (8)°. Bond lengths and angles are not unusual and in good agreement with the recently reported values of a related trispiropyrrolidine compound (Chandralekha et al., 2015). Three intramolecular C—H···O hydrogen bonds (Table 1) are present, involving both ketonic O atoms as acceptors.
In the crystal, centrosymmetrically related molecules are linked into dimers forming rings of R22(10) graph-set motif. The dimers are further connected by C—H···O contacts forming rings of R22(8) graph-set motif, producing chains parallel to the b axis (Fig. 2).
An equimolar mixture of 7,9-bis [(E)-benzylidine)]-1,4-dioxo-spiro[4,5]decane-8-ones (1 mmol) and sacrosine in methanol (25–30 ml) was refluxed for 4 h. After the completion of the reaction as indicated by TLC, the solid precipitate was filtered and washed with methanol to give the pure trispiropyrrolidine derivative. Single crystals suitable for the X-ray diffraction analysis were obtained by slow evaporation of the solvent at room temperature.
Crystal data, data collection and structure refinement details are summarized in Table 2. A l l H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å and refined using a riding model approximation, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was applied to the methyl groups.
Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
C36H31NO4 | Z = 2 |
Mr = 541.62 | F(000) = 572 |
Triclinic, P1 | Dx = 1.337 Mg m−3 |
a = 10.8861 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.4899 (4) Å | Cell parameters from 43585 reflections |
c = 11.9171 (4) Å | θ = 5.0–25.7° |
α = 83.83 (1)° | µ = 0.09 mm−1 |
β = 65.253 (8)° | T = 293 K |
γ = 86.397 (10)° | Block, colourless |
V = 1345.60 (12) Å3 | 0.30 × 0.25 × 0.20 mm |
Bruker Kappa APEXII CCD diffractometer | 3465 reflections with I > 2σ(I) |
Radiation source: graphite | Rint = 0.031 |
bruker axs kappa axes2 CCD Diffractometer scans | θmax = 25.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −12→12 |
Tmin = 0.710, Tmax = 0.746 | k = −13→13 |
33777 measured reflections | l = −14→14 |
4744 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.038 | w = 1/[σ2(Fo2) + (0.0586P)2 + 0.2573P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.122 | (Δ/σ)max = 0.001 |
S = 1.09 | Δρmax = 0.16 e Å−3 |
4744 reflections | Δρmin = −0.16 e Å−3 |
372 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0109 (19) |
C36H31NO4 | γ = 86.397 (10)° |
Mr = 541.62 | V = 1345.60 (12) Å3 |
Triclinic, P1 | Z = 2 |
a = 10.8861 (4) Å | Mo Kα radiation |
b = 11.4899 (4) Å | µ = 0.09 mm−1 |
c = 11.9171 (4) Å | T = 293 K |
