Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105028982/sf1012sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270105028982/sf1012Isup2.hkl |
CCDC reference: 290554
DABT (0.10 g, 0.5 mmol) was added to an aqueous solution containing VOSO4 (0.08 g, 0.5 mmol); the mixture was stirred quickly until the DABT dissolved. The solution was filtered immediately and the filtrate was kept at room temperature. Green crystals (yield 0.16 g, 67.5%) of suitable size were obtained after 2 h.
H atoms of water molecules were located in a difference Fourier map and included in structure-factor calculation with fixed positional and displacement parameters (0.08 Å2); H atoms of aromatic rings and terminal amino group were placed in calculated positions, with C—H = 0.93 Å and N—H = 0.86 Å, and were included in the final cycles of refinement in the riding mode, with Uiso(H) values equal to 1.2Ueq of the carrier atoms.
Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin, et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).
[VO(SO4)(C6H6N4S2)(H2O)2]·4H2O | Z = 2 |
Mr = 469.36 | F(000) = 482 |
Triclinic, P1 | Dx = 1.765 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.9043 (16) Å | Cell parameters from 3780 reflections |
b = 10.230 (2) Å | θ = 2.2–27.5° |
c = 12.597 (3) Å | µ = 0.98 mm−1 |
α = 102.32 (3)° | T = 296 K |
β = 102.61 (3)° | Chunk, blue |
γ = 110.50 (3)° | 0.28 × 0.22 × 0.20 mm |
V = 883.1 (3) Å3 |
Bruker APEX area-detector diffractometer | 4015 independent reflections |
Radiation source: fine-focus sealed tube | 3573 reflections with I > 2/s(I) |
Graphite monochromator | Rint = 0.016 |
ϕ and ω scans | θmax = 27.5°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −10→10 |
Tmin = 0.772, Tmax = 0.829 | k = −13→11 |
8440 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0472P)2 + 0.4813P] where P = (Fo2 + 2Fc2)/3 |
4015 reflections | (Δ/σ)max = 0.001 |
226 parameters | Δρmax = 0.64 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
[VO(SO4)(C6H6N4S2)(H2O)2]·4H2O | γ = 110.50 (3)° |
Mr = 469.36 | V = 883.1 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.9043 (16) Å | Mo Kα radiation |
b = 10.230 (2) Å | µ = 0.98 mm−1 |
c = 12.597 (3) Å | T = 296 K |
α = 102.32 (3)° | 0.28 × 0.22 × 0.20 mm |
β = 102.61 (3)° |
Bruker APEX area-detector diffractometer | 4015 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 3573 reflections with I > 2/s(I) |
Tmin = 0.772, Tmax = 0.829 | Rint = 0.016 |
8440 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.64 e Å−3 |
4015 reflections | Δρmin = −0.40 e Å−3 |
226 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
V1 | 0.93524 (4) | 0.08832 (3) | 0.24812 (3) | 0.02433 (9) | |
O1 | 1.0989 (2) | 0.03140 (18) | 0.25991 (14) | 0.0380 (3) | |
