The structures of two compounds of
L-tartaric acid with quinoline,
viz. the proton-transfer compound quinolinium hydrogen (2
R,3
R)-tartrate monohydrate, C
9H
8N
+·C
4H
5O
6-·H
2O, (I), and the anhydrous non-proton-transfer adduct with quinaldic acid, bis(quinolinium-2-carboxylate) (2
R,3
R)-tartaric acid, 2C
10H
7NO
2·C
4H
6O
6, (II), have been determined at 130 K. Compound (I) has a three-dimensional honeycomb substructure formed from head-to-tail hydrogen-bonded hydrogen tartrate anions and water molecules. The stacks of
-bonded quinolinium cations are accommodated within the channels and are hydrogen bonded to it peripherally. Compound (II) has a two-dimensional network structure based on pseudo-centrosymmetric head-to-tail hydrogen-bonded cyclic dimers comprising zwitterionic quinaldic acid species which are interlinked by tartaric acid molecules.
Supporting information
CCDC references: 633174; 633175
Both compounds were synthesized by heating 1 mmol quantities of L-tartaric acid and either quinoline [for (I)] or quinoline-2-carboxylic acid (quinaldic acid) [for (II)] in 50% 2-propanol–water for 10 min under reflux. Compound (I) was obtained as colourless needles (m.p. 397.6–398.6 K) and (II) as pale yellow plates (m.p. 469.1–470.7 K), after partial room-temperature evaporation of solvent.
H atoms potentially involved in hydrogen-bonding interactions in (I) and (II) were located by difference methods and their positional and isotropic displacement parameters were refined. However, with (II), because of the poor reflections/refined parameters ratio, the parameters were fixed for the final refinement cycle. Other H atoms for both (I) and (II) were included at calculated positions [C—H(aromatic) = 0.95 Å and C—H (aliphatic) = 0.97 or 0.98 Å] and treated as riding [Uiso(H) = 1.2Ueq(C)]. Friedel pairs were averaged for the data used in the refinements. The absolute configuration determined for the parent L-(+)-tartaric acid (2R,3R) (Waser, 1949; Bijvoet et al., 1951; Hope & de la Camp, 1972) was invoked in both structures.
For both compounds, data collection: SMART (Bruker, 2000); cell refinement: SAINT ?? (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) in WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) in WinGX; molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.
(I) quinolinium hydrogen (2
R),3
R)-tartrate monohydrate
top
Crystal data top
C9H8N+·C4H5O6−·H2O | Dx = 1.474 Mg m−3 |
Mr = 297.26 | Melting point = 397.6–398.6 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 3131 reflections |
a = 7.2546 (6) Å | θ = 2.2–27.3° |
b = 9.4922 (8) Å | µ = 0.12 mm−1 |
c = 19.4571 (16) Å | T = 130 K |
V = 1339.86 (19) Å3 | Needle, colourless |
Z = 4 | 0.50 × 0.20 × 0.20 mm |
F(000) = 624 | |
Data collection top
Bruker SMART CCD area-detector diffractometer | 1795 independent reflections |
Radiation source: sealed tube | 1668 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
ϕ and ω scans | θmax = 27.5°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −8→9 |
Tmin = 0.88, Tmax = 1.00 | k = −11→12 |
8431 measured reflections | l = −25→11 |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.0463P)2 + 0.2433P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
1795 reflections | Δρmax = 0.25 e Å−3 |
214 parameters | Δρmin = −0.19 e Å−3 |
0 restraints | Absolute structure: Flack (1983), ? Friedel pairs? |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.2 (9) |
Crystal data top
C9H8N+·C4H5O6−·H2O | V = 1339.86 (19) Å3 |
Mr = 297.26 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.2546 (6) Å | µ = 0.12 mm−1 |
b = 9.4922 (8) Å | T = 130 K |
c = 19.4571 (16) Å | 0.50 × 0.20 × 0.20 mm |
Data collection top
Bruker SMART CCD area-detector diffractometer | 1795 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | 1668 reflections with I > 2σ(I) |
Tmin = 0.88, Tmax = 1.00 | Rint = 0.024 |
8431 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.035 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.088 | Δρmax = 0.25 e Å−3 |
S = 1.04 | Δρmin = −0.19 e Å−3 |
1795 reflections | Absolute structure: Flack (1983), ? Friedel pairs? |
214 parameters | Absolute structure parameter: −0.2 (9) |
0 restraints | |
Special details top
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
N1 | 0.5299 (2) | 0.39427 (15) | 0.09300 (7) | 0.0228 (4) | |
C2 | 0.5265 (2) | 0.31413 (19) | 0.14865 (8) | 0.0272 (5) | |