α = 83.83 (1)° | 0.30 × 0.25 × 0.20 mm |
β = 65.253 (8)° |
Bruker Kappa APEXII CCD diffractometer | 4744 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 3465 reflections with I > 2σ(I) |
Tmin = 0.710, Tmax = 0.746 | Rint = 0.031 |
33777 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.16 e Å−3 |
4744 reflections | Δρmin = −0.16 e Å−3 |
372 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.84726 (14) | 0.91261 (12) | 0.05682 (13) | 0.0608 (4) | |
O2 | 0.50588 (12) | 0.57346 (11) | 0.30977 (12) | 0.0541 (4) | |
O3 | 0.68858 (14) | 0.52854 (12) | −0.03539 (12) | 0.0570 (4) | |
O4 | 0.91793 (14) | 0.51361 (12) | −0.12148 (10) | 0.0575 (4) | |
N1 | 0.59384 (15) | 0.83289 (13) | 0.27966 (13) | 0.0454 (4) | |
C1 | 0.7188 (2) | 0.23372 (19) | 0.45586 (18) | 0.0613 (6) | |
H1 | 0.6532 | 0.2713 | 0.5207 | 0.074* | |
C2 | 0.7788 (3) | 0.1317 (2) | 0.4816 (2) | 0.0742 (7) | |
H2 | 0.7530 | 0.1012 | 0.5636 | 0.089* | |
C3 | 0.8757 (2) | 0.07441 (19) | 0.3887 (2) | 0.0670 (6) | |
H3 | 0.9174 | 0.0064 | 0.4068 | 0.080* | |
C4 | 0.9100 (2) | 0.11882 (19) | 0.2691 (2) | 0.0687 (6) | |
H4 | 0.9746 | 0.0798 | 0.2048 | 0.082* | |
C5 | 0.8507 (2) | 0.22040 (17) | 0.24213 (19) | 0.0612 (6) | |
H5 | 0.8756 | 0.2490 | 0.1597 | 0.073* | |
C6 | 0.75437 (18) | 0.28139 (15) | 0.33522 (16) | 0.0433 (4) | |
C7 | 0.68667 (17) | 0.39106 (15) | 0.31676 (16) | 0.0420 (4) | |
H7 | 0.6202 | 0.4172 | 0.3892 | 0.050* | |
C8 | 0.70355 (16) | 0.46033 (14) | 0.21391 (15) | 0.0378 (4) | |
C9 | 0.80155 (18) | 0.43569 (15) | 0.08521 (14) | 0.0431 (4) | |
H9A | 0.8915 | 0.4241 | 0.0831 | 0.052* | |
H9B | 0.7767 | 0.3638 | 0.0648 | 0.052* | |
C10 | 0.80439 (18) | 0.53226 (15) | −0.00983 (15) | 0.0416 (4) | |
C11 | 0.81188 (17) | 0.64916 (15) | 0.03375 (14) | 0.0381 (4) | |
H11A | 0.8287 | 0.7093 | −0.0343 | 0.046* | |
H11B | 0.8877 | 0.6472 | 0.0566 | 0.046* | |
C12 | 0.68310 (16) | 0.68198 (14) | 0.14449 (14) | 0.0353 (4) | |
C13 | 0.62004 (17) | 0.57025 (15) | 0.22897 (15) | 0.0387 (4) | |
C14 | 0.7340 (3) | 0.5253 (2) | −0.1650 (2) | 0.0846 (8) | |
H14A | 0.6836 | 0.5814 | −0.1971 | 0.102* | |
H14B | 0.7238 | 0.4478 | −0.1849 | 0.102* | |
C15 | 0.8790 (3) | 0.5564 (2) | −0.21767 (19) | 0.0808 (8) | |
H15A | 0.9309 | 0.5185 | −0.2928 | 0.097* | |
H15B | 0.8901 | 0.6404 | −0.2356 | 0.097* | |
C16 | 0.56971 (17) | 0.75410 (16) | 0.11499 (16) | 0.0414 (4) | |
H16 | 0.4871 | 0.7084 | 0.1558 | 0.050* | |
C17 | 0.5450 (2) | 0.86368 (17) | 0.18436 (18) | 0.0515 (5) | |
H17A | 0.5942 | 0.9293 | 0.1288 | 0.062* | |
H17B | 0.4494 | 0.8844 | 0.2209 | 0.062* | |
C18 | 0.6007 (2) | 0.93114 (19) | 0.3440 (2) | 0.0649 (6) | |
