Download citation
Download citation
link to html
In the title compound, (C10H9N2)2[Pt(CN)6]·2C10H8N2 or [(Hbpy)+]2[Pt(CN)6]2-·2bpy, where bpy is 4,4'-bipyridine, the Hbpy+ cations and bpy mol­ecules form a hydrogen-bonded two-dimensional cationic approximately square grid parallel to the (110) plane. The [Pt(CN)6]2- dianions reside in the cavities within this grid, with the nitrile N atoms forming weak hydrogen bonds with the CH groups in the cationic lattice.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105010140/sf1000sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105010140/sf1000Isup2.hkl
Contains datablock I

CCDC reference: 275507

Comment top

The 4,4'-bipyridine (bpy) ligand has commonly been used as a bidentate bridging ligand for the construction of both metal-organic frameworks (Noro et al., 2000; Noro et al., 2002; Xu et al., 2004) and hydrogen-bound networks. (Sharma & Zaworotko, 1996) In the course of our efforts to prepare such frameworks, the (Hbpy)2Pt(CN)6.2bpy salt, (I), was obtained, and its crystal structure is described here.

Over 100 crystal structures that contain bpy have been reported. The two amine positions allow for the formation of both the mono- (Hbpy+) and the dication (H2bpy2+). Only nine crystal structures have been reported that contain both bpy and Hbpy+. Four of these, with the formula (Hbpy)[Ln(NO3)4(H2O)2(bpy)] (Ln = Nd, Pr, Ce and La), have a neutral bpy molecule coordinated to a lanthanide metal (Bukowska-Strzyzewska & Tosik, 1978; Al-Rasoul & Weakley, 1982; Sharma & Rogers, 1999). Similar to (I), four complexes have been reported to possess both uncoordinated neutral bpy and the Hbpy+ monocation, viz. (Hbpy)2[(bpy)Nd2(NO3)8(H2O)4](bpy)3 (Weakley, 1984), (Hbpy)2(HQS)2(bpy)(H2O)5 (HQS is 8-hydroxyquinoline-5-sulfonate; Raj et al., 2003), [H0.72(bpy)]0.72+[(H0.5O)3PCH2CH2COOH0.78]0.72− (Bowes et al., 2003) and [Tm(pic)(H2O)6][Tm(pic)2(H2O)4]2(Hbpy)2(bpy)5(pic)6 (pic is picrate; Liang et al., 2001). The remaining complex, [Fe(SCN)6][(Hbpy)(H2bpy)(bpy)], reportedly contains all three of these species (Wei et al., 2002).

The asymmetric unit of (I) contains two Hbpy+ cations, one [Pt(CN)6]2− dianion and two neutral bpy molecules. The atom-numbering scheme is shown in Fig. 1. The bond lengths in the bpy and Hbpy+ species are essentially identical. The average ring-linking C—C bond length is 1.487 (4) Å, which is 0.11 Å longer than the average observed bond length for the ring C—C bonds, of 1.380 (6) Å. The average C—N bond length in bpy and Hbpy+ is 1.325 (6) Å. For the non-protonated N atoms, the C—N—C angles range from 115.2 (3)° to 117.7 (2)°, which is in good agreement with the average C—N—C angle observed in neutral bpy [115.6 (2)°; Boag et al., 1999] and the average value reported in the Cambridge Structural Database (CSD; Version 5.24; Allen, 2002) for neutral bpy molecules (116.5°; Raj et al., 2003). The protonated C—NH—C angles in (I) are both 120.2 (2)°, in agreement with the analogous angle in (Hbpy)Br(H2O) of 121.9 (2)° (Iyere et al., 2002) and the average value of 121.5° reported for Hbpy+ in the CSD (Raj et al., 2003). The internal angles at the C atoms adjacent to N atoms are also affected by protonation of the amide. As the C—N—C angle is increased upon protonation, the average C—C—N angle is decreased from 123.9 (7) to 121.1 (2)° for C—C—NH. Similarly, but to a lesser extent, the angle about the C atom β to the N atom is increased upon protonation of the N atom from 119.6 (3) to 120.3 (2)°. The C—C—C angle at the ring-connecting C atom is essentially identical in both the protonated and the non-protonated rings, with an average value of 116.7 (3)°. All pyridyl rings are essentially planar, the greatest r.m.s. deviation from planarity (0.0076 Å) occurring for the ring associated with N30. The dihedral angles between the two pyridyl planes in (I) are 2.47 (13) and 15.22 (12)° for the bpy molecules, and 13.71 (10) and 9.82 (13)° for the Hbpy+ cations. This dihedral angle is probably determined from crystal-packing forces. For example, in neutral bpy, this dihedral angle is 18.50 (12) and 34.85 (10)° (Boag et al., 1999), and it is 29.6 (4)° in the monoprotonated (Hbpy)Br(H2O) complex. (Iyere et al., 2002) Coplanar pyridyl rings have been observed for bpy in Y(H2O)3(NO3)(bpy)2 (Weakley, 1982) and for H2bpy in (H2bpy)(ClO4) (Ng, 1999).