C3 | 0.5210 (3) | 0.16763 (19) | 0.14294 (9) | 0.0294 (5) | |
C4 | 0.5171 (3) | 0.10805 (18) | 0.07881 (9) | 0.0288 (5) | |
C5 | 0.5157 (3) | 0.13904 (18) | −0.04865 (9) | 0.0288 (5) | |
C6 | 0.5179 (3) | 0.2275 (2) | −0.10358 (9) | 0.0303 (5) | |
C7 | 0.5274 (3) | 0.37514 (19) | −0.09405 (9) | 0.0290 (5) | |
C8 | 0.5315 (2) | 0.43193 (17) | −0.02980 (9) | 0.0256 (5) | |
C9 | 0.5274 (2) | 0.34122 (16) | 0.02752 (8) | 0.0201 (4) | |
C10 | 0.5210 (2) | 0.19313 (17) | 0.01910 (8) | 0.0220 (4) | |
O11 | 0.46959 (15) | 0.82964 (11) | 0.19086 (5) | 0.0204 (3) | |
O12 | 0.46877 (15) | 0.66946 (11) | 0.10702 (5) | 0.0206 (3) | |
O21 | 0.83201 (15) | 0.68644 (13) | 0.08832 (6) | 0.0218 (3) | |
O31 | 0.76198 (17) | 0.56444 (13) | 0.22308 (6) | 0.0262 (4) | |
O41 | 1.12483 (15) | 0.81420 (12) | 0.19773 (6) | 0.0215 (3) | |
O42 | 1.12860 (16) | 0.58184 (13) | 0.22076 (7) | 0.0304 (4) | |
C11 | 0.5477 (2) | 0.75110 (15) | 0.14794 (8) | 0.0159 (4) | |
C21 | 0.7597 (2) | 0.76063 (16) | 0.14529 (8) | 0.0170 (4) | |
C31 | 0.8378 (2) | 0.69913 (17) | 0.21149 (8) | 0.0183 (4) | |
C41 | 1.0485 (2) | 0.69145 (17) | 0.20990 (7) | 0.0178 (4) | |
O1W | 0.17495 (18) | 0.71359 (15) | 0.02558 (6) | 0.0281 (4) | |
H1 | 0.526 (3) | 0.486 (2) | 0.0993 (11) | 0.036 (6)* | |
H2 | 0.52770 | 0.35670 | 0.19280 | 0.0330* | |
H3 | 0.52000 | 0.11010 | 0.18290 | 0.0350* | |
H4 | 0.51160 | 0.00850 | 0.07440 | 0.0350* | |
H5 | 0.51040 | 0.04010 | −0.05580 | 0.0350* | |
H6 | 0.51310 | 0.18990 | −0.14880 | 0.0360* | |
H7 | 0.53100 | 0.43540 | −0.13300 | 0.0350* | |
H8 | 0.53690 | 0.53110 | −0.02370 | 0.0310* | |
H21 | 0.772 (4) | 0.714 (3) | 0.0527 (14) | 0.052 (7)* | |
H21A | 0.79600 | 0.85900 | 0.14180 | 0.0200* | |
H31 | 0.848 (3) | 0.510 (2) | 0.2353 (12) | 0.039 (6)* | |
H31A | 0.80150 | 0.76100 | 0.24900 | 0.0220* | |
H41 | 1.249 (4) | 0.820 (3) | 0.1950 (13) | 0.058 (7)* | |
H1W | 0.257 (3) | 0.702 (2) | 0.0540 (11) | 0.031 (6)* | |
H2W | 0.076 (4) | 0.713 (3) | 0.0479 (12) | 0.043 (7)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
N1 | 0.0236 (7) | 0.0219 (7) | 0.0229 (7) | −0.0035 (6) | −0.0003 (6) | −0.0039 (5) |
C2 | 0.0243 (8) | 0.0383 (9) | 0.0189 (7) | −0.0037 (8) | 0.0000 (7) | −0.0031 (7) |
C3 | 0.0305 (9) | 0.0346 (9) | 0.0230 (8) | −0.0026 (8) | −0.0005 (7) | 0.0089 (7) |
C4 | 0.0317 (10) | 0.0224 (8) | 0.0322 (9) | −0.0019 (7) | 0.0013 (8) | 0.0056 (7) |
C5 | 0.0337 (10) | 0.0216 (8) | 0.0310 (9) | 0.0000 (7) | 0.0027 (8) | −0.0058 (7) |
C6 | 0.0331 (10) | 0.0374 (9) | 0.0204 (8) | −0.0021 (8) | 0.0030 (7) | −0.0062 (7) |
C7 | 0.0316 (9) | 0.0323 (8) | 0.0230 (8) | 0.0006 (8) | 0.0007 (8) | 0.0078 (7) |
C8 | 0.0276 (9) | 0.0198 (7) | 0.0293 (9) | −0.0010 (7) | 0.0019 (8) | 0.0034 (6) |
C9 | 0.0179 (7) | 0.0216 (7) | 0.0208 (7) | −0.0011 (6) | 0.0004 (6) | −0.0001 (6) |
C10 | 0.0208 (7) | 0.0210 (7) | 0.0241 (8) | 0.0004 (7) | 0.0011 (6) | −0.0003 (6) |
O11 | 0.0143 (5) | 0.0222 (5) | 0.0248 (6) | −0.0001 (5) | 0.0016 (4) | −0.0053 (4) |
O12 | 0.0164 (5) | 0.0246 (5) | 0.0208 (5) | 0.0011 (5) | −0.0029 (4) | −0.0042 (4) |
O21 | 0.0164 (5) | 0.0339 (6) | 0.0151 (5) | 0.0057 (5) | 0.0014 (4) | 0.0004 (5) |
O31 | 0.0178 (6) | 0.0285 (6) | 0.0324 (7) | −0.0029 (5) | −0.0029 (5) | 0.0134 (6) |
O41 | 0.0136 (5) | 0.0221 (5) | 0.0289 (6) | −0.0003 (5) | 0.0009 (4) | −0.0033 (5) |
O42 | 0.0192 (6) | 0.0281 (6) | 0.0439 (8) | 0.0028 (5) | 0.0010 (5) | 0.0094 (6) |
C11 | 0.0140 (7) | 0.0174 (6) | 0.0162 (7) | 0.0004 (6) | −0.0014 (6) | 0.0052 (6) |
C21 | 0.0150 (7) | 0.0181 (7) | 0.0178 (7) | 0.0008 (6) | 0.0026 (6) | 0.0019 (6) |
C31 | 0.0142 (6) | 0.0241 (7) | 0.0166 (7) | −0.0009 (6) | −0.0001 (5) | 0.0003 (6) |
C41 | 0.0161 (7) | 0.0243 (7) | 0.0131 (7) | −0.0003 (7) | −0.0002 (5) | 0.0003 (6) |
O1W | 0.0167 (6) | 0.0490 (8) | 0.0187 (6) | 0.0028 (6) | −0.0003 (5) | 0.0079 (6) |
Geometric parameters (Å, º) top
O11—C11 | 1.2547 (18) | C5—C6 | 1.359 (3) |
O12—C11 | 1.2499 (18) | C6—C7 | 1.415 (3) |
O21—C21 | 1.4142 (19) | C7—C8 | 1.362 (2) |
O31—C31 | 1.410 (2) | C8—C9 | 1.409 (2) |
O41—C41 | 1.3116 (19) | C9—C10 | 1.416 (2) |
O42—C41 | 1.210 (2) | C2—H2 | 0.9500 |
O21—H21 | 0.86 (3) | C3—H3 | 0.9500 |
O31—H31 | 0.84 (2) | C4—H4 | 0.9500 |
O41—H41 | 0.90 (3) | C5—H5 | 0.9500 |
O1W—H2W | 0.84 (3) | C6—H6 | 0.9500 |
O1W—H1W | 0.82 (2) | C7—H7 | 0.9500 |
N1—C9 | 1.370 (2) | C8—H8 | 0.9500 |
N1—C2 | 1.324 (2) | C11—C21 | 1.542 (2) |
N1—H1 | 0.880 (19) | C21—C31 | 1.524 (2) |
C2—C3 | 1.396 (3) | C31—C41 | 1.531 (2) |