O1W | 0.6844 (2) | 0.14440 (16) | 0.21230 (13) | 0.0323 (3) | |
H1WA | 0.6916 | 0.2060 | 0.1722 | 0.080* | |
H1WB | 0.5802 | 0.0791 | 0.1770 | 0.080* | |
O2W | 0.7848 (2) | −0.04916 (16) | 0.08169 (12) | 0.0328 (3) | |
H2WA | 0.7393 | −0.0187 | 0.0260 | 0.080* | |
H2WB | 0.8472 | −0.0976 | 0.0503 | 0.080* | |
S2 | 1.17296 (7) | 0.31067 (5) | 0.12801 (4) | 0.02631 (11) | |
O2 | 1.0403 (2) | 0.26338 (16) | 0.19537 (12) | 0.0319 (3) | |
O3 | 1.0705 (2) | 0.22654 (19) | 0.00590 (13) | 0.0410 (4) | |
O4 | 1.3387 (2) | 0.2814 (2) | 0.16737 (16) | 0.0494 (4) | |
O5 | 1.2233 (3) | 0.46667 (18) | 0.14634 (17) | 0.0498 (4) | |
S1 | 1.14155 (9) | 0.41820 (6) | 0.61634 (4) | 0.04024 (14) | |
N1 | 1.2495 (3) | 0.4547 (2) | 0.43399 (17) | 0.0451 (5) | |
H1A | 1.2462 | 0.4257 | 0.3640 | 0.054* | |
H1B | 1.3267 | 0.5425 | 0.4775 | 0.054* | |
N2 | 1.0110 (2) | 0.22656 (18) | 0.41594 (14) | 0.0279 (3) | |
C1 | 1.1357 (3) | 0.3641 (2) | 0.47481 (17) | 0.0314 (4) | |
C2 | 0.9173 (3) | 0.1605 (2) | 0.48555 (17) | 0.0304 (4) | |
C3 | 0.9702 (3) | 0.2461 (3) | 0.59469 (19) | 0.0395 (5) | |
H3 | 0.9213 | 0.2166 | 0.6506 | 0.047* | |
S3 | 0.51609 (9) | −0.24520 (6) | 0.37459 (5) | 0.04363 (15) | |
N3 | 0.5707 (3) | −0.2831 (2) | 0.17027 (18) | 0.0478 (5) | |
H3A | 0.6258 | −0.2554 | 0.1221 | 0.057* | |
H3B | 0.4824 | −0.3704 | 0.1505 | 0.057* | |
N4 | 0.7554 (2) | −0.05404 (18) | 0.31591 (14) | 0.0294 (3) | |
C4 | 0.6221 (3) | −0.1906 (2) | 0.27541 (19) | 0.0334 (4) | |
C5 | 0.7767 (3) | 0.0105 (2) | 0.43067 (17) | 0.0309 (4) | |
C6 | 0.6616 (3) | −0.0762 (3) | 0.4755 (2) | 0.0398 (5) | |
H6 | 0.6608 | −0.0486 | 0.5506 | 0.048* | |
O3W | 0.5463 (2) | 0.26994 (19) | 0.38688 (14) | 0.0441 (4) | |
H3WA | 0.4670 | 0.2822 | 0.3334 | 0.080* | |
H3WB | 0.6065 | 0.2272 | 0.3447 | 0.080* | |
O4W | 0.3382 (3) | −0.0817 (2) | 0.07216 (18) | 0.0562 (5) | |
H4WA | 0.3581 | −0.1533 | 0.0361 | 0.080* | |
H4WB | 0.2172 | −0.1228 | 0.0807 | 0.080* | |
O5W | 0.6417 (2) | 0.3216 (2) | 0.08582 (16) | 0.0461 (4) | |
H5WA | 0.7380 | 0.4034 | 0.1030 | 0.080* | |
H5WB | 0.5496 | 0.3377 | 0.1085 | 0.080* | |
O6W | 0.9489 (3) | 0.5826 (2) | 0.14037 (16) | 0.0532 (5) | |
H6WA | 1.0515 | 0.5579 | 0.1397 | 0.080* | |
H6WB | 0.9454 | 0.6409 | 0.0958 | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
V1 | 0.02317 (16) | 0.02500 (17) | 0.02201 (16) | 0.00757 (13) | 0.00677 (12) | 0.00671 (12) |
O1 | 0.0334 (8) | 0.0418 (8) | 0.0406 (8) | 0.0187 (7) | 0.0104 (7) | 0.0125 (7) |
O1W | 0.0274 (7) | 0.0341 (7) | 0.0338 (7) | 0.0121 (6) | 0.0081 (6) | 0.0108 (6) |
O2W | 0.0361 (8) | 0.0321 (7) | 0.0254 (7) | 0.0126 (6) | 0.0088 (6) | 0.0038 (6) |
S2 | 0.0248 (2) | 0.0276 (2) | 0.0246 (2) | 0.00789 (18) | 0.00936 (17) | 0.00811 (18) |