Only a handful of crystal structures containing the hexacyanoplatinate(IV) anion have been reported. The geometry of the [Pt(CN)6]2− anion in (I) is essentially identical to the previously reported geometries in [Pt(dienH)(CN)2][Pt(CN)6] (dienH is 2,2'-diaminodiethylamine; Yanovskii et al., 1984) and [Cd(tren)][Pt(CN)6] [tren is tris(2-aminoethyl)amine; Zhang et al., 2002]. The Pt—C bond lengths, which range from 2.015 (3) to 2.026 (3) Å, and the C—N bond lengths, which average 1.133 (4) Å, are also nearly identical to those found in Pt(CN)42− (Ouahab et al., 1989, 1993) and partially oxidized tetracyanoplatinates (Williams et al., 1978; Johnson et al., 1978).

As illustrated in Fig. 2, the crystal structure of (I) is characterized by two-dimensional grids of hydrogen-bound bpy and Hbpy+ molecules that lie parallel to the (110) plane. The bpy and Hbpy+ molecules form a square network that is templated by the [Pt(CN)6]2− anion. The strongest hydrogen bonding between the amine H atoms of the Hbpy+ cations and the N atoms of the neutral bpy molecules leads to end-to-end dimers. Secondary hydrogen bonding occurs between the H atoms on the α-C atoms and the N atoms of bpy. Additional weak hydrogen bonding is present between the H atoms on the C atoms and the nitrile N atoms of the [Pt(CN)6]2− anion. These weak hydrogen bonds organize orthogonal sets of dimers into a loose approximately square grid.

Experimental top

Single crystals of (I) were prepared as a byproduct of a solvothermal reaction designed to grow CuPt(CN)6(bpy)2, which was expected to be analogous to CuSiF6(bpy) (Noro et al., 2000). Copper(II) tetrafluoroborate hydrate (1 mmol, 237 mg; Aldrich), potassium hexacyanoplatinate(IV) (1 mmol, 429 mg; Aldrich) and 4,4'-dipyridyl (2 mmol, 312 mg; Aldrich) were placed in a 23 ml Teflon liner for a Parr acid digestion bomb along with ethanol (4 ml; Aaper) and water (6 ml). The bomb was sealed and heated at 413 K for 16 h. The temperature was then lowered at the rate of 10 K h−1. Pale-pink crystals suitable for single-crystal X-ray diffraction were separated from a blue powder.

Refinement top

The acidic H atoms located on the amine N atoms of the Hbpy+ cations were located in a Fourier difference map. The H atoms on the aromatic C atoms were postioned geometrically (C—H = 0.93 Å). All H atoms were refined with a riding model and with Uiso(H) constrained to be 1.2 times Ueq of the carrier atom.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A vew of the molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level, and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A packing diagram for (I), illustrating the two-dimensional approximately square network in the (110) plane. Displacement ellipsoids are drawn at the 50% probability level, with H atoms shown as small spheres of arbitrary radii. Hydrogen bonds are depicted as dashed lines.
Bis(4,4'-bipyridinium) hexacyanoplatinate(IV) bis(4,4'-bipyridine) top
Crystal data top
(C10H9N2)2[Pt(CN)6]·2C10H8N2Z = 2
Mr = 977.96F(000) = 972
Triclinic, P1Dx = 1.573 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4954 (4) ÅCell parameters from 1792 reflections
b = 16.3529 (8) Åθ = 2.4–29.6°
c = 16.9711 (8) ŵ = 3.45 mm1
α = 93.024 (2)°T = 298 K
β = 96.132 (2)°Rod, pink
γ = 90.623 (2)°0.44 × 0.18 × 0.16 mm
V = 2065.11 (18) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
11361 independent reflections