C3—C4 | 1.370 (2) | C21—H21A | 0.970 |
C4—C10 | 1.415 (2) | C31—H31A | 0.970 |
C5—C10 | 1.415 (2) | | |
| | | |
C21—O21—H21 | 107.0 (19) | C10—C5—H5 | 120.00 |
C31—O31—H31 | 108.2 (14) | C6—C5—H5 | 120.00 |
C41—O41—H41 | 119.0 (18) | C7—C6—H6 | 120.00 |
H1W—O1W—H2W | 106 (2) | C5—C6—H6 | 120.00 |
C2—N1—C9 | 123.32 (14) | C6—C7—H7 | 120.00 |
C9—N1—H1 | 119.5 (14) | C8—C7—H7 | 120.00 |
C2—N1—H1 | 117.0 (14) | C7—C8—H8 | 121.00 |
N1—C2—C3 | 120.54 (15) | C9—C8—H8 | 121.00 |
C2—C3—C4 | 118.97 (16) | O11—C11—C21 | 115.98 (13) |
C3—C4—C10 | 120.77 (16) | O12—C11—C21 | 118.17 (13) |
C6—C5—C10 | 120.53 (16) | O11—C11—O12 | 125.84 (14) |
C5—C6—C7 | 120.61 (16) | O21—C21—C11 | 111.54 (12) |
C6—C7—C8 | 120.89 (16) | C11—C21—C31 | 108.68 (12) |
C7—C8—C9 | 118.96 (15) | O21—C21—C31 | 109.51 (12) |
N1—C9—C10 | 118.22 (14) | C21—C31—C41 | 111.87 (12) |
C8—C9—C10 | 121.04 (14) | O31—C31—C41 | 110.47 (13) |
N1—C9—C8 | 120.74 (14) | O31—C31—C21 | 109.73 (12) |
C5—C10—C9 | 117.96 (14) | O41—C41—C31 | 112.52 (13) |
C4—C10—C9 | 118.18 (14) | O42—C41—C31 | 121.12 (14) |
C4—C10—C5 | 123.86 (15) | O41—C41—O42 | 126.33 (14) |
N1—C2—H2 | 120.00 | C11—C21—H21A | 109.00 |
C3—C2—H2 | 120.00 | C31—C21—H21A | 109.00 |
C4—C3—H3 | 121.00 | O21—C21—H21A | 109.00 |
C2—C3—H3 | 121.00 | C21—C31—H31A | 108.00 |
C3—C4—H4 | 120.00 | C41—C31—H31A | 108.00 |
C10—C4—H4 | 120.00 | O31—C31—H31A | 108.00 |
| | | |
C9—N1—C2—C3 | 0.3 (2) | N1—C9—C10—C5 | 179.09 (15) |
C2—N1—C9—C8 | −179.92 (15) | C8—C9—C10—C4 | −180.00 (15) |
C2—N1—C9—C10 | −0.1 (2) | C8—C9—C10—C5 | −1.1 (2) |
N1—C2—C3—C4 | −0.7 (3) | O11—C11—C21—O21 | −170.33 (13) |
C2—C3—C4—C10 | 0.8 (3) | O11—C11—C21—C31 | 68.84 (17) |
C3—C4—C10—C9 | −0.5 (3) | O12—C11—C21—O21 | 8.28 (19) |
C3—C4—C10—C5 | −179.42 (19) | O12—C11—C21—C31 | −112.54 (15) |
C6—C5—C10—C9 | 0.4 (3) | O21—C21—C31—O31 | −70.63 (15) |
C10—C5—C6—C7 | 0.6 (3) | O21—C21—C31—C41 | 52.34 (16) |
C6—C5—C10—C4 | 179.3 (2) | C11—C21—C31—O31 | 51.43 (16) |
C5—C6—C7—C8 | −1.1 (3) | C11—C21—C31—C41 | 174.41 (12) |
C6—C7—C8—C9 | 0.4 (3) | O31—C31—C41—O41 | 178.61 (12) |
C7—C8—C9—C10 | 0.6 (2) | O31—C31—C41—O42 | −3.1 (2) |
C7—C8—C9—N1 | −179.50 (16) | C21—C31—C41—O41 | 56.05 (17) |
N1—C9—C10—C4 | 0.2 (2) | C21—C31—C41—O42 | −125.65 (16) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O12 | 0.880 (19) | 1.797 (19) | 2.6635 (18) | 168 (2) |
O1W—H1W···O12 | 0.82 (2) | 1.88 (2) | 2.6888 (17) | 171 (2) |
O1W—H2W···O21i | 0.84 (3) | 1.95 (3) | 2.7832 (17) | 170 (3) |
O21—H21···O1Wii | 0.86 (3) | 1.81 (3) | 2.6665 (17) | 172 (3) |
O31—H31···O42 | 0.84 (2) | 2.17 (2) | 2.6652 (17) | 117.7 (17) |
O31—H31···O41iii | 0.84 (2) | 2.28 (2) | 2.9480 (17) | 136.4 (19) |
O41—H41···O11iv | 0.90 (3) | 1.61 (3) | 2.5090 (16) | 180 (4) |
C2—H2···O11v | 0.95 | 2.28 | 3.1263 (19) | 148 |
C5—H5···O21vi | 0.95 | 2.59 | 3.452 (2) | 151 |
Symmetry codes: (i) x−1, y, z; (ii) x+1/2, −y+3/2, −z; (iii) −x+2, y−1/2, −z+1/2; (iv) x+1, y, z; (v) −x+1, y−1/2, −z+1/2; (vi) x−1/2, −y+1/2, −z. |
(II) bis(quinolinium-2-carboxylate) (2
R,3
R)-tartaric acid
top
Crystal data top
2C10H7NO2·C4H6O6 | Z = 1 |
Mr = 496.42 | F(000) = 258 |
Triclinic, P1 | Dx = 1.482 Mg m−3 |
Hall symbol: P 1 | Melting point = 469.1–470.7 K |
a = 4.9730 (12) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.446 (3) Å | Cell parameters from 2448 reflections |
c = 11.655 (4) Å | θ = 2.4–27.5° |
α = 100.950 (5)° | µ = 0.12 mm−1 |
β = 98.903 (6)° | T = 130 K |
γ = 106.388 (5)° | Cut block, yellow |
V = 556.2 (3) Å3 | 0.50 × 0.40 × 0.30 mm |
Data collection top
Bruker SMART CCD area-detector diffractometer | 2517 independent reflections |
Radiation source: sealed tube | 2481 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.012 |
ϕ and ω scans | θmax = 27.3°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −6→5 |
Tmin = 0.95, Tmax = 0.97 | k = −13→13 |
3500 measured reflections | l = −9→15 |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.105 | w = 1/[σ2(Fo2) + (0.0695P)2 + 0.0367P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2517 reflections | Δρmax = 0.17 e Å−3 |
321 parameters | Δρmin = −0.26 e Å−3 |
3 restraints | Absolute structure: Flack (1983), ? Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.4 (6) |
Crystal data top
2C10H7NO2·C4H6O6 | γ = 106.388 (5)° |
Mr = 496.42 | V = 556.2 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 4.9730 (12) Å | Mo Kα radiation |
b = 10.446 (3) Å | µ = 0.12 mm−1 |