H18A | 0.6368 | 0.9047 | 0.4035 | 0.097* | |
H18B | 0.5115 | 0.9639 | 0.3860 | 0.097* | |
H18C | 0.6582 | 0.9897 | 0.2851 | 0.097* | |
C19 | 0.71736 (16) | 0.76445 (14) | 0.22511 (15) | 0.0369 (4) | |
C20 | 0.84408 (18) | 0.83941 (15) | 0.13886 (16) | 0.0400 (4) | |
C21 | 0.95258 (17) | 0.81145 (14) | 0.18008 (16) | 0.0398 (4) | |
C22 | 1.08238 (19) | 0.84868 (17) | 0.13612 (19) | 0.0520 (5) | |
H22 | 1.1199 | 0.8973 | 0.0630 | 0.062* | |
C23 | 1.1570 (2) | 0.81119 (19) | 0.2049 (2) | 0.0642 (6) | |
H23 | 1.2463 | 0.8341 | 0.1753 | 0.077* | |
C24 | 1.1034 (2) | 0.7423 (2) | 0.3136 (2) | 0.0655 (6) | |
H24 | 1.1561 | 0.7206 | 0.3572 | 0.079* | |
C25 | 0.9692 (2) | 0.70332 (17) | 0.36125 (18) | 0.0506 (5) | |
C26 | 0.89807 (17) | 0.73763 (14) | 0.28903 (15) | 0.0388 (4) | |
C27 | 0.76373 (17) | 0.70795 (15) | 0.32229 (15) | 0.0388 (4) | |
C28 | 0.6979 (2) | 0.64478 (17) | 0.43281 (16) | 0.0516 (5) | |
H28 | 0.6076 | 0.6260 | 0.4591 | 0.062* | |
C29 | 0.7674 (3) | 0.6081 (2) | 0.50699 (18) | 0.0656 (6) | |
H29 | 0.7221 | 0.5635 | 0.5818 | 0.079* | |
C30 | 0.8985 (3) | 0.6354 (2) | 0.47332 (19) | 0.0658 (6) | |
H30 | 0.9415 | 0.6091 | 0.5245 | 0.079* | |
C31 | 0.58927 (18) | 0.78399 (16) | −0.01796 (17) | 0.0443 (4) | |
C32 | 0.5014 (2) | 0.74079 (19) | −0.0592 (2) | 0.0581 (5) | |
H32 | 0.4321 | 0.6923 | −0.0051 | 0.070* | |
C33 | 0.5148 (3) | 0.7683 (2) | −0.1794 (2) | 0.0712 (7) | |
H33 | 0.4533 | 0.7394 | −0.2045 | 0.085* | |
C34 | 0.6167 (3) | 0.8373 (2) | −0.2614 (2) | 0.0690 (6) | |
H34 | 0.6269 | 0.8537 | −0.3430 | 0.083* | |
C35 | 0.7037 (2) | 0.8819 (2) | −0.2225 (2) | 0.0651 (6) | |
H35 | 0.7736 | 0.9294 | −0.2777 | 0.078* | |
C36 | 0.6887 (2) | 0.85717 (18) | −0.10156 (19) | 0.0559 (5) | |
H36 | 0.7471 | 0.8906 | −0.0758 | 0.067* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0743 (10) | 0.0539 (8) | 0.0669 (9) | −0.0217 (7) | −0.0449 (8) | 0.0206 (7) |
O2 | 0.0389 (7) | 0.0505 (8) | 0.0549 (8) | −0.0014 (6) | −0.0022 (6) | −0.0034 (6) |
O3 | 0.0746 (9) | 0.0565 (9) | 0.0537 (8) | −0.0048 (7) | −0.0393 (7) | −0.0069 (6) |
O4 | 0.0744 (9) | 0.0536 (8) | 0.0295 (6) | 0.0091 (7) | −0.0074 (6) | −0.0072 (6) |
N1 | 0.0481 (9) | 0.0442 (9) | 0.0493 (9) | 0.0106 (7) | −0.0240 (7) | −0.0177 (7) |
C1 | 0.0773 (15) | 0.0592 (13) | 0.0438 (11) | 0.0070 (11) | −0.0234 (10) | −0.0016 (9) |
C2 | 0.1051 (19) | 0.0647 (15) | 0.0581 (13) | 0.0087 (14) | −0.0431 (14) | 0.0053 (11) |
C3 | 0.0782 (15) | 0.0480 (12) | 0.0836 (16) | 0.0034 (11) | −0.0452 (14) | 0.0048 (12) |