Radiation source: fine-focus sealed tube9009 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 29.6°, θmin = 1.2°
Absorption correction: integration
(Sheldrick, 2001)
h = 1010
Tmin = 0.287, Tmax = 0.636k = 2222
24138 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0258P)2 + 0.1P]
where P = (Fo2 + 2Fc2)/3
11361 reflections(Δ/σ)max = 0.070
550 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
(C10H9N2)2[Pt(CN)6]·2C10H8N2γ = 90.623 (2)°
Mr = 977.96V = 2065.11 (18) Å3
Triclinic, P1Z = 2
a = 7.4954 (4) ÅMo Kα radiation
b = 16.3529 (8) ŵ = 3.45 mm1
c = 16.9711 (8) ÅT = 298 K
α = 93.024 (2)°0.44 × 0.18 × 0.16 mm
β = 96.132 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
11361 independent reflections
Absorption correction: integration
(Sheldrick, 2001)
9009 reflections with I > 2σ(I)
Tmin = 0.287, Tmax = 0.636Rint = 0.025
24138 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.03Δρmax = 0.84 e Å3
11361 reflectionsΔρmin = 0.68 e Å3
550 parameters
Special details top

Experimental. The data collection nominally covered over a hemisphere of reciprocal space, by a combination of four sets of exposures; each set had a different ϕ angle for the crystal and each exposure covered 0.3° in ω. The crystal-to-detector distance was 4.508 cm. Coverage of the unique set was 97.8% complete to at least 29.5° in θ and greater than 99% complete to at least 28.2° in θ. Crystal decay was monitored by repeating the initial 50 frames at the end of data collection and analyzing the duplicate reflections. Decay was found to be less than 1%, and no decay correction was therefore applied.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt0.744051 (14)0.749508 (6)0.253010 (5)0.04075 (4)
N10.9006 (5)0.5725 (2)0.2323 (2)0.0893 (11)
N20.4146 (4)0.6702 (2)0.32342 (19)0.0765 (9)
N30.9004 (4)0.7767 (2)0.43267 (16)0.0750 (8)
N40.5871 (5)0.92657 (18)0.26915 (19)0.0741 (9)
N51.0824 (5)0.8270 (2)0.1874 (2)0.0823 (9)
N60.5740 (5)0.7334 (2)0.07494 (16)0.0769 (9)
C10.8471 (5)0.63631 (19)0.24143 (18)0.0588 (8)
C20.5274 (4)0.69964 (18)0.29504 (16)0.0508 (7)
C30.8517 (4)0.76481 (18)0.36733 (16)0.0514 (7)
C40.6410 (4)0.86243 (17)0.26349 (16)0.0504 (7)
C50.9642 (4)0.79842 (18)0.21261 (17)0.0529 (7)
C60.6322 (4)0.73782 (18)0.13954 (16)0.0534 (7)
N100.0789 (3)0.14901 (13)0.25301 (12)0.0459 (5)
H100.04940.18390.21790.055*
N110.3660 (4)0.13081 (16)0.54075 (15)0.0602 (7)
C100.1755 (3)0.03744 (16)0.36579 (14)0.0385 (5)
C110.2357 (3)0.02139 (16)0.42650 (14)0.0404 (6)
C120.1896 (4)0.01993 (18)0.28594 (15)0.0563 (8)
H120.23210.03060.26940.068*
C130.1092 (4)0.11357 (17)0.38634 (15)0.0506 (7)
H130.09670.12800.43920.061*
C140.2747 (4)0.10149 (17)0.40565 (16)0.0506 (7)
H140.25770.12060.35280.061*
C150.2607 (4)0.00215 (18)0.50688 (15)0.0500 (7)
H150.23460.05510.52440.060*
C160.1414 (4)0.07662 (18)0.23119 (16)0.0571 (8)
H160.15270.06410.17790.068*
C170.0618 (4)0.16774 (17)0.32871 (16)0.0524 (7)
H170.01690.21850.34320.063*
C180.3391 (5)0.15317 (19)0.46390 (17)0.0604 (8)
H180.36500.20670.44830.072*
C190.3251 (4)0.05429 (19)0.56054 (16)0.0578 (8)
H190.34070.03740.61410.069*
N200.4888 (3)0.24189 (13)0.24307 (12)0.0453 (5)
H200.45040.27590.27750.054*
N210.7967 (3)0.04009 (15)0.04015 (14)0.0517 (6)
C200.6091 (3)0.13204 (15)0.13234 (14)0.0359 (5)
C210.6753 (3)0.07279 (15)0.07266 (14)0.0371 (5)
C220.6270 (4)0.11749 (16)0.21239 (14)0.0491 (7)
H220.68050.06970.22980.059*
C230.5288 (4)0.20408 (17)0.11014 (15)0.0504 (7)
H230.51380.21610.05690.061*
C240.7312 (4)0.00442 (17)0.09251 (16)0.0505 (7)