c = 11.655 (4) Å | T = 130 K |
α = 100.950 (5)° | 0.50 × 0.40 × 0.30 mm |
β = 98.903 (6)° | |
Data collection top
Bruker SMART CCD area-detector diffractometer | 2517 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | 2481 reflections with I > 2σ(I) |
Tmin = 0.95, Tmax = 0.97 | Rint = 0.012 |
3500 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.105 | Δρmax = 0.17 e Å−3 |
S = 1.06 | Δρmin = −0.26 e Å−3 |
2517 reflections | Absolute structure: Flack (1983), ? Friedel pairs |
321 parameters | Absolute structure parameter: −0.4 (6) |
3 restraints | |
Special details top
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O22 | 0.8830 (4) | 0.84011 (17) | 0.65635 (18) | 0.0278 (5) | |
O23 | 1.0568 (4) | 1.07037 (17) | 0.68872 (17) | 0.0272 (5) | |
N1 | 0.4157 (4) | 0.8328 (2) | 0.50139 (18) | 0.0191 (6) | |
C2 | 0.6231 (5) | 0.9537 (2) | 0.5486 (2) | 0.0186 (6) | |
C3 | 0.6038 (5) | 1.0720 (2) | 0.5134 (2) | 0.0211 (7) | |
C4 | 0.3654 (5) | 1.0638 (2) | 0.4314 (2) | 0.0205 (7) | |
C5 | −0.1102 (5) | 0.9204 (2) | 0.2980 (2) | 0.0217 (7) | |
C6 | −0.3143 (5) | 0.7941 (3) | 0.2527 (2) | 0.0242 (7) | |
C7 | −0.2775 (5) | 0.6769 (3) | 0.2890 (2) | 0.0269 (7) | |
C8 | −0.0385 (5) | 0.6871 (2) | 0.3708 (2) | 0.0253 (7) | |
C9 | 0.1737 (5) | 0.8178 (2) | 0.4180 (2) | 0.0198 (7) | |
C10 | 0.1440 (5) | 0.9363 (2) | 0.3823 (2) | 0.0189 (7) | |
C22 | 0.8780 (5) | 0.9529 (2) | 0.6402 (2) | 0.0204 (6) | |
O22A | 0.3800 (4) | 0.57270 (18) | 0.52665 (19) | 0.0323 (6) | |
O23A | 0.1239 (4) | 0.36225 (17) | 0.53635 (16) | 0.0251 (5) | |
N1A | 0.8137 (4) | 0.5796 (2) | 0.69666 (18) | 0.0186 (6) | |
C2A | 0.5888 (5) | 0.4654 (2) | 0.6597 (2) | 0.0187 (6) | |
C3A | 0.5862 (5) | 0.3509 (2) | 0.7063 (2) | 0.0199 (7) | |
C4A | 0.8187 (5) | 0.3582 (2) | 0.7903 (2) | 0.0217 (7) | |
C5A | 1.3026 (5) | 0.4952 (3) | 0.9195 (2) | 0.0237 (7) | |
C6A | 1.5259 (5) | 0.6165 (3) | 0.9529 (2) | 0.0269 (8) | |
C7A | 1.5176 (5) | 0.7286 (3) | 0.9016 (2) | 0.0276 (7) | |
C8A | 1.2833 (5) | 0.7186 (2) | 0.8169 (2) | 0.0235 (7) | |
C9A | 1.0518 (5) | 0.5944 (2) | 0.7816 (2) | 0.0191 (6) | |
C10A | 1.0572 (5) | 0.4807 (2) | 0.8309 (2) | 0.0206 (7) | |
C22A | 0.3413 (5) | 0.4680 (2) | 0.5650 (2) | 0.0203 (6) | |
O11 | 0.4333 (4) | 0.10178 (19) | −0.12725 (16) | 0.0269 (5) | |
O12 | 0.0776 (4) | 0.01390 (19) | −0.03946 (17) | 0.0303 (5) | |
O21 | 0.4331 (4) | 0.04090 (18) | 0.16338 (17) | 0.0241 (5) | |
O31 | 0.4820 (4) | 0.32587 (18) | 0.12343 (17) | 0.0245 (5) | |
O41 | 0.7885 (4) | 0.34036 (18) | 0.33864 (16) | 0.0231 (5) | |
O42 | 1.0930 (4) | 0.24772 (19) | 0.26005 (17) | 0.0287 (5) | |
C11 | 0.3287 (5) | 0.0675 (2) | −0.0378 (2) | 0.0209 (6) | |
C21 | 0.5594 (5) | 0.1006 (2) | 0.0771 (2) | 0.0201 (6) | |
C31 | 0.6905 (5) | 0.2591 (2) | 0.1253 (2) | 0.0205 (7) | |
C41 | 0.8806 (5) | 0.2837 (2) | 0.2495 (2) | 0.0198 (6) | |
H1 | 0.439 | 0.753 | 0.516 | 0.022* | |
H3 | 0.75400 | 1.15720 | 0.54580 | 0.0250* | |
H4 | 0.34920 | 1.14390 | 0.40760 | 0.0250* | |
H5 | −0.13800 | 0.99810 | 0.27310 | 0.0260* | |
H6 | −0.48260 | 0.78430 | 0.19600 | 0.0290* | |
H7 | −0.42290 | 0.59300 | 0.25620 | 0.0320* | |
H8 | −0.01690 | 0.60770 | 0.39430 | 0.0300* | |
H1A | 0.805 | 0.644 | 0.668 | 0.017* | |
H3A | 0.42500 | 0.26930 | 0.67990 | 0.0240* | |
H4A | 0.82020 | 0.28070 | 0.82160 | 0.0260* | |
H5A | 1.31140 | 0.42150 | 0.95510 | 0.0280* | |
H6A | 1.69010 | 0.62590 | 1.01170 | 0.0320* | |
H7A | 1.67610 | 0.81140 | 0.92620 | 0.0330* | |
H8A | 1.27710 | 0.79370 | 0.78280 | 0.0280* | |
H11 | 0.284 | 0.090 | −0.186 | 0.045* | |
H21 | 0.268 | 0.035 | 0.150 | 0.051* | |
H31 | 0.375 | 0.298 | 0.167 | 0.048* | |
H41 | 0.917 | 0.345 | 0.406 | 0.053* | |
H211 | 0.71100 | 0.06230 | 0.05910 | 0.0240* | |
H311 | 0.81620 | 0.29330 | 0.07330 | 0.0250* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O22 | 0.0282 (9) | 0.0181 (8) | 0.0305 (10) | 0.0033 (7) | −0.0048 (7) | 0.0058 (7) |
O23 | 0.0265 (9) | 0.0187 (8) | 0.0257 (10) | −0.0032 (7) | −0.0055 (7) | 0.0052 (7) |
N1 | 0.0195 (10) | 0.0150 (9) | 0.0204 (10) | 0.0041 (8) | 0.0015 (8) | 0.0030 (8) |
C2 | 0.0183 (11) | 0.0191 (11) | 0.0163 (11) | 0.0043 (9) | 0.0043 (9) | 0.0014 (9) |
C3 | 0.0249 (12) | 0.0158 (11) | 0.0192 (12) | 0.0032 (9) | 0.0055 (9) | 0.0006 (9) |
C4 | 0.0232 (11) | 0.0173 (11) | 0.0219 (12) | 0.0077 (9) | 0.0064 (9) | 0.0038 (9) |
C5 | 0.0246 (12) | 0.0227 (11) | 0.0193 (12) | 0.0117 (10) | 0.0035 (9) | 0.0038 (9) |