O2 | 0.0333 (7) | 0.0318 (7) | 0.0333 (7) | 0.0112 (6) | 0.0172 (6) | 0.0129 (6) |
O3 | 0.0416 (9) | 0.0493 (9) | 0.0269 (7) | 0.0182 (7) | 0.0098 (6) | 0.0045 (7) |
O4 | 0.0327 (8) | 0.0772 (13) | 0.0495 (10) | 0.0277 (9) | 0.0160 (7) | 0.0304 (9) |
O5 | 0.0535 (10) | 0.0275 (8) | 0.0674 (12) | 0.0080 (7) | 0.0318 (9) | 0.0153 (8) |
S1 | 0.0462 (3) | 0.0386 (3) | 0.0251 (2) | 0.0122 (2) | 0.0091 (2) | 0.0009 (2) |
N1 | 0.0487 (12) | 0.0324 (10) | 0.0327 (9) | −0.0026 (8) | 0.0136 (9) | 0.0016 (8) |
N2 | 0.0280 (8) | 0.0283 (8) | 0.0233 (7) | 0.0084 (7) | 0.0073 (6) | 0.0070 (6) |
C1 | 0.0320 (10) | 0.0321 (10) | 0.0249 (9) | 0.0115 (8) | 0.0061 (8) | 0.0051 (8) |
C2 | 0.0319 (10) | 0.0348 (10) | 0.0272 (9) | 0.0142 (8) | 0.0112 (8) | 0.0129 (8) |
C3 | 0.0464 (13) | 0.0418 (12) | 0.0281 (10) | 0.0147 (10) | 0.0141 (9) | 0.0110 (9) |
S3 | 0.0449 (3) | 0.0368 (3) | 0.0492 (3) | 0.0078 (2) | 0.0239 (3) | 0.0206 (3) |
N3 | 0.0544 (13) | 0.0305 (10) | 0.0398 (10) | −0.0020 (9) | 0.0160 (9) | 0.0077 (8) |
N4 | 0.0296 (8) | 0.0278 (8) | 0.0277 (8) | 0.0075 (7) | 0.0085 (7) | 0.0113 (7) |
C4 | 0.0337 (10) | 0.0303 (10) | 0.0372 (11) | 0.0102 (8) | 0.0125 (9) | 0.0166 (9) |
C5 | 0.0325 (10) | 0.0346 (10) | 0.0286 (9) | 0.0143 (9) | 0.0111 (8) | 0.0142 (8) |
C6 | 0.0449 (13) | 0.0404 (12) | 0.0374 (11) | 0.0143 (10) | 0.0203 (10) | 0.0175 (10) |
O3W | 0.0456 (9) | 0.0459 (9) | 0.0317 (8) | 0.0146 (8) | 0.0105 (7) | 0.0040 (7) |
O4W | 0.0335 (9) | 0.0572 (11) | 0.0653 (12) | 0.0105 (8) | 0.0054 (8) | 0.0205 (10) |
O5W | 0.0421 (9) | 0.0490 (10) | 0.0502 (10) | 0.0192 (8) | 0.0176 (8) | 0.0184 (8) |
O6W | 0.0618 (12) | 0.0553 (11) | 0.0504 (10) | 0.0272 (10) | 0.0207 (9) | 0.0243 (9) |
V1—O1 | 1.5858 (16) | C2—C3 | 1.346 (3) |
V1—O2 | 2.0113 (15) | C2—C5 | 1.444 (3) |
V1—O1W | 2.2319 (15) | C3—H3 | 0.9300 |
V1—O2W | 2.0662 (18) | S3—C6 | 1.720 (3) |
V1—N2 | 2.0990 (19) | S3—C4 | 1.733 (2) |
V1—N4 | 2.1170 (18) | C4—N4 | 1.324 (3) |
O1W—H1WA | 0.8824 | C4—N3 | 1.332 (3) |
O1W—H1WB | 0.8062 | N3—H3A | 0.8600 |
O2W—H2WA | 0.8834 | N3—H3B | 0.8600 |
O2W—H2WB | 0.9044 | N4—C5 | 1.401 (3) |
S2—O2 | 1.5041 (14) | C5—C6 | 1.344 (3) |
S2—O3 | 1.4716 (17) | C6—H6 | 0.9300 |
S2—O4 | 1.4513 (17) | O3W—H3WA | 0.8769 |
S2—O5 | 1.4548 (17) | O3W—H3WB | 0.9259 |
S1—C3 | 1.724 (3) | O4W—H4WA | 0.858 |
S1—C1 | 1.736 (2) | O4W—H4WB | 0.9409 |
C1—N1 | 1.324 (3) | O5W—H5WA | 0.8554 |
C1—N2 | 1.329 (3) | O5W—H5WB | 0.8905 |
N1—H1A | 0.8600 | O6W—H6WA | 0.931 |
N1—H1B | 0.8600 | O6W—H6WB | 0.9052 |
N2—C2 | 1.400 (2) | ||
O1—V1—O2 | 102.46 (8) | C1—N1—H1A | 120.0 |
O1—V1—O2W | 93.86 (8) | C1—N1—H1B | 120.0 |
O2—V1—O2W | 92.05 (7) | H1A—N1—H1B | 120.0 |
O1—V1—N2 | 101.30 (8) | C1—N2—C2 | 110.70 (17) |
O2—V1—N2 | 90.89 (7) | C1—N2—V1 | 134.48 (14) |
O2W—V1—N2 | 163.55 (6) | C2—N2—V1 | 114.75 (13) |