H240.72960.02050.14420.061*
C250.6830 (4)0.09238 (18)0.00567 (15)0.0504 (7)
H250.64760.14360.02230.060*
C260.5659 (4)0.17338 (17)0.26620 (15)0.0525 (7)
H260.57890.16290.31980.063*
C270.4705 (4)0.25824 (17)0.16666 (15)0.0520 (7)
H270.41780.30690.15110.062*
C280.7899 (4)0.05793 (18)0.03470 (16)0.0556 (8)
H280.82660.10960.04950.067*
C290.7437 (4)0.03478 (19)0.05845 (16)0.0558 (8)
H290.74790.04920.11050.067*
N300.6349 (3)0.65470 (14)0.64970 (13)0.0534 (6)
N310.8485 (4)0.34964 (15)0.36498 (15)0.0605 (7)
C300.7263 (4)0.53527 (16)0.53918 (15)0.0412 (6)
C310.7696 (3)0.47131 (16)0.47878 (14)0.0417 (6)
C320.7290 (6)0.51996 (19)0.61819 (18)0.0897 (14)
H320.76150.46870.63570.108*
C330.6805 (4)0.61265 (16)0.51785 (15)0.0495 (7)
H330.68000.62640.46530.059*
C340.8111 (4)0.39258 (17)0.49870 (16)0.0484 (7)
H340.81320.37810.55110.058*
C350.7690 (7)0.4870 (2)0.40055 (19)0.0914 (14)
H350.74240.53910.38360.110*
C360.6833 (6)0.5810 (2)0.67140 (19)0.0902 (14)
H360.68680.56980.72470.108*
C370.6353 (4)0.66998 (17)0.57456 (16)0.0541 (7)
H370.60360.72200.55880.065*
C380.8495 (4)0.33521 (17)0.44037 (17)0.0540 (7)
H380.87800.28270.45560.065*
C390.8082 (7)0.4252 (2)0.3466 (2)0.1001 (16)
H390.80590.43760.29360.120*
N400.6418 (4)0.54643 (17)0.12729 (16)0.0677 (8)
N410.9940 (3)0.25781 (14)0.14268 (13)0.0482 (5)
C400.7844 (3)0.43163 (16)0.02085 (15)0.0409 (6)
C410.8585 (3)0.37137 (16)0.03579 (15)0.0396 (5)
C420.7461 (5)0.4116 (2)0.10077 (17)0.0650 (9)
H420.76760.35900.12090.078*
C430.7464 (4)0.51109 (17)0.00431 (17)0.0491 (7)
H430.76840.52800.05770.059*
C440.9324 (4)0.29879 (17)0.01038 (16)0.0531 (7)
H440.93690.28660.04350.064*
C450.8560 (5)0.38485 (18)0.11676 (16)0.0616 (9)
H450.80850.43290.13690.074*
C460.6761 (6)0.4695 (2)0.15047 (19)0.0815 (12)
H460.65080.45400.20410.098*
C470.6760 (4)0.56464 (18)0.05019 (18)0.0564 (7)
H470.65060.61730.03160.068*
C480.9990 (4)0.24480 (18)0.06497 (17)0.0575 (8)
H481.05000.19680.04670.069*
C490.9241 (5)0.32700 (19)0.16759 (17)0.0654 (9)
H490.92060.33720.22180.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt0.06689 (8)0.02910 (5)0.02670 (5)0.00193 (4)0.00569 (4)0.00412 (3)
N10.137 (3)0.0484 (18)0.089 (2)0.0268 (19)0.037 (2)0.0115 (16)
N20.094 (2)0.071 (2)0.0679 (19)0.0167 (17)0.0227 (17)0.0082 (15)
N30.101 (2)0.081 (2)0.0406 (14)0.0043 (18)0.0029 (14)0.0026 (14)
N40.113 (2)0.0442 (16)0.0714 (19)0.0175 (16)0.0330 (17)0.0124 (13)
N50.094 (2)0.081 (2)0.077 (2)0.0117 (19)0.0294 (18)0.0168 (17)
N60.122 (3)0.069 (2)0.0370 (14)0.0010 (18)0.0059 (15)0.0058 (13)
C10.094 (2)0.0369 (16)0.0478 (16)0.0061 (16)0.0153 (16)0.0085 (12)
C20.074 (2)0.0411 (16)0.0375 (14)0.0032 (14)0.0077 (13)0.0051 (11)
C30.072 (2)0.0464 (16)0.0355 (14)0.0038 (14)0.0057 (13)0.0044 (12)
C40.079 (2)0.0335 (15)0.0410 (14)0.0090 (14)0.0158 (14)0.0069 (11)
C50.075 (2)0.0444 (16)0.0407 (14)0.0001 (15)0.0113 (14)0.0061 (12)
C60.085 (2)0.0427 (16)0.0326 (13)0.0008 (15)0.0032 (13)0.0047 (11)
N100.0584 (14)0.0417 (13)0.0377 (11)0.0144 (11)0.0019 (10)0.0067 (9)
N110.0873 (19)0.0512 (16)0.0425 (13)0.0002 (14)0.0031 (12)0.0131 (11)
C100.0455 (14)0.0373 (14)0.0328 (12)0.0039 (11)0.0044 (10)0.0014 (10)
C110.0483 (15)0.0397 (14)0.0335 (12)0.0011 (12)0.0044 (11)0.0039 (10)
C120.087 (2)0.0481 (17)0.0343 (13)0.0283 (16)0.0069 (14)0.0012 (12)
C130.0719 (19)0.0470 (17)0.0329 (13)0.0125 (14)0.0075 (12)0.0034 (11)
C140.076 (2)0.0391 (15)0.0361 (14)0.0009 (14)0.0044 (13)0.0004 (11)
C150.0693 (19)0.0466 (16)0.0341 (13)0.0056 (14)0.0061 (12)0.0013 (11)