C6 | 0.0204 (12) | 0.0287 (12) | 0.0201 (13) | 0.0081 (10) | 0.0001 (9) | 0.0011 (10) |
C7 | 0.0236 (13) | 0.0217 (12) | 0.0262 (13) | 0.0020 (10) | −0.0024 (10) | −0.0013 (10) |
C8 | 0.0267 (13) | 0.0178 (11) | 0.0268 (13) | 0.0044 (10) | 0.0008 (10) | 0.0029 (10) |
C9 | 0.0192 (11) | 0.0201 (11) | 0.0184 (12) | 0.0058 (9) | 0.0032 (9) | 0.0022 (9) |
C10 | 0.0200 (11) | 0.0188 (11) | 0.0174 (12) | 0.0063 (9) | 0.0050 (9) | 0.0023 (9) |
C22 | 0.0200 (11) | 0.0207 (11) | 0.0172 (11) | 0.0031 (9) | 0.0034 (8) | 0.0030 (9) |
O22A | 0.0322 (10) | 0.0190 (8) | 0.0353 (11) | 0.0007 (7) | −0.0098 (8) | 0.0080 (8) |
O23A | 0.0217 (8) | 0.0215 (8) | 0.0231 (9) | −0.0025 (7) | −0.0026 (7) | 0.0048 (7) |
N1A | 0.0204 (10) | 0.0148 (9) | 0.0198 (11) | 0.0052 (8) | 0.0030 (8) | 0.0043 (8) |
C2A | 0.0186 (11) | 0.0180 (11) | 0.0166 (11) | 0.0043 (9) | 0.0044 (8) | −0.0005 (8) |
C3A | 0.0183 (11) | 0.0150 (10) | 0.0232 (13) | 0.0024 (8) | 0.0051 (9) | 0.0014 (9) |
C4A | 0.0250 (12) | 0.0191 (11) | 0.0233 (12) | 0.0084 (9) | 0.0083 (9) | 0.0062 (9) |
C5A | 0.0243 (12) | 0.0266 (12) | 0.0209 (12) | 0.0117 (10) | 0.0039 (9) | 0.0034 (10) |
C6A | 0.0233 (13) | 0.0335 (14) | 0.0212 (13) | 0.0128 (11) | 0.0004 (10) | −0.0014 (11) |
C7A | 0.0222 (12) | 0.0227 (12) | 0.0290 (14) | 0.0023 (10) | 0.0016 (10) | −0.0040 (10) |
C8A | 0.0224 (12) | 0.0184 (11) | 0.0261 (13) | 0.0044 (9) | 0.0040 (10) | 0.0018 (9) |
C9A | 0.0185 (11) | 0.0182 (10) | 0.0180 (12) | 0.0050 (9) | 0.0032 (9) | 0.0004 (9) |
C10A | 0.0198 (11) | 0.0225 (12) | 0.0201 (12) | 0.0095 (9) | 0.0056 (9) | 0.0018 (9) |
C22A | 0.0210 (11) | 0.0181 (10) | 0.0188 (11) | 0.0064 (9) | 0.0012 (9) | −0.0001 (9) |
O11 | 0.0222 (9) | 0.0322 (10) | 0.0201 (9) | 0.0004 (7) | 0.0009 (7) | 0.0074 (8) |
O12 | 0.0184 (8) | 0.0362 (10) | 0.0270 (10) | −0.0007 (8) | 0.0024 (7) | 0.0025 (8) |
O21 | 0.0244 (9) | 0.0238 (8) | 0.0234 (9) | 0.0051 (7) | 0.0055 (7) | 0.0081 (7) |
O31 | 0.0249 (9) | 0.0233 (8) | 0.0260 (9) | 0.0102 (7) | 0.0021 (7) | 0.0066 (7) |
O41 | 0.0216 (8) | 0.0237 (8) | 0.0193 (9) | 0.0055 (7) | −0.0002 (7) | 0.0007 (7) |
O42 | 0.0229 (9) | 0.0355 (9) | 0.0283 (10) | 0.0119 (8) | 0.0031 (7) | 0.0074 (8) |
C11 | 0.0210 (11) | 0.0166 (10) | 0.0221 (12) | 0.0052 (9) | 0.0024 (9) | 0.0007 (9) |
C21 | 0.0206 (11) | 0.0203 (11) | 0.0194 (11) | 0.0065 (9) | 0.0052 (9) | 0.0042 (9) |
C31 | 0.0179 (11) | 0.0200 (11) | 0.0209 (12) | 0.0027 (8) | 0.0032 (9) | 0.0048 (9) |
C41 | 0.0174 (10) | 0.0159 (10) | 0.0227 (12) | 0.0021 (8) | 0.0011 (8) | 0.0044 (9) |
Geometric parameters (Å, º) top
O22—C22 | 1.234 (3) | C9—C10 | 1.417 (3) |
O23—C22 | 1.258 (3) | C3—H3 | 0.9500 |
O22A—C22A | 1.236 (3) | C4—H4 | 0.9500 |
O23A—C22A | 1.255 (3) | C5—H5 | 0.9500 |
O11—C11 | 1.300 (3) | C6—H6 | 0.9500 |
O12—C11 | 1.211 (3) | C7—H7 | 0.9300 |
O21—C21 | 1.417 (3) | C8—H8 | 0.9500 |
O31—C31 | 1.403 (3) | C2A—C3A | 1.402 (3) |
O41—C41 | 1.306 (3) | C2A—C22A | 1.531 (3) |
O42—C41 | 1.214 (3) | C3A—C4A | 1.369 (3) |
O11—H11 | 0.89 | C4A—C10A | 1.417 (3) |
O21—H21 | 0.79 | C5A—C6A | 1.369 (4) |
O31—H31 | 0.82 | C5A—C10A | 1.423 (3) |
O41—H41 | 0.92 | C6A—C7A | 1.420 (4) |
N1—C9 | 1.375 (3) | C7A—C8A | 1.371 (3) |
N1—C2 | 1.337 (3) | C8A—C9A | 1.409 (3) |
N1—H1 | 0.92 | C9A—C10A | 1.419 (3) |
N1A—C9A | 1.372 (3) | C3A—H3A | 0.9500 |
N1A—C2A | 1.328 (3) | C4A—H4A | 0.9500 |
N1A—H1A | 0.81 | C5A—H5A | 0.9500 |
C2—C22 | 1.529 (3) | C6A—H6A | 0.9500 |
C2—C3 | 1.397 (3) | C7A—H7A | 0.9500 |
C3—C4 | 1.374 (3) | C8A—H8A | 0.9500 |
C4—C10 | 1.415 (3) | C11—C21 | 1.534 (3) |
C5—C6 | 1.365 (4) | C21—C31 | 1.551 (3) |
C5—C10 | 1.423 (3) | C31—C41 | 1.534 (3) |
C6—C7 | 1.418 (4) | C21—H211 | 0.9800 |
C7—C8 | 1.368 (4) | C31—H311 | 0.9800 |
C8—C9 | 1.415 (3) | | |
| | | |
C11—O11—H11 | 107 | C3A—C4A—C10A | 120.4 (2) |
C21—O21—H21 | 108 | C6A—C5A—C10A | 119.3 (2) |
C31—O31—H31 | 109 | C5A—C6A—C7A | 121.5 (2) |
C41—O41—H41 | 105 | C6A—C7A—C8A | 120.7 (2) |
C2—N1—C9 | 122.7 (2) | C7A—C8A—C9A | 118.5 (2) |
C2—N1—H1 | 121 | N1A—C9A—C10A | 117.9 (2) |
C9—N1—H1 | 116 | N1A—C9A—C8A | 120.5 (2) |
C2A—N1A—C9A | 123.3 (2) | C8A—C9A—C10A | 121.7 (2) |
C2A—N1A—H1A | 117 | C5A—C10A—C9A | 118.3 (2) |
C9A—N1A—H1A | 120 | C4A—C10A—C5A | 122.9 (2) |
N1—C2—C3 | 120.7 (2) | C4A—C10A—C9A | 118.8 (2) |
C3—C2—C22 | 123.1 (2) | O23A—C22A—C2A | 115.13 (19) |
N1—C2—C22 | 116.18 (19) | O22A—C22A—O23A | 128.4 (2) |
C2—C3—C4 | 119.3 (2) | O22A—C22A—C2A | 116.5 (2) |
C3—C4—C10 | 120.1 (2) | C2A—C3A—H3A | 120.00 |