O1—V1—N4 | 99.21 (8) | C3—C2—N2 | 115.33 (19) |
O2—V1—N4 | 157.53 (6) | C3—C2—C5 | 128.8 (2) |
O2W—V1—N4 | 92.40 (7) | N2—C2—C5 | 115.84 (18) |
N2—V1—N4 | 79.00 (7) | C2—C3—S1 | 110.50 (17) |
O1—V1—O1W | 172.97 (7) | C2—C3—H3 | 124.8 |
O2—V1—O1W | 79.66 (6) | S1—C3—H3 | 124.8 |
O2W—V1—O1W | 79.31 (6) | C6—S3—C4 | 90.01 (11) |
N2—V1—O1W | 85.31 (7) | N4—C4—N3 | 125.7 (2) |
N4—V1—O1W | 79.54 (6) | N4—C4—S3 | 113.51 (17) |
V1—O1W—H1WA | 114.33 | N3—C4—S3 | 120.76 (16) |
V1—O1W—H1WB | 118.84 | C4—N3—H3A | 120.0 |
H1WA—O1W—H1WB | 101.83 | C4—N3—H3B | 120.0 |
V1—O2W—H2WA | 123.03 | H3A—N3—H3B | 120.0 |
V1—O2W—H2WB | 113.97 | C4—N4—C5 | 110.77 (18) |
H2WA—O2W—H2WB | 102.59 | C4—N4—V1 | 135.47 (15) |
O4—S2—O5 | 112.14 (12) | C5—N4—V1 | 113.74 (13) |
O4—S2—O3 | 110.15 (11) | C6—C5—N4 | 115.2 (2) |
O5—S2—O3 | 110.16 (11) | C6—C5—C2 | 128.2 (2) |
O4—S2—O2 | 109.26 (9) | N4—C5—C2 | 116.60 (18) |
O5—S2—O2 | 106.62 (10) | C5—C6—S3 | 110.54 (17) |
O3—S2—O2 | 108.39 (10) | C5—C6—H6 | 124.7 |
S2—O2—V1 | 136.69 (9) | S3—C6—H6 | 124.7 |
C3—S1—C1 | 89.99 (11) | H3WA—O3W—H3WB | 101.60 |
N1—C1—N2 | 125.38 (19) | H4WA—O4W—H4WB | 107.0 |
N1—C1—S1 | 121.14 (17) | H5WA—O5W—H5WB | 109.7 |
N2—C1—S1 | 113.47 (16) | H6WA—O6W—H6WB | 108.7 |
O3—S2—O2—V1 | 75.40 (15) | O5—S2—O2—V1 | −166.03 (14) |
O4—S2—O2—V1 | −44.64 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2 | 0.86 | 2.24 | 2.942 (3) | 139 |
N1—H1B···O3Wi | 0.86 | 2.03 | 2.854 (3) | 161 |
N3—H3A···O2W | 0.86 | 2.27 | 2.994 (3) | 141 |
N3—H3B···O5ii | 0.86 | 2.12 | 2.928 (3) | 156 |
O1W—H1WA···O5W | 0.8824 | 1.8510 | 2.714 (2) | 165.21 |
O1W—H1WB···O4W | 0.8062 | 1.969 | 2.769 (3) | 172.05 |
O2W—H2WA···O4Wiii | 0.8834 | 1.900 | 2.773 (3) | 169.25 |
O2W—H2WB···O3iv | 0.9044 | 1.7515 | 2.640 (2) | 166.68 |
O3W—H3WA···O4v | 0.8769 | 2.1127 | 2.940 (3) | 157.02 |
O3W—H3WB···O1W | 0.9259 | 2.0221 | 2.916 (2) | 161.77 |
O4W—H4WA···O5Wiii | 0.858 | 2.049 | 2.887 (3) | 165.10 |
O4W—H4WB···O3iii | 0.9409 | 2.0543 | 2.870 (3) | 144.08 |
O5W—H5WA···O6W | 0.8554 | 1.873 | 2.729 (3) | 179.93 |
O5W—H5WB···O4v | 0.8905 | 1.9261 | 2.743 (2) | 151.69 |
O6W—H6WA···O5 | 0.931 | 1.8957 | 2.808 (3) | 165.90 |
O6W—H6WB···O3vi | 0.9052 | 2.0704 | 2.975 (3) | 178.28 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x−1, y−1, z; (iii) −x+1, −y, −z; (iv) −x+2, −y, −z; (v) x−1, y, z; (vi) −x+2, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [VO(SO4)(C6H6N4S2)(H2O)2]·4H2O |
Mr | 469.36 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 7.9043 (16), 10.230 (2), 12.597 (3) |
α, β, γ (°) | 102.32 (3), 102.61 (3), 110.50 (3) |
V (Å3) | 883.1 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.98 |
Crystal size (mm) | 0.28 × 0.22 × 0.20 |
Data collection | |