C160.084 (2)0.0520 (18)0.0356 (14)0.0277 (16)0.0067 (14)0.0008 (12)
C170.0730 (19)0.0423 (16)0.0414 (15)0.0164 (14)0.0046 (13)0.0028 (12)
C180.094 (2)0.0417 (17)0.0457 (16)0.0063 (16)0.0055 (16)0.0090 (13)
C190.082 (2)0.059 (2)0.0326 (14)0.0039 (17)0.0028 (14)0.0075 (13)
N200.0645 (14)0.0375 (12)0.0346 (11)0.0109 (11)0.0094 (10)0.0020 (9)
N210.0645 (15)0.0490 (15)0.0432 (13)0.0043 (12)0.0172 (11)0.0077 (10)
C200.0457 (14)0.0324 (13)0.0299 (11)0.0035 (10)0.0059 (10)0.0010 (9)
C210.0448 (14)0.0352 (13)0.0314 (12)0.0020 (11)0.0063 (10)0.0003 (10)
C220.081 (2)0.0343 (14)0.0335 (13)0.0173 (13)0.0075 (13)0.0058 (10)
C230.0736 (19)0.0478 (17)0.0305 (12)0.0176 (14)0.0038 (12)0.0082 (11)
C240.075 (2)0.0405 (16)0.0389 (14)0.0123 (14)0.0186 (13)0.0059 (11)
C250.077 (2)0.0413 (16)0.0343 (13)0.0083 (14)0.0095 (13)0.0032 (11)
C260.087 (2)0.0405 (16)0.0312 (13)0.0112 (15)0.0095 (13)0.0017 (11)
C270.0725 (19)0.0441 (16)0.0402 (14)0.0199 (14)0.0061 (13)0.0068 (12)
C280.078 (2)0.0427 (16)0.0490 (16)0.0137 (15)0.0209 (15)0.0001 (12)
C290.080 (2)0.0562 (19)0.0327 (13)0.0064 (16)0.0132 (13)0.0018 (12)
N300.0779 (17)0.0398 (13)0.0444 (13)0.0127 (12)0.0171 (12)0.0020 (10)
N310.091 (2)0.0441 (15)0.0483 (14)0.0136 (14)0.0199 (13)0.0049 (11)
C300.0515 (15)0.0341 (13)0.0399 (13)0.0057 (11)0.0135 (11)0.0005 (10)
C310.0542 (15)0.0358 (14)0.0367 (13)0.0075 (12)0.0116 (11)0.0028 (10)
C320.190 (4)0.0407 (18)0.0468 (18)0.038 (2)0.043 (2)0.0133 (14)
C330.0722 (19)0.0397 (16)0.0375 (14)0.0129 (14)0.0070 (13)0.0063 (11)
C340.0674 (18)0.0389 (15)0.0403 (14)0.0108 (13)0.0098 (13)0.0048 (11)
C350.190 (4)0.046 (2)0.0467 (18)0.039 (2)0.043 (2)0.0116 (15)
C360.184 (4)0.050 (2)0.0448 (18)0.027 (2)0.045 (2)0.0086 (15)
C370.078 (2)0.0377 (16)0.0462 (16)0.0111 (14)0.0061 (14)0.0006 (12)
C380.075 (2)0.0344 (15)0.0546 (17)0.0115 (14)0.0140 (15)0.0031 (12)
C390.205 (5)0.058 (2)0.0455 (19)0.047 (3)0.042 (2)0.0100 (16)
N400.103 (2)0.0446 (16)0.0530 (16)0.0088 (15)0.0067 (15)0.0113 (12)
N410.0598 (14)0.0413 (13)0.0431 (12)0.0143 (11)0.0018 (10)0.0036 (10)
C400.0511 (15)0.0342 (14)0.0379 (13)0.0034 (11)0.0052 (11)0.0044 (10)
C410.0471 (14)0.0351 (14)0.0367 (13)0.0038 (11)0.0043 (11)0.0030 (10)
C420.114 (3)0.0416 (17)0.0380 (15)0.0094 (18)0.0005 (16)0.0015 (12)
C430.0652 (18)0.0396 (15)0.0424 (15)0.0068 (13)0.0054 (13)0.0008 (11)
C440.079 (2)0.0455 (17)0.0354 (13)0.0169 (15)0.0099 (13)0.0021 (12)
C450.101 (2)0.0427 (17)0.0415 (15)0.0297 (17)0.0074 (15)0.0011 (12)
C460.144 (4)0.052 (2)0.0447 (18)0.011 (2)0.012 (2)0.0055 (15)
C470.075 (2)0.0373 (16)0.0577 (18)0.0094 (14)0.0060 (15)0.0071 (13)
C480.079 (2)0.0450 (17)0.0491 (16)0.0223 (15)0.0097 (15)0.0036 (13)
C490.101 (3)0.059 (2)0.0373 (15)0.0331 (18)0.0070 (16)0.0025 (13)
Geometric parameters (Å, º) top
Pt—C62.015 (3)C24—H240.9300
Pt—C42.016 (3)C25—C291.380 (4)
Pt—C12.022 (3)C25—H250.9300
Pt—C32.022 (3)C26—H260.9300
Pt—C22.023 (3)C27—H270.9300
Pt—C52.026 (3)C28—H280.9300
N1—C11.131 (4)C29—H290.9300
N2—C21.132 (4)N30—C371.313 (3)
N3—C31.136 (4)N30—C361.322 (4)
N4—C41.131 (4)N31—C381.312 (3)
N5—C51.132 (4)N31—C391.320 (4)
N6—C61.134 (4)C30—C331.372 (4)
N10—C171.325 (3)C30—C321.375 (4)
N10—C161.327 (3)C30—C311.489 (3)
N10—H100.8600C31—C351.365 (4)
N11—C191.326 (4)C31—C341.379 (4)
N11—C181.329 (4)C32—C361.381 (4)
C10—C121.386 (3)C32—H320.9300
C10—C131.387 (4)C33—C371.379 (3)
C10—C111.485 (3)C33—H330.9300
C11—C141.381 (4)C34—C381.383 (3)
C11—C151.390 (3)C34—H340.9300