C4 | 0.0709 (15) | 0.0444 (12) | 0.0719 (15) | 0.0082 (11) | −0.0135 (12) | −0.0002 (11) |
C5 | 0.0709 (14) | 0.0433 (11) | 0.0507 (12) | 0.0067 (10) | −0.0094 (10) | 0.0027 (9) |
C6 | 0.0467 (10) | 0.0383 (10) | 0.0425 (10) | −0.0048 (8) | −0.0164 (8) | −0.0008 (8) |
C7 | 0.0421 (10) | 0.0406 (10) | 0.0367 (9) | −0.0028 (8) | −0.0094 (8) | −0.0042 (8) |
C8 | 0.0379 (9) | 0.0347 (9) | 0.0371 (9) | −0.0041 (7) | −0.0112 (7) | −0.0040 (7) |
C9 | 0.0505 (11) | 0.0371 (10) | 0.0359 (9) | 0.0032 (8) | −0.0123 (8) | −0.0056 (7) |
C10 | 0.0485 (10) | 0.0416 (10) | 0.0318 (9) | 0.0020 (8) | −0.0136 (8) | −0.0065 (7) |
C11 | 0.0401 (9) | 0.0386 (9) | 0.0332 (9) | −0.0001 (7) | −0.0132 (7) | −0.0020 (7) |
C12 | 0.0354 (9) | 0.0348 (9) | 0.0350 (9) | 0.0008 (7) | −0.0141 (7) | −0.0045 (7) |
C13 | 0.0368 (10) | 0.0405 (10) | 0.0377 (9) | −0.0025 (7) | −0.0133 (8) | −0.0067 (7) |
C14 | 0.139 (3) | 0.0786 (17) | 0.0646 (15) | 0.0387 (17) | −0.0697 (17) | −0.0342 (13) |
C15 | 0.141 (3) | 0.0565 (14) | 0.0338 (11) | 0.0209 (15) | −0.0278 (14) | −0.0083 (10) |
C16 | 0.0383 (9) | 0.0424 (10) | 0.0469 (10) | 0.0024 (8) | −0.0211 (8) | −0.0067 (8) |
C17 | 0.0536 (11) | 0.0497 (11) | 0.0611 (12) | 0.0155 (9) | −0.0329 (10) | −0.0166 (9) |
C18 | 0.0775 (15) | 0.0575 (13) | 0.0730 (14) | 0.0181 (11) | −0.0408 (12) | −0.0322 (11) |
C19 | 0.0393 (9) | 0.0357 (9) | 0.0371 (9) | 0.0006 (7) | −0.0170 (7) | −0.0058 (7) |
C20 | 0.0508 (10) | 0.0345 (9) | 0.0407 (9) | −0.0027 (8) | −0.0244 (8) | −0.0041 (8) |
C21 | 0.0444 (10) | 0.0323 (9) | 0.0470 (10) | 0.0008 (7) | −0.0223 (8) | −0.0080 (7) |
C22 | 0.0477 (11) | 0.0421 (11) | 0.0675 (13) | −0.0033 (9) | −0.0242 (10) | −0.0072 (9) |
C23 | 0.0516 (12) | 0.0566 (13) | 0.0990 (18) | 0.0005 (10) | −0.0439 (12) | −0.0151 (12) |
C24 | 0.0692 (14) | 0.0612 (14) | 0.0915 (17) | 0.0121 (11) | −0.0579 (13) | −0.0167 (13) |
C25 | 0.0642 (13) | 0.0458 (11) | 0.0552 (11) | 0.0111 (9) | −0.0373 (10) | −0.0144 (9) |
C26 | 0.0483 (10) | 0.0338 (9) | 0.0404 (9) | 0.0077 (8) | −0.0238 (8) | −0.0114 (7) |
C27 | 0.0456 (10) | 0.0384 (9) | 0.0325 (9) | 0.0036 (8) | −0.0161 (8) | −0.0075 (7) |
C28 | 0.0600 (12) | 0.0565 (12) | 0.0352 (9) | −0.0020 (9) | −0.0164 (9) | −0.0057 (8) |
C29 | 0.0916 (18) | 0.0690 (15) | 0.0353 (10) | 0.0018 (13) | −0.0271 (11) | 0.0001 (9) |
C30 | 0.0944 (18) | 0.0678 (14) | 0.0519 (12) | 0.0149 (13) | −0.0486 (13) | −0.0074 (11) |
C31 | 0.0478 (10) | 0.0398 (10) | 0.0541 (11) | 0.0070 (8) | −0.0301 (9) | −0.0081 (8) |
C32 | 0.0603 (12) | 0.0606 (13) | 0.0683 (13) | −0.0010 (10) | −0.0404 (11) | −0.0096 (10) |