Diffractometer | Bruker APEX area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.772, 0.829 |
No. of measured, independent and observed [I > 2/s(I)] reflections | 8440, 4015, 3573 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.089, 1.09 |
No. of reflections | 4015 |
No. of parameters | 226 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.64, −0.40 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin, et al., 1993), WinGX (Farrugia, 1999).
V1—O1 | 1.5858 (16) | V1—N4 | 2.1170 (18) |
V1—O2 | 2.0113 (15) | S2—O2 | 1.5041 (14) |
V1—O1W | 2.2319 (15) | S2—O3 | 1.4716 (17) |
V1—O2W | 2.0662 (18) | S2—O4 | 1.4513 (17) |
V1—N2 | 2.0990 (19) | S2—O5 | 1.4548 (17) |
O1—V1—O2 | 102.46 (8) | O2—V1—O1W | 79.66 (6) |
O1—V1—O2W | 93.86 (8) | O2W—V1—O1W | 79.31 (6) |
O1—V1—N2 | 101.30 (8) | N2—V1—O1W | 85.31 (7) |
O1—V1—N4 | 99.21 (8) | N4—V1—O1W | 79.54 (6) |
N2—V1—N4 | 79.00 (7) | S2—O2—V1 | 136.69 (9) |
O1—V1—O1W | 172.97 (7) | ||
O3—S2—O2—V1 | 75.40 (15) | O5—S2—O2—V1 | −166.03 (14) |
O4—S2—O2—V1 | −44.64 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2 | 0.86 | 2.24 | 2.942 (3) | 139 |
N1—H1B···O3Wi | 0.86 | 2.03 | 2.854 (3) | 161 |
N3—H3A···O2W | 0.86 | 2.27 | 2.994 (3) | 141 |
N3—H3B···O5ii | 0.86 | 2.12 | 2.928 (3) | 156 |
O1W—H1WA···O5W | 0.8824 | 1.8510 | 2.714 (2) | 165.21 |
O1W—H1WB···O4W | 0.8062 | 1.969 | 2.769 (3) | 172.05 |
O2W—H2WA···O4Wiii | 0.8834 | 1.900 | 2.773 (3) | 169.25 |
O2W—H2WB···O3iv | 0.9044 | 1.7515 | 2.640 (2) | 166.68 |
O3W—H3WA···O4v | 0.8769 | 2.1127 | 2.940 (3) | 157.02 |
O3W—H3WB···O1W | 0.9259 | 2.0221 | 2.916 (2) | 161.77 |
O4W—H4WA···O5Wiii | 0.858 | 2.049 | 2.887 (3) | 165.10 |
O4W—H4WB···O3iii | 0.9409 | 2.0543 | 2.870 (3) | 144.08 |
O5W—H5WA···O6W | 0.8554 | 1.873 | 2.729 (3) | 179.93 |
O5W—H5WB···O4v | 0.8905 | 1.9261 | 2.743 (2) | 151.69 |
O6W—H6WA···O5 | 0.931 | 1.8957 | 2.808 (3) | 165.90 |
O6W—H6WB···O3vi | 0.9052 | 2.0704 | 2.975 (3) | 178.28 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x−1, y−1, z; (iii) −x+1, −y, −z; (iv) −x+2, −y, −z; (v) x−1, y, z; (vi) −x+2, −y+1, −z. |
Some transition metal complexes with 2,2'-diamino-4,4'-bithiazole (DABT) or its derivatives have been found to be effective inhibitors of DNA synthesis in tumor cells (Fisher et al., 1985; Waring, 1981). Vanadium plays an important role in various biological processes (Rehder, 1991) and shows potential application in the pharmaceutical area (Sakurai et al., 2002), which has received increased attention in recent years (Butler & Carrano, 1991; Robson et al., 1986; Soedjak & Butler, 1990). As part of an investigation of a series of metal complexes with DABT (Wu et al., 2003), the oxovanadium complex with DABT, (I), has recently been prepared and its X-ray structure is presented here.