C12—C161.371 (4)C35—C391.384 (4)
C12—H120.9300C35—H350.9300
C13—C171.375 (4)C36—H360.9300
C13—H130.9300C37—H370.9300
C14—C181.385 (4)C38—H380.9300
C14—H140.9300C39—H390.9300
C15—C191.385 (4)N40—C471.324 (4)
C15—H150.9300N40—C461.335 (4)
C16—H160.9300N41—C491.320 (3)
C17—H170.9300N41—C481.329 (3)
C18—H180.9300C40—C421.377 (4)
C19—H190.9300C40—C431.388 (4)
N20—C261.325 (3)C40—C411.484 (4)
N20—C271.331 (3)C41—C451.382 (4)
N20—H200.8600C41—C441.383 (4)
N21—C281.325 (3)C42—C461.373 (4)
N21—C291.333 (4)C42—H420.9300
C20—C231.381 (4)C43—C471.376 (4)
C20—C221.384 (3)C43—H430.9300
C20—C211.492 (3)C44—C481.373 (4)
C21—C241.382 (4)C44—H440.9300
C21—C251.391 (3)C45—C491.379 (4)
C22—C261.375 (3)C45—H450.9300
C22—H220.9300C46—H460.9300
C23—C271.380 (3)C47—H470.9300
C23—H230.9300C48—H480.9300
C24—C281.390 (3)C49—H490.9300
C6—Pt—C489.80 (12)N20—C26—C22121.2 (2)
C6—Pt—C189.72 (12)N20—C26—H26119.4
C4—Pt—C1179.49 (9)C22—C26—H26119.4
C6—Pt—C3178.05 (10)N20—C27—C23120.9 (2)
C4—Pt—C388.27 (12)N20—C27—H27119.5
C1—Pt—C392.22 (13)C23—C27—H27119.5
C6—Pt—C292.98 (12)N21—C28—C24124.2 (3)
C4—Pt—C291.00 (12)N21—C28—H28117.9
C1—Pt—C289.20 (13)C24—C28—H28117.9
C3—Pt—C286.78 (12)N21—C29—C25124.7 (3)
C6—Pt—C587.95 (12)N21—C29—H29117.7
C4—Pt—C589.64 (12)C25—C29—H29117.7
C1—Pt—C590.16 (13)C37—N30—C36117.7 (2)
C3—Pt—C592.32 (12)C38—N31—C39115.3 (2)
C2—Pt—C5178.87 (11)C33—C30—C32117.0 (2)
N1—C1—Pt177.4 (4)C33—C30—C31120.9 (2)
N2—C2—Pt174.8 (3)C32—C30—C31122.1 (2)
N3—C3—Pt174.6 (3)C35—C31—C34116.2 (2)
N4—C4—Pt178.4 (3)C35—C31—C30122.0 (3)
N5—C5—Pt177.0 (3)C34—C31—C30121.8 (2)
N6—C6—Pt177.3 (3)C30—C32—C36119.7 (3)
C17—N10—C16120.2 (2)C30—C32—H32120.1
C17—N10—H10119.9C36—C32—H32120.1
C16—N10—H10119.9C30—C33—C37119.7 (2)
C19—N11—C18116.1 (3)C30—C33—H33120.1
C12—C10—C13116.8 (2)C37—C33—H33120.1
C12—C10—C11121.3 (2)C31—C34—C38119.6 (3)
C13—C10—C11121.8 (2)C31—C34—H34120.2
C14—C11—C15116.8 (3)C38—C34—H34120.2
C14—C11—C10121.6 (2)C31—C35—C39119.8 (3)
C15—C11—C10121.6 (2)C31—C35—H35120.1
C16—C12—C10120.5 (3)C39—C35—H35120.1
C16—C12—H12119.8N30—C36—C32122.7 (3)
C10—C12—H12119.8N30—C36—H36118.6
C17—C13—C10120.1 (2)C32—C36—H36118.6
C17—C13—H13119.9N30—C37—C33123.1 (3)
C10—C13—H13119.9N30—C37—H37118.4
C11—C14—C18119.7 (3)C33—C37—H37118.4
C11—C14—H14120.2N31—C38—C34124.6 (3)
C18—C14—H14120.2N31—C38—H38117.7
C19—C15—C11119.1 (3)C34—C38—H38117.7
C19—C15—H15120.4N31—C39—C35124.5 (3)
C11—C15—H15120.4N31—C39—H39117.7
N10—C16—C12121.1 (2)C35—C39—H39117.7
N10—C16—H16119.5C47—N40—C46115.2 (3)
C12—C16—H16119.5C49—N41—C48117.5 (2)
N10—C17—C13121.3 (2)C42—C40—C43116.4 (3)
N10—C17—H17119.4C42—C40—C41122.0 (2)
C13—C17—H17119.4C43—C40—C41121.6 (2)
N11—C18—C14123.9 (3)C45—C41—C44116.6 (2)
N11—C18—H18118.0C45—C41—C40121.5 (2)
C14—C18—H18118.0C44—C41—C40121.8 (2)
N11—C19—C15124.4 (3)C46—C42—C40119.7 (3)
N11—C19—H19117.8C46—C42—H42120.2
C15—C19—H19117.8C40—C42—H42120.2
C26—N20—C27120.2 (2)C47—C43—C40119.6 (3)
C26—N20—H20119.9C47—C43—H43120.2
C27—N20—H20119.9C40—C43—H43120.2
C28—N21—C29115.7 (2)C48—C44—C41119.8 (2)
C23—C20—C22117.1 (2)C48—C44—H44120.1
C23—C20—C21121.4 (2)C41—C44—H44120.1
C22—C20—C21121.4 (2)C49—C45—C41119.9 (3)
C24—C21—C25116.8 (2)C49—C45—H45120.0
C24—C21—C20121.6 (2)C41—C45—H45120.0
C25—C21—C20121.7 (2)N40—C46—C42124.6 (3)
C26—C22—C20120.3 (2)N40—C46—H46117.7
C26—C22—H22119.9C42—C46—H46117.7
C20—C22—H22119.9N40—C47—C43124.5 (3)
C27—C23—C20120.2 (2)N40—C47—H47117.7
C27—C23—H23119.9C43—C47—H47117.7
C20—C23—H23119.9N41—C48—C44123.2 (2)