C33 | 0.0901 (17) | 0.0723 (15) | 0.0794 (16) | 0.0019 (13) | −0.0619 (15) | −0.0128 (13) |
C34 | 0.0984 (18) | 0.0633 (14) | 0.0622 (14) | 0.0162 (13) | −0.0523 (14) | −0.0060 (11) |
C35 | 0.0805 (15) | 0.0593 (13) | 0.0619 (13) | 0.0006 (11) | −0.0402 (12) | 0.0111 (10) |
C36 | 0.0655 (13) | 0.0526 (12) | 0.0631 (13) | −0.0049 (10) | −0.0417 (11) | 0.0049 (10) |
O1—C20 | 1.210 (2) | C16—C31 | 1.511 (2) |
O2—C13 | 1.2137 (19) | C16—C17 | 1.528 (3) |
O3—C14 | 1.415 (3) | C16—H16 | 0.9800 |
O3—C10 | 1.420 (2) | C17—H17A | 0.9700 |
O4—C15 | 1.412 (3) | C17—H17B | 0.9700 |
O4—C10 | 1.412 (2) | C18—H18A | 0.9600 |
N1—C17 | 1.447 (2) | C18—H18B | 0.9600 |
N1—C19 | 1.447 (2) | C18—H18C | 0.9600 |
N1—C18 | 1.453 (2) | C19—C27 | 1.518 (2) |
C1—C2 | 1.375 (3) | C19—C20 | 1.573 (2) |
C1—C6 | 1.381 (3) | C20—C21 | 1.464 (2) |
C1—H1 | 0.9300 | C21—C22 | 1.365 (2) |
C2—C3 | 1.364 (3) | C21—C26 | 1.392 (2) |
C2—H2 | 0.9300 | C22—C23 | 1.398 (3) |
C3—C4 | 1.362 (3) | C22—H22 | 0.9300 |
C3—H3 | 0.9300 | C23—C24 | 1.360 (3) |
C4—C5 | 1.371 (3) | C23—H23 | 0.9300 |
C4—H4 | 0.9300 | C24—C25 | 1.411 (3) |
C5—C6 | 1.386 (3) | C24—H24 | 0.9300 |
C5—H5 | 0.9300 | C25—C26 | 1.394 (2) |
C6—C7 | 1.462 (3) | C25—C30 | 1.406 (3) |
C7—C8 | 1.338 (2) | C26—C27 | 1.400 (2) |
C7—H7 | 0.9300 | C27—C28 | 1.358 (2) |
C8—C13 | 1.490 (2) | C28—C29 | 1.404 (3) |
C8—C9 | 1.502 (2) | C28—H28 | 0.9300 |
C9—C10 | 1.490 (2) | C29—C30 | 1.359 (3) |
C9—H9A | 0.9700 | C29—H29 | 0.9300 |
C9—H9B | 0.9700 | C30—H30 | 0.9300 |
C10—C11 | 1.510 (2) | C31—C36 | 1.379 (3) |
C11—C12 | 1.530 (2) | C31—C32 | 1.381 (3) |
C11—H11A | 0.9700 | C32—C33 | 1.380 (3) |
C11—H11B | 0.9700 | C32—H32 | 0.9300 |
C12—C13 | 1.545 (2) | C33—C34 | 1.360 (3) |
C12—C19 | 1.581 (2) | C33—H33 | 0.9300 |
C12—C16 | 1.583 (2) | C34—C35 | 1.362 (3) |
C14—C15 | 1.486 (4) | C34—H34 | 0.9300 |
C14—H14A | 0.9700 | C35—C36 | 1.380 (3) |
C14—H14B | 0.9700 | C35—H35 | 0.9300 |
C15—H15A | 0.9700 | C36—H36 | 0.9300 |
C15—H15B | 0.9700 | ||
C14—O3—C10 | 107.71 (17) | C17—C16—H16 | 106.6 |
C15—O4—C10 | 105.68 (16) | C12—C16—H16 | 106.6 |
C17—N1—C19 | 107.28 (13) | N1—C17—C16 | 105.12 (14) |
C17—N1—C18 | 114.20 (15) | N1—C17—H17A | 110.7 |
C19—N1—C18 | 116.15 (15) | C16—C17—H17A | 110.7 |
C2—C1—C6 | 121.1 (2) | N1—C17—H17B | 110.7 |
C2—C1—H1 | 119.5 | C16—C17—H17B | 110.7 |
C6—C1—H1 | 119.5 | H17A—C17—H17B | 108.8 |
C3—C2—C1 | 121.0 (2) | N1—C18—H18A | 109.5 |
C3—C2—H2 | 119.5 | N1—C18—H18B | 109.5 |
C1—C2—H2 | 119.5 | H18A—C18—H18B | 109.5 |
C4—C3—C2 | 118.7 (2) | N1—C18—H18C | 109.5 |
C4—C3—H3 | 120.6 | H18A—C18—H18C | 109.5 |
C2—C3—H3 | 120.6 | H18B—C18—H18C | 109.5 |