C6—C5—C10 | 120.4 (2) | C4A—C3A—H3A | 120.00 |
C5—C6—C7 | 120.7 (2) | C3A—C4A—H4A | 120.00 |
C6—C7—C8 | 121.2 (2) | C10A—C4A—H4A | 120.00 |
C7—C8—C9 | 118.4 (2) | C6A—C5A—H5A | 120.00 |
N1—C9—C8 | 120.2 (2) | C10A—C5A—H5A | 120.00 |
N1—C9—C10 | 118.1 (2) | C7A—C6A—H6A | 119.00 |
C8—C9—C10 | 121.7 (2) | C5A—C6A—H6A | 119.00 |
C4—C10—C9 | 119.1 (2) | C6A—C7A—H7A | 120.00 |
C4—C10—C5 | 123.2 (2) | C8A—C7A—H7A | 120.00 |
C5—C10—C9 | 117.7 (2) | C9A—C8A—H8A | 121.00 |
O22—C22—C2 | 117.2 (2) | C7A—C8A—H8A | 121.00 |
O23—C22—C2 | 113.87 (19) | O11—C11—C21 | 113.3 (2) |
O22—C22—O23 | 129.0 (2) | O12—C11—C21 | 120.5 (2) |
C4—C3—H3 | 120.00 | O11—C11—O12 | 126.2 (2) |
C2—C3—H3 | 120.00 | O21—C21—C11 | 109.3 (2) |
C10—C4—H4 | 120.00 | O21—C21—C31 | 110.39 (18) |
C3—C4—H4 | 120.00 | C11—C21—C31 | 109.14 (18) |
C6—C5—H5 | 120.00 | O31—C31—C21 | 112.9 (2) |
C10—C5—H5 | 120.00 | O31—C31—C41 | 114.68 (19) |
C7—C6—H6 | 119.00 | C21—C31—C41 | 105.98 (17) |
C5—C6—H6 | 120.00 | O41—C41—C31 | 114.6 (2) |
C8—C7—H7 | 121.00 | O42—C41—C31 | 120.6 (2) |
C6—C7—H7 | 118.00 | O41—C41—O42 | 124.8 (2) |
C9—C8—H8 | 121.00 | O21—C21—H211 | 109.00 |
C7—C8—H8 | 120.00 | C11—C21—H211 | 109.00 |
C3A—C2A—C22A | 123.5 (2) | C31—C21—H211 | 109.00 |
N1A—C2A—C3A | 120.5 (2) | O31—C31—H311 | 108.00 |
N1A—C2A—C22A | 116.07 (19) | C21—C31—H311 | 108.00 |
C2A—C3A—C4A | 119.2 (2) | C41—C31—H311 | 108.00 |
| | | |
C9—N1—C2—C3 | −0.8 (4) | N1A—C2A—C22A—O22A | 4.1 (3) |
C9—N1—C2—C22 | 180.0 (2) | N1A—C2A—C22A—O23A | −176.0 (2) |
C2—N1—C9—C8 | 179.8 (2) | C3A—C2A—C22A—O22A | −175.7 (2) |
C2—N1—C9—C10 | −0.7 (3) | C3A—C2A—C22A—O23A | 4.3 (3) |
C2A—N1A—C9A—C8A | −180.0 (2) | C2A—C3A—C4A—C10A | 0.9 (4) |
C2A—N1A—C9A—C10A | 0.7 (3) | C3A—C4A—C10A—C5A | 178.9 (2) |
C9A—N1A—C2A—C3A | −0.8 (4) | C3A—C4A—C10A—C9A | −0.9 (4) |
C9A—N1A—C2A—C22A | 179.5 (2) | C10A—C5A—C6A—C7A | 0.4 (4) |
C3—C2—C22—O22 | −173.8 (2) | C6A—C5A—C10A—C4A | 179.2 (2) |
N1—C2—C22—O22 | 5.4 (3) | C6A—C5A—C10A—C9A | −1.0 (4) |
N1—C2—C22—O23 | −174.9 (2) | C5A—C6A—C7A—C8A | 0.3 (4) |
N1—C2—C3—C4 | 1.5 (4) | C6A—C7A—C8A—C9A | −0.3 (4) |
C22—C2—C3—C4 | −179.3 (2) | C7A—C8A—C9A—N1A | −179.7 (2) |
C3—C2—C22—O23 | 5.8 (3) | C7A—C8A—C9A—C10A | −0.4 (4) |
C2—C3—C4—C10 | −0.8 (4) | N1A—C9A—C10A—C4A | 0.1 (3) |
C3—C4—C10—C9 | −0.7 (4) | N1A—C9A—C10A—C5A | −179.7 (2) |
C3—C4—C10—C5 | 179.3 (2) | C8A—C9A—C10A—C4A | −179.2 (2) |
C6—C5—C10—C4 | 179.1 (2) | C8A—C9A—C10A—C5A | 1.0 (4) |
C6—C5—C10—C9 | −0.9 (4) | O11—C11—C21—O21 | −170.93 (19) |
C10—C5—C6—C7 | 0.2 (4) | O11—C11—C21—C31 | 68.3 (3) |
C5—C6—C7—C8 | 0.5 (4) | O12—C11—C21—O21 | 8.7 (3) |
C6—C7—C8—C9 | −0.5 (4) | O12—C11—C21—C31 | −112.2 (2) |
C7—C8—C9—N1 | 179.3 (2) | O21—C21—C31—O31 | −75.5 (2) |
C7—C8—C9—C10 | −0.2 (4) | O21—C21—C31—C41 | 50.8 (3) |
N1—C9—C10—C5 | −178.6 (2) | C11—C21—C31—O31 | 44.6 (3) |
C8—C9—C10—C4 | −179.1 (2) | C11—C21—C31—C41 | 170.9 (2) |
C8—C9—C10—C5 | 0.9 (4) | O31—C31—C41—O41 | 12.6 (3) |
N1—C9—C10—C4 | 1.4 (3) | O31—C31—C41—O42 | −169.6 (2) |
N1A—C2A—C3A—C4A | −0.1 (4) | C21—C31—C41—O41 | −112.7 (2) |
C22A—C2A—C3A—C4A | 179.6 (2) | C21—C31—C41—O42 | 65.2 (3) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O22 | 0.92 | 2.36 | 2.686 (3) | 101 |
N1—H1···O22A | 0.92 | 1.85 | 2.747 (3) | 164 |
N1A—H1A···O22 | 0.81 | 2.01 | 2.784 (3) | 159 |
N1A—H1A···O22A | 0.81 | 2.30 | 2.668 (3) | 108 |
O11—H11···O23i | 0.89 | 1.64 | 2.521 (3) | 168 |
O21—H21···O12 | 0.79 | 2.21 | 2.639 (3) | 115 |
O31—H31···O42ii | 0.82 | 1.92 | 2.739 (3) | 172 |
O41—H41···O23Aiii | 0.92 | 1.65 | 2.557 (3) | 173 |
C3—H3···O23Aiv | 0.95 | 2.43 | 3.318 (3) | 155 |
C3A—H3A···O23v | 0.95 | 2.38 | 3.288 (3) | 159 |
C4—H4···O42vi | 0.95 | 2.56 | 3.406 (3) | 148 |
C4A—H4A···O11vii | 0.95 | 2.51 | 3.228 (3) | 132 |
C5—H5···O21vi | 0.95 | 2.51 | 3.235 (3) | 133 |
C5—H5···O42vi | 0.95 | 2.58 | 3.416 (3) | 147 |
C5A—H5A···O31viii | 0.95 | 2.50 | 3.377 (3) | 153 |
C7A—H7A···O12ix | 0.95 | 2.38 | 3.325 (4) | 172 |
C8—H8···O22A | 0.95 | 2.47 | 3.181 (3) | 132 |
C8—H8···O41ii | 0.95 | 2.60 | 3.410 (3) | 144 |
C8A—H8A···O22 | 0.95 | 2.48 | 3.202 (3) | 132 |
C21—H211···O12iii | 0.98 | 2.42 | 3.353 (3) | 159 |
Symmetry codes: (i) x−1, y−1, z−1; (ii) x−1, y, z; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x−1, y−1, z; (vi) x−1, y+1, z; (vii) x, y, z+1; (viii) x+1, y, z+1; (ix) x+2, y+1, z+1. |
Experimental details
| (I) | (II) |
Crystal data |
Chemical formula | C9H8N+·C4H5O6−·H2O | 2C10H7NO2·C4H6O6 |