The molecular structure of (I) is shown in Fig. 1. The title compound contains a vanadium(IV) complex and four solvent water molecules. The octahedral geometry around the vanadium ion is defined by {VO2(H2O)2N2}, with the VIV center coordinated to a terminal oxo group, the two coordinated water molecules at cis positions, two N donor atoms from a chelating DABT ligand and an O-atom donor from a monodentate SO42− ligand. The apical positions of the octahedron are occupied by the terminal oxo group (O1) and one coordinated water molecule (O1W); the O1–V1–O1W angle is 172.97 (7)° (Table 1). The equatorial plane is formed by the rest of the coordinated atoms with a maximum deviation of 0.0538 (8) Å (N2). A large displacement of 0.3287 (9) Å of the V atom from the equatorial plane towards the oxo group is observed; it is correlated with the short V1—O1 distance of 1.5858 (16) Å that indicates a substantial V═O double bond and a elongated V1—O1W bond length of 2.2319 (15) Å.
The DABT is present in the usual chelating bidentate mode, forming a five-membered ring with V—N bond lengths of 2.0990 (19) and 2.1170 (18) Å and N2–V1–N4 bond angles of 79.00 (7)°. The dihedral angle between the planes of the two thiazole rings is 2.91 (12)°.
The SO42− ligand adopts a monodentate mode coordinating to the VIV center with a V1—O2 bond length of 2.0113 (15) Å. The V1—O2—S2—O3,O4,O5 torsion angles are 75.40 (15), −44.64 (17) and −166.03 (14)°, respectively. The S2—O2—V1 angle is 136.69 (9)°. The S2—O2 bond is longer than the bonds to noncoordinated O atoms in the SO42− tetrahedron, which were also observed in some similar compounds (Doedens et al., 2002; Dong et al., 2000; Khan et al., 1999; Triantafillou et al., 2004). The overall geometry around atom S2 is a distorted tetrahedron.
In the crystal structure, a three-dimensional supramolecular hydrogen-bonding network is observed (Table 2). As illustrated in Fig. 2, via hydrogen bonds between atom O2W, the sulfate group and the amine groups on the bithiazole moiety, the complexes are linked to one another and extend along the of [110] direction. These chains are assembled into a two-dimensional layer structure parallel to the (001) crystal plane by solvent water molecules (O4W, O5W and O6W) forming hydrogen bonds to the coordinated water molecules and sulfate groups of the complexes. Through intralayer hydrogen bonds involving atom O3W, a three-dimensional hydrogen-bonding structure is completed (Fig. 3).
The molecular packing is shown in Fig. 3. The crystal has two distinct regions; one contains the DABT ligands and the other contains intimately hydrogen-bonded sulfates and water molcules as described above. In the region of the ligands, neighboring thiazole rings, related by the symmetry operation (−x + 2, −y, −z + 1), are nearly parallel; the separations of 3.4970 (32) Å (C3) to 3.5979 (22) Å (S3) suggests π–π stacking between the ligands.