C3—C4—C5 | 120.8 (2) | N1—C19—C27 | 111.87 (13) |
C3—C4—H4 | 119.6 | N1—C19—C20 | 113.93 (14) |
C5—C4—H4 | 119.6 | C27—C19—C20 | 100.90 (13) |
C4—C5—C6 | 121.37 (19) | N1—C19—C12 | 103.00 (13) |
C4—C5—H5 | 119.3 | C27—C19—C12 | 118.24 (13) |
C6—C5—H5 | 119.3 | C20—C19—C12 | 109.36 (12) |
C1—C6—C5 | 116.96 (18) | O1—C20—C21 | 126.20 (16) |
C1—C6—C7 | 117.30 (17) | O1—C20—C19 | 124.92 (16) |
C5—C6—C7 | 125.74 (16) | C21—C20—C19 | 108.76 (14) |
C8—C7—C6 | 131.30 (16) | C22—C21—C26 | 120.60 (16) |
C8—C7—H7 | 114.4 | C22—C21—C20 | 132.49 (17) |
C6—C7—H7 | 114.4 | C26—C21—C20 | 106.78 (15) |
C7—C8—C13 | 117.37 (15) | C21—C22—C23 | 117.69 (19) |
C7—C8—C9 | 124.61 (16) | C21—C22—H22 | 121.2 |
C13—C8—C9 | 118.02 (14) | C23—C22—H22 | 121.2 |
C10—C9—C8 | 112.48 (15) | C24—C23—C22 | 122.25 (19) |
C10—C9—H9A | 109.1 | C24—C23—H23 | 118.9 |
C8—C9—H9A | 109.1 | C22—C23—H23 | 118.9 |
C10—C9—H9B | 109.1 | C23—C24—C25 | 121.07 (19) |
C8—C9—H9B | 109.1 | C23—C24—H24 | 119.5 |
H9A—C9—H9B | 107.8 | C25—C24—H24 | 119.5 |
O4—C10—O3 | 106.59 (13) | C26—C25—C30 | 116.33 (19) |
O4—C10—C9 | 108.20 (14) | C26—C25—C24 | 115.90 (18) |
O3—C10—C9 | 110.29 (15) | C30—C25—C24 | 127.77 (19) |
O4—C10—C11 | 110.75 (14) | C21—C26—C25 | 122.38 (17) |
O3—C10—C11 | 110.65 (14) | C21—C26—C27 | 113.75 (15) |
C9—C10—C11 | 110.27 (14) | C25—C26—C27 | 123.74 (16) |
C10—C11—C12 | 113.28 (14) | C28—C27—C26 | 118.09 (16) |
C10—C11—H11A | 108.9 | C28—C27—C19 | 132.38 (17) |
C12—C11—H11A | 108.9 | C26—C27—C19 | 109.35 (14) |
C10—C11—H11B | 108.9 | C27—C28—C29 | 119.40 (19) |
C12—C11—H11B | 108.9 | C27—C28—H28 | 120.3 |
H11A—C11—H11B | 107.7 | C29—C28—H28 | 120.3 |
C11—C12—C13 | 109.58 (13) | C30—C29—C28 | 122.28 (19) |
C11—C12—C19 | 110.40 (13) | C30—C29—H29 | 118.9 |
C13—C12—C19 | 107.26 (12) | C28—C29—H29 | 118.9 |
C11—C12—C16 | 117.13 (13) | C29—C30—C25 | 120.12 (19) |
C13—C12—C16 | 108.78 (13) | C29—C30—H30 | 119.9 |
C19—C12—C16 | 103.13 (13) | C25—C30—H30 | 119.9 |
O2—C13—C8 | 120.57 (15) | C36—C31—C32 | 116.90 (18) |
O2—C13—C12 | 120.24 (15) | C36—C31—C16 | 123.34 (16) |
C8—C13—C12 | 119.12 (14) | C32—C31—C16 | 119.72 (17) |
O3—C14—C15 | 104.76 (18) | C33—C32—C31 | 121.2 (2) |
O3—C14—H14A | 110.8 | C33—C32—H32 | 119.4 |
C15—C14—H14A | 110.8 | C31—C32—H32 | 119.4 |
O3—C14—H14B | 110.8 | C34—C33—C32 | 120.8 (2) |
C15—C14—H14B | 110.8 | C34—C33—H33 | 119.6 |
H14A—C14—H14B | 108.9 | C32—C33—H33 | 119.6 |
O4—C15—C14 | 102.62 (18) | C33—C34—C35 | 119.1 (2) |
O4—C15—H15A | 111.2 | C33—C34—H34 | 120.5 |
C14—C15—H15A | 111.2 | C35—C34—H34 | 120.5 |
O4—C15—H15B | 111.2 | C34—C35—C36 | 120.4 (2) |
C14—C15—H15B | 111.2 | C34—C35—H35 | 119.8 |
H15A—C15—H15B | 109.2 | C36—C35—H35 | 119.8 |
C31—C16—C17 | 111.74 (15) | C31—C36—C35 | 121.60 (19) |
C31—C16—C12 | 120.01 (14) | C31—C36—H36 | 119.2 |
C17—C16—C12 | 104.64 (13) | C35—C36—H36 | 119.2 |
C31—C16—H16 | 106.6 | ||
C6—C1—C2—C3 | 0.2 (4) | C16—C12—C19—N1 | 25.69 (15) |
C1—C2—C3—C4 | −1.5 (4) | C11—C12—C19—C27 | −84.50 (17) |
C2—C3—C4—C5 | 1.3 (4) | C13—C12—C19—C27 | 34.84 (19) |
C3—C4—C5—C6 | 0.2 (4) | C16—C12—C19—C27 | 149.60 (14) |
C2—C1—C6—C5 | 1.3 (3) | C11—C12—C19—C20 | 30.10 (18) |
C2—C1—C6—C7 | −179.1 (2) | C13—C12—C19—C20 | 149.44 (13) |
C4—C5—C6—C1 | −1.5 (3) | C16—C12—C19—C20 | −95.80 (15) |
C4—C5—C6—C7 | 179.0 (2) | N1—C19—C20—O1 | −49.5 (2) |
C1—C6—C7—C8 | 176.3 (2) | C27—C19—C20—O1 | −169.53 (17) |
C5—C6—C7—C8 | −4.2 (3) | C12—C19—C20—O1 | 65.1 (2) |
C6—C7—C8—C13 | −177.51 (17) | N1—C19—C20—C21 | 126.69 (15) |
C6—C7—C8—C9 | 1.7 (3) | C27—C19—C20—C21 | 6.65 (16) |
C7—C8—C9—C10 | −176.22 (17) | C12—C19—C20—C21 | −118.69 (15) |
C13—C8—C9—C10 | 3.0 (2) | O1—C20—C21—C22 | −5.9 (3) |
C15—O4—C10—O3 | 28.40 (19) | C19—C20—C21—C22 | 177.94 (18) |
C15—O4—C10—C9 | 147.01 (17) | O1—C20—C21—C26 | 169.93 (18) |
C15—O4—C10—C11 | −92.02 (18) | C19—C20—C21—C26 | −6.18 (18) |
C14—O3—C10—O4 | −8.6 (2) | C26—C21—C22—C23 | −0.7 (3) |
C14—O3—C10—C9 | −125.79 (17) | C20—C21—C22—C23 | 174.71 (18) |
C14—O3—C10—C11 | 111.93 (17) | C21—C22—C23—C24 | −1.6 (3) |
C8—C9—C10—O4 | 167.52 (14) | C22—C23—C24—C25 | 1.2 (3) |
C8—C9—C10—O3 | −76.25 (18) | C23—C24—C25—C26 | 1.4 (3) |
C8—C9—C10—C11 | 46.3 (2) | C23—C24—C25—C30 | −177.8 (2) |
O4—C10—C11—C12 | 172.25 (13) | C22—C21—C26—C25 | 3.4 (3) |
O3—C10—C11—C12 | 54.28 (18) | C20—C21—C26—C25 | −173.06 (16) |
C9—C10—C11—C12 | −68.01 (19) | C22—C21—C26—C27 | 179.57 (16) |
C10—C11—C12—C13 | 34.08 (18) | C20—C21—C26—C27 | 3.11 (19) |
C10—C11—C12—C19 | 152.01 (14) | C30—C25—C26—C21 | 175.62 (17) |
C10—C11—C12—C16 | −90.41 (18) | C24—C25—C26—C21 | −3.6 (3) |
C7—C8—C13—O2 | −33.8 (2) | C30—C25—C26—C27 | −0.2 (3) |
C9—C8—C13—O2 | 146.87 (17) | C24—C25—C26—C27 | −179.42 (17) |
C7—C8—C13—C12 | 143.18 (16) | C21—C26—C27—C28 | −174.28 (16) |
C9—C8—C13—C12 | −36.1 (2) | C25—C26—C27—C28 | 1.8 (3) |
C11—C12—C13—O2 | −167.12 (15) | C21—C26—C27—C19 | 1.4 (2) |
C19—C12—C13—O2 | 73.01 (19) | C25—C26—C27—C19 | 177.50 (15) |
C16—C12—C13—O2 | −37.9 (2) | N1—C19—C27—C28 | 48.5 (3) |
C11—C12—C13—C8 | 15.8 (2) | C20—C19—C27—C28 | 170.00 (19) |
C19—C12—C13—C8 | −104.02 (16) | C12—C19—C27—C28 | −70.9 (2) |
C16—C12—C13—C8 | 145.07 (15) | N1—C19—C27—C26 | −126.33 (15) |