C21—C24—C28119.5 (3)N41—C48—H48118.4
C21—C24—H24120.2C44—C48—H48118.4
C28—C24—H24120.2N41—C49—C45122.9 (3)
C29—C25—C21119.1 (3)N41—C49—H49118.5
C29—C25—H25120.5C45—C49—H49118.5
C21—C25—H25120.5
C12—C10—C11—C1413.0 (4)C33—C30—C31—C351.2 (5)
C13—C10—C11—C14169.6 (3)C32—C30—C31—C35179.1 (4)
C12—C10—C11—C15165.1 (3)C33—C30—C31—C34178.2 (3)
C13—C10—C11—C1512.3 (4)C32—C30—C31—C341.5 (5)
C13—C10—C12—C160.7 (4)C33—C30—C32—C361.3 (6)
C11—C10—C12—C16176.8 (3)C31—C30—C32—C36178.4 (4)
C12—C10—C13—C170.3 (4)C32—C30—C33—C371.8 (5)
C11—C10—C13—C17177.2 (3)C31—C30—C33—C37177.9 (3)
C15—C11—C14—C181.4 (4)C35—C31—C34—C380.3 (5)
C10—C11—C14—C18176.8 (3)C30—C31—C34—C38179.7 (3)
C14—C11—C15—C191.2 (4)C34—C31—C35—C390.2 (6)
C10—C11—C15—C19177.0 (3)C30—C31—C35—C39179.2 (4)
C17—N10—C16—C120.1 (5)C37—N30—C36—C321.7 (6)
C10—C12—C16—N100.6 (5)C30—C32—C36—N300.5 (7)
C16—N10—C17—C130.5 (5)C36—N30—C37—C331.2 (5)
C10—C13—C17—N100.3 (5)C30—C33—C37—N300.6 (5)
C19—N11—C18—C140.8 (5)C39—N31—C38—C340.4 (5)
C11—C14—C18—N110.4 (5)C31—C34—C38—N310.6 (5)
C18—N11—C19—C151.1 (5)C38—N31—C39—C350.1 (7)
C11—C15—C19—N110.1 (5)C31—C35—C39—N310.4 (8)
C23—C20—C21—C24170.2 (3)C42—C40—C41—C45164.1 (3)
C22—C20—C21—C2410.3 (4)C43—C40—C41—C4514.6 (4)
C23—C20—C21—C259.4 (4)C42—C40—C41—C4415.5 (4)
C22—C20—C21—C25170.0 (3)C43—C40—C41—C44165.8 (3)
C23—C20—C22—C260.1 (4)C43—C40—C42—C460.7 (5)
C21—C20—C22—C26179.6 (3)C41—C40—C42—C46179.4 (3)
C22—C20—C23—C270.2 (4)C42—C40—C43—C470.5 (4)
C21—C20—C23—C27179.3 (3)C41—C40—C43—C47179.3 (3)
C25—C21—C24—C280.5 (4)C45—C41—C44—C480.3 (4)
C20—C21—C24—C28179.2 (3)C40—C41—C44—C48179.9 (3)
C24—C21—C25—C290.4 (4)C44—C41—C45—C490.4 (5)
C20—C21—C25—C29179.3 (3)C40—C41—C45—C49179.2 (3)
C27—N20—C26—C220.6 (5)C47—N40—C46—C421.7 (6)
C20—C22—C26—N200.1 (5)C40—C42—C46—N400.5 (7)
C26—N20—C27—C230.9 (4)C46—N40—C47—C431.8 (5)
C20—C23—C27—N200.7 (5)C40—C43—C47—N400.7 (5)
C29—N21—C28—C240.4 (5)C49—N41—C48—C441.2 (5)
C21—C24—C28—N210.1 (5)C41—C44—C48—N411.1 (5)
C28—N21—C29—C250.5 (5)C48—N41—C49—C450.5 (5)
C21—C25—C29—N210.1 (5)C41—C45—C49—N410.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N20—H20···N30i0.861.802.665 (3)178
N10—H10···N41ii0.861.822.683 (3)178
C16—H16···N21iii0.932.423.347 (3)175
C26—H26···N11iv0.932.443.372 (4)176
C27—H27···N40v0.932.493.394 (4)164
C17—H17···N31ii0.932.533.450 (4)170
C49—H49···N310.932.543.458 (4)168
C36—H36···N40vi0.932.623.538 (4)171
C23—H23···N6v0.932.453.368 (4)168
C22—H22···N4vii0.932.583.335 (4)139
C13—H13···N3i0.932.613.483 (4)157
C39—H39···N10.932.613.284 (5)130
C38—H38···N3viii0.932.623.337 (4)135
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x+1, y+1, z; (vi) x, y, z+1; (vii) x, y1, z; (viii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C10H9N2)2[Pt(CN)6]·2C10H8N2
Mr977.96
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.4954 (4), 16.3529 (8), 16.9711 (8)
α, β, γ (°)93.024 (2), 96.132 (2), 90.623 (2)
V3)2065.11 (18)
Z2
Radiation typeMo Kα
µ (mm1)3.45
Crystal size (mm)0.44 × 0.18 × 0.16
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionIntegration
(Sheldrick, 2001)
Tmin, Tmax0.287, 0.636
No. of measured, independent and
observed [I > 2σ(I)] reflections
24138, 11361, 9009
Rint0.025
(sin θ/λ)max1)0.695
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.065, 1.03
No. of reflections11361
No. of parameters550
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.68

Computer programs: SMART (Siemens, 1995), SAINT (Bruker, 2001), SAINT, SHELXTL (Sheldrick, 2001), SHELXTL.