Mr | 297.26 | 496.42 |
Crystal system, space group | Orthorhombic, P212121 | Triclinic, P1 |
Temperature (K) | 130 | 130 |
a, b, c (Å) | 7.2546 (6), 9.4922 (8), 19.4571 (16) | 4.9730 (12), 10.446 (3), 11.655 (4) |
α, β, γ (°) | 90, 90, 90 | 100.950 (5), 98.903 (6), 106.388 (5) |
V (Å3) | 1339.86 (19) | 556.2 (3) |
Z | 4 | 1 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.12 | 0.12 |
Crystal size (mm) | 0.50 × 0.20 × 0.20 | 0.50 × 0.40 × 0.30 |
|
Data collection |
Diffractometer | Bruker SMART CCD area-detector diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1999) | Multi-scan (SADABS; Bruker, 1999) |
Tmin, Tmax | 0.88, 1.00 | 0.95, 0.97 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8431, 1795, 1668 | 3500, 2517, 2481 |
Rint | 0.024 | 0.012 |
(sin θ/λ)max (Å−1) | 0.650 | 0.645 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.088, 1.04 | 0.042, 0.105, 1.06 |
No. of reflections | 1795 | 2517 |
No. of parameters | 214 | 321 |
No. of restraints | 0 | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.25, −0.19 | 0.17, −0.26 |
Absolute structure | Flack (1983), ? Friedel pairs? | Flack (1983), ? Friedel pairs |
Absolute structure parameter | −0.2 (9) | −0.4 (6) |
Hydrogen-bond geometry (Å, º) for (I) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O12 | 0.880 (19) | 1.797 (19) | 2.6635 (18) | 168 (2) |
O1W—H1W···O12 | 0.82 (2) | 1.88 (2) | 2.6888 (17) | 171 (2) |
O1W—H2W···O21i | 0.84 (3) | 1.95 (3) | 2.7832 (17) | 170 (3) |
O21—H21···O1Wii | 0.86 (3) | 1.81 (3) | 2.6665 (17) | 172 (3) |
O31—H31···O42 | 0.84 (2) | 2.17 (2) | 2.6652 (17) | 117.7 (17) |
O31—H31···O41iii | 0.84 (2) | 2.28 (2) | 2.9480 (17) | 136.4 (19) |
O41—H41···O11iv | 0.90 (3) | 1.61 (3) | 2.5090 (16) | 180 (4) |
Symmetry codes: (i) x−1, y, z; (ii) x+1/2, −y+3/2, −z; (iii) −x+2, y−1/2, −z+1/2; (iv) x+1, y, z. |
Hydrogen-bond geometry (Å, º) for (II) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O22 | 0.92 | 2.36 | 2.686 (3) | 101 |
N1—H1···O22A | 0.92 | 1.85 | 2.747 (3) | 164 |
N1A—H1A···O22 | 0.81 | 2.01 | 2.784 (3) | 159 |
N1A—H1A···O22A | 0.81 | 2.30 | 2.668 (3) | 108 |
O11—H11···O23i | 0.89 | 1.64 | 2.521 (3) | 168 |
O21—H21···O12 | 0.79 | 2.21 | 2.639 (3) | 115 |
O31—H31···O42ii | 0.82 | 1.92 | 2.739 (3) | 172 |
O41—H41···O23Aiii | 0.92 | 1.65 | 2.557 (3) | 173 |
Symmetry codes: (i) x−1, y−1, z−1; (ii) x−1, y, z; (iii) x+1, y, z. |
Table 3. Selected torsion angles (°) within the tartrate residues of (I) and (II) compared with D-tartaric acid (D-TART) (Okaya et al., 1966), DL-tartaric acid (DL-TART) (Luner et al., 2002) and in the 1,10-phenanthroline-L-tartaric compound (PHENTART) (Wang et al., 2006) topAngle | (I) | (II) | D-TART | DL-TART | PHENTART |
C11—C21—C31—C41 | 174.41 (12) | 170.9 (2) | 175.6 (16) | 177.6 (1) | 174.3 (3) |
O11—C11—C21—O21 | -170.33 (12) | -170.93 (19) | 174.5 (16) | -170.3 (1) | -177.2 (3) |
O21—C21—C31—O31 | -70.63(1 | -75.5 (2) | 58 (2) | -65.2 (1) | -64.1 (4) |
O31—C31—C41—O41 | 178.61 (12) | -169.6 (2) | 177.6 (17) | -170.3 (1) | 179.6 (3) |
Tartaric acid represents a relatively strong diprotic chiral α-hydroxy acid (pKa1, 2.93; pKa2, 4.23) and therefore is potentially capable of forming both 1:1 and 1:2 proton-transfer salts with most Lewis bases. However, with stoichiometric control, it is possible to selectively form 1:1 hydrogen tartrates and the crystal structures of a large number of these 1:1 salts have been reported, particularly since these compounds usually have good crystal morphology, allowing structure determination by single-crystal X-ray analysis which is often not possible with the parent Lewis base. Applications have been with drugs such as epinephrine (Carlström, 1973), dextromoramide (Bye, 1975), amosulalol (Furuya et al., 1989), alprenolol (Główka & Codding, 1989), phendimetrazine (Glaser et al., 1994) and tolterodine (Košutić-Hulita & Žegarac, 2005), as well as natural products such as alkaloids, e.g. strychnine (Gould et al., 1987), brucine (Smith, Wermuth & White, 2006), quinine (Ryttersgaard & Larsen, 2004), cinchonine (Puliti et al., 2001), cinchonidine (Ryttersgaard & Larsen, 2003; Zhang et al., 2003) and quincoridine (Kania et al., 2004), and amino acids e.g. L-alanine (Rajagopal et al., 2002), L-proline (Subha Nandhini et al., 2001), D–, L– and DL-histidine (Marchewska et al., 2003; Rajagopal et al., 2003; Johnson & Feeder, 2004a,b,c) and L-lysine (Debrus et al., 2005).
Because of the ready availability of L-(+)-tartaric acid which has the confirmed (2R,3R) absolute configuration, it has been very useful for both resolution and the crystallographic determination of absolute configuration in chiral molecular species e.g. with the anticholinergic agent R-(-)-1,1-diphenyl-3- piperidinobutan-1-ol (Schjelderup et al., 1990). More recently, its utility as an agent for the introduction of chirality in achiral organic compounds for the generation of crystalline materials with potentially useful nonlinear optical properties has been explored (Aakeröy et al., 1992; Fuller et al., 1995; Marchewska et al., 2003; Debrus et al., 2005; Manivannan et al., 2006 or ?? 2005).
We have found that 1:1 stoichiometric interactions of the relatively strong carboxylic acids 5-sulfosalicylic acid (5-SSA) (Smith et al., 2004) and 3,5-dinitrosalicylic acid (DNSA) (Smith, Wermuth, Healy & White, 2006) with a series of bicyclic heteroaromatic amines including quinoline, tetrahydroquinoline, 8-hydroxyquinoline, 8-aminoquinoline and quinaldic acid (quinoline-2-carboxylic acid, QA) mostly gave 1:1 proton-transfer compounds. The only exception was with quinaldic acid and 5-SSA, where an adduct salt compound [QA+.5-SSA−·QA] was found. In this structure, a unusual head-to-tail hydrogen-bonded cyclic homodimer was present [graph set R22(10); Etter, 1991] involving two QA species, one protonated, the other zwitterionic. With quinaldic acid itself, the crystal structure (Dobrzyńska & Jerzykiewicz, 2004) showed the presence of a tautomeric mixture of both zwitterionic and normal acid molecules with the zwitterions forming a similar homodimer. This was not the case with DNSA, where a conventional 1:1 product was formed with the QA molecule fully protonated.
The 1:1 reaction of these heteroaromatic amines with L-tartaric acid might be expected to give similar quinolinium hydrogen L-tartrates. Although the structures of the 1:1 tartrate salts of the previously mentioned quinine alkaloids are known (Puliti et al., 2001; Zhang et al., 2003; Ryttersgaard & Larsen, 2003, 2004; Kania et al., 2004), those with the simple analogues of quinoline are not common. The only other tartrates of simple polycyclic heteroaromatic amines are those with benzimidazole (proton-transfer) (Aakeröy & Hitchcock, 1994) and the non-transfer 1:1 adduct with 1,10-phenanthroline (Wang et al., 2006). Our 1:1 stoichiometric reaction of L-tartaric acid with quinoline (pKa = 4.81) resulted in the isolation of the expected proton-transfer compound, a 1:1 hydrate, quinolinium hydrogen (2R,3R)-tartrate monohydrate, (I). However, with quinaldic acid, the adduct quinolinium-2-carboxylate–(2R,3R)-tartaric acid (2/1), (II), was formed. This compound differs from the 5-SSA–QA compound with the absence of proton transfer, the two QA molecules being zwitterionic. The structures of both (I) and (II) are reported here. With the other quinoline analogues 8-hydroxyquinoline and 8-aminoquinoline, the non-crystalline products obtained with L-tartaric acid did not allow a full series structural comparison to be made with the quinoline salts of DNSA and 5-SSA.
Compound (I) shows the presence of single proton transfer from L-tartaric acid to the hetero N atom of quinoline (Fig. 1). The hydrogen tartrate anions and the water molecules of solvation then form an unusual three-dimensional hydrogen-bonded honeycomb substructure through carboxylate interactions with other tartrate carboxylic acid and hydroxyl groups, as well as with the water molecule (Table 1). This structure extends down the a cell direction and accommodates the columns of π-stacked quinolinium cations within the channels (Figs. 2 and 3). The ring centroid separations for the alternating six-membered (N1/C2–C4/C10/C9 and C5–C10) ring systems of the quinolinium ions within the stacks are 3.7555 (11) and 3.7591 (11) Å, with an inter-ring dihedral angle of 4.22 (1)°. The cation stacks are peripherally hydrogen bonded to a carboxylate O-atom acceptor within the substructure through a single strong link [N+—H···O12, 2.6635 (18) Å]. Only two weak aromatic C—H···O interactions are present in the structure which in most respects is similar to that reported for the compound of L-tartaric acid with 1,10-phenanthroline (Wang et al., 2006).
With compound (II) (Fig. 4), surprisingly no proton transfer has occurred, the two QA species are zwitterionic, forming a pseudo-centrosymmetric head-to-tail hydrogen-bonded cyclic dimer similar to that found in the structure of the acid itself (Dobrzyńska & Jerzykiewicz, 2004). These R22(10) dimers are essentially planar [the torsion angles are N1—C2—C22—O22 = 5.4 (3)° and N1A—C2A—C22A—O22A = 4.1 (3)°], and are stabilized by both intermolecular and intramolecular N+—H···O interactions [N1···O22A = 2.747 (3) Å, N1A···O22 = 2.784 (3) Å, N1···O22 = 2.686 (3) Å and N1A···O22A = 2.668 (3) Å; Table 2], as well as longer aromatic C—H···O interactions [C8—H8···O22A = 3.181 (3) Å and C8A—H8A···O22 = 3.202 (3) Å]. This is also similar to the dimers found in the [QAH+.5-SSA−·QA] adduct, except that in this structure one of the QA species is fully protonated (Smith et al., 2004). It is therefore assumed that the absence of proton transfer in (II) is because of the stability of this zwitterionic dimer despite the pKa difference for QA (pKa1 = 4.96; pKa2 = 9.02) versus tartaric acid. In (II), these dimers are linked through the tartaric acid molecules by head-to-tail heteromolecular carboxylic acid–carboxyl interactions (Table 2) which, together with homomolecular hydroxyl–carboxyl extensions, give a two-dimensional network structure (Fig. 5). Contrasting with the structure of (I) there are also numerous aromatic C—H···O associations with an absence of any π–π interactions between the QA molecules.
The accepted (2R,3R) absolute configuration for the L-tartrate residues in both (I) and (II) (Waser, 1949; Bijvoet et al., 1951; Hope & de la Camp, 1972) was assumed and in both compounds these adopt the common extended conformation which is similar to those of the parent tartaric acid (Stern & Beevers, 1950; Okaya et al., 1966; Albertsson et al., 1979), the L-acid in the anhydrous DL-acid (Luner et al., 2002) (Table 3) and in the 1:1 compound with 1,10-phenanthroline (Wang et al., 2006). However, unlike these, in both (I) and (II), a single hydroxyl–carboxyl intramolecular hydrogen bond is present [O—H···O = 2.6652 (17) and 2.639 (3) Å respectively].
While the absence of proton transfer in (II) may be explained in terms of the presence of the QA zwitterion dimer, the absence of transfer in the L-tartaric acid–1,10-phenanthroline compound reported by Wang et al. (2006) when compared with the structurally similar (I), is not understood, considering that the pKa value for 1,10-phenanthroline (4.86) is very close to that of quinoline (4.81).