C10—O3—C14—C15 | −13.4 (2) | C20—C19—C27—C26 | −4.83 (17) |
C10—O4—C15—C14 | −35.8 (2) | C12—C19—C27—C26 | 114.29 (16) |
O3—C14—C15—O4 | 30.2 (2) | C26—C27—C28—C29 | −2.3 (3) |
C11—C12—C16—C31 | 2.1 (2) | C19—C27—C28—C29 | −176.79 (18) |
C13—C12—C16—C31 | −122.82 (16) | C27—C28—C29—C30 | 1.3 (3) |
C19—C12—C16—C31 | 123.53 (16) | C28—C29—C30—C25 | 0.5 (3) |
C11—C12—C16—C17 | −124.29 (16) | C26—C25—C30—C29 | −1.0 (3) |
C13—C12—C16—C17 | 110.81 (15) | C24—C25—C30—C29 | 178.2 (2) |
C19—C12—C16—C17 | −2.85 (17) | C17—C16—C31—C36 | 57.8 (2) |
C19—N1—C17—C16 | 40.07 (19) | C12—C16—C31—C36 | −65.2 (2) |
C18—N1—C17—C16 | 170.29 (16) | C17—C16—C31—C32 | −119.55 (19) |
C31—C16—C17—N1 | −152.50 (15) | C12—C16—C31—C32 | 117.45 (19) |
C12—C16—C17—N1 | −21.15 (19) | C36—C31—C32—C33 | 1.1 (3) |
C17—N1—C19—C27 | −169.24 (14) | C16—C31—C32—C33 | 178.67 (19) |
C18—N1—C19—C27 | 61.6 (2) | C31—C32—C33—C34 | 1.2 (4) |
C17—N1—C19—C20 | 77.11 (17) | C32—C33—C34—C35 | −1.9 (4) |
C18—N1—C19—C20 | −52.0 (2) | C33—C34—C35—C36 | 0.2 (3) |
C17—N1—C19—C12 | −41.23 (17) | C32—C31—C36—C35 | −2.9 (3) |
C18—N1—C19—C12 | −170.35 (15) | C16—C31—C36—C35 | 179.70 (18) |
C11—C12—C19—N1 | 151.59 (13) | C34—C35—C36—C31 | 2.2 (3) |
C13—C12—C19—N1 | −89.07 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9A···O4i | 0.97 | 2.47 | 3.352 (3) | 152 |
C17—H17A···O1 | 0.97 | 2.52 | 3.052 (2) | 114 |
C22—H22···O1ii | 0.93 | 2.44 | 3.291 (2) | 153 |
C28—H28···O2 | 0.93 | 2.59 | 3.199 (3) | 123 |
C36—H36···O1 | 0.93 | 2.31 | 3.174 (3) | 155 |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+2, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9A···O4i | 0.97 | 2.47 | 3.352 (3) | 152 |
C17—H17A···O1 | 0.97 | 2.52 | 3.052 (2) | 114 |
C22—H22···O1ii | 0.93 | 2.44 | 3.291 (2) | 153 |
C28—H28···O2 | 0.93 | 2.59 | 3.199 (3) | 123 |
C36—H36···O1 | 0.93 | 2.31 | 3.174 (3) | 155 |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+2, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | C36H31NO4 |
Mr | 541.62 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 10.8861 (4), 11.4899 (4), 11.9171 (4) |
α, β, γ (°) | 83.83 (1), 65.253 (8), 86.397 (10) |
V (Å3) | 1345.60 (12) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.30 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.710, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 33777, 4744, 3465 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.122, 1.09 |
No. of reflections | 4744 |
No. of parameters | 372 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.16 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), publCIF (Westrip, 2010).