Selected geometric parameters (Å, º) top
Pt—C62.015 (3)C21—C241.382 (4)
Pt—C42.016 (3)C21—C251.391 (3)
Pt—C12.022 (3)C22—C261.375 (3)
Pt—C32.022 (3)C23—C271.380 (3)
Pt—C22.023 (3)C24—C281.390 (3)
Pt—C52.026 (3)C25—C291.380 (4)
N1—C11.131 (4)N30—C371.313 (3)
N2—C21.132 (4)N30—C361.322 (4)
N3—C31.136 (4)N31—C381.312 (3)
N4—C41.131 (4)N31—C391.320 (4)
N5—C51.132 (4)C30—C331.372 (4)
N6—C61.134 (4)C30—C321.375 (4)
N10—C171.325 (3)C30—C311.489 (3)
N10—C161.327 (3)C31—C351.365 (4)
N11—C191.326 (4)C31—C341.379 (4)
N11—C181.329 (4)C32—C361.381 (4)
C10—C121.386 (3)C33—C371.379 (3)
C10—C131.387 (4)C34—C381.383 (3)
C10—C111.485 (3)C35—C391.384 (4)
C11—C141.381 (4)N40—C471.324 (4)
C11—C151.390 (3)N40—C461.335 (4)
C12—C161.371 (4)N41—C491.320 (3)
C13—C171.375 (4)N41—C481.329 (3)
C14—C181.385 (4)C40—C421.377 (4)
C15—C191.385 (4)C40—C431.388 (4)
N20—C261.325 (3)C40—C411.484 (4)
N20—C271.331 (3)C41—C451.382 (4)
N21—C281.325 (3)C41—C441.383 (4)
N21—C291.333 (4)C42—C461.373 (4)
C20—C231.381 (4)C43—C471.376 (4)
C20—C221.384 (3)C44—C481.373 (4)
C20—C211.492 (3)C45—C491.379 (4)
C17—N10—C16120.2 (2)C37—N30—C36117.7 (2)
C19—N11—C18116.1 (3)C38—N31—C39115.3 (2)
C12—C10—C13116.8 (2)C33—C30—C32117.0 (2)
C12—C10—C11121.3 (2)C33—C30—C31120.9 (2)
C13—C10—C11121.8 (2)C32—C30—C31122.1 (2)
C14—C11—C15116.8 (3)C35—C31—C34116.2 (2)
C14—C11—C10121.6 (2)C35—C31—C30122.0 (3)
C15—C11—C10121.6 (2)C34—C31—C30121.8 (2)
C16—C12—C10120.5 (3)C30—C32—C36119.7 (3)
C17—C13—C10120.1 (2)C30—C33—C37119.7 (2)
C11—C14—C18119.7 (3)C31—C34—C38119.6 (3)
C19—C15—C11119.1 (3)C31—C35—C39119.8 (3)
N10—C16—C12121.1 (2)N30—C36—C32122.7 (3)
N10—C17—C13121.3 (2)N30—C37—C33123.1 (3)
N11—C18—C14123.9 (3)N31—C38—C34124.6 (3)
N11—C19—C15124.4 (3)N31—C39—C35124.5 (3)
C26—N20—C27120.2 (2)C47—N40—C46115.2 (3)
C28—N21—C29115.7 (2)C49—N41—C48117.5 (2)
C23—C20—C22117.1 (2)C42—C40—C43116.4 (3)
C23—C20—C21121.4 (2)C42—C40—C41122.0 (2)
C22—C20—C21121.4 (2)C43—C40—C41121.6 (2)
C24—C21—C25116.8 (2)C45—C41—C44116.6 (2)
C24—C21—C20121.6 (2)C45—C41—C40121.5 (2)
C25—C21—C20121.7 (2)C44—C41—C40121.8 (2)
C26—C22—C20120.3 (2)C46—C42—C40119.7 (3)
C27—C23—C20120.2 (2)C47—C43—C40119.6 (3)
C21—C24—C28119.5 (3)C48—C44—C41119.8 (2)
C29—C25—C21119.1 (3)C49—C45—C41119.9 (3)
N20—C26—C22121.2 (2)N40—C46—C42124.6 (3)
N20—C27—C23120.9 (2)N40—C47—C43124.5 (3)
N21—C28—C24124.2 (3)N41—C48—C44123.2 (2)
N21—C29—C25124.7 (3)N41—C49—C45122.9 (3)
C13—C10—C11—C14169.6 (3)C32—C30—C31—C35179.1 (4)
C12—C10—C11—C15165.1 (3)C33—C30—C31—C34178.2 (3)
C23—C20—C21—C24170.2 (3)C42—C40—C41—C45164.1 (3)
C22—C20—C21—C25170.0 (3)C43—C40—C41—C44165.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N20—H20···N30i0.861.802.665 (3)178
N10—H10···N41ii0.861.822.683 (3)178
C16—H16···N21iii0.932.423.347 (3)175
C26—H26···N11iv0.932.443.372 (4)176
C27—H27···N40v0.932.493.394 (4)164
C17—H17···N31ii0.932.533.450 (4)170
C49—H49···N310.932.543.458 (4)168
C36—H36···N40vi0.932.623.538 (4)171
C23—H23···N6v0.932.453.368 (4)168
C22—H22···N4vii0.932.583.335 (4)139
C13—H13···N3i0.932.613.483 (4)157
C39—H39···N10.932.613.284 (5)130
C38—H38···N3viii0.932.623.337 (4)135
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x+1, y+1, z; (vi) x, y, z+1; (vii) x, y1, z; (viii) x+2, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds