Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112019312/sf3173sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270112019312/sf3173IIsup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270112019312/sf3173IIIsup3.hkl |
CCDC references: 889361; 889362
6-Dimethylamino-6-methyl-3-(trimethylsilyl)fulvene, (I), was prepared as a pale-yellow solid in high yield by the successive reaction of 6-dimethylamino-6-methylfulvene, which was prepared as described in the literature (Bai et al., 1999; Duan et al., 2007), with equal equivalents of lithium diisopropylamide (LDA) and Me3SiCl. Crystallization from hexane yielded yellow needles of (I) (78%); m.p. = 369–371 K. 1H NMR (300 MHz, CDCl3, δ, p.p.m.): 6.73–6.33 (m, 3H, Cp-H), 3.27, 3.25 [d, 6H, N(CH3)2], 2.41, 2.38 (d, 3H, CH3), 0.09 [s, 9H, Si(CH3)3].
LDA (0.802 g, 7.48 mmol) was added to a diethyl ether solution (30 ml) of (I) (1.552 g, 7.48 mmol) at 273 K. The reaction mixture was warmed to room temperature and stirred for 12 h to give a diethyl ether solution of lithium 1-[1-(dimethylamino)ethenyl]-3-(trimethylsilyl)cyclopentadienide, which was used in situ in the subsequent reactions with FeCl2 or CoCl2.
To a diethyl ether solution (30 ml) of lithium 1-[1-(dimethylamino)ethenyl]-3-(trimethylsilyl)cyclopentadienide (7.48 mmol), solid iron dichloride (0.475 g, 3.74 mmol) was added at 195 K. The reaction mixture was warmed to room temperature and stirred for 12 h. After removal of the volatiles in vacuo, the resulting orange residue was extracted with hexane and filtered. The orange filtrate was concentrated in vacuo to ca 5 ml, from which orange single crystals of (II) (0.656 g, 37.4%) were isolated after storage at 253 K for several days (m.p. 350–353 K). Compound (II) was a slightly air-sensitive crystalline solid. 1H NMR (300 MHz, CDCl3, δ, p.p.m.): 4.69, 4.17–3.81 (m, 10H, Cp-H and CH2), 2.59, 2.45 [d, 12H, N(CH3)2], 0.08 [s, 18H, Si(CH3)3].
Solid CoCl2 (0.485 g, 3.74 mmol) was added to a diethyl ether solution (30 ml) of lithium 1-[1-(dimethylamino)ethenyl]-3-(trimethylsilyl)cyclopentadienide (7.48 mmol) at 195 K. The reaction mixture was warmed to room temperature and stirred for 12 h. After remove of the volatiles in vacuo, the resultant brown residue was extracted into hexane. Concentration of the extract in vacuo and storage at 253 K for 3 d yielded brown single crystals of (III) (0.624 g, 35.4%; m.p. 353–355 K). Compound (III) is paramagnetic and air sensitive.
All H atoms were placed in calculated positions, with C—H = 0.94–0.99 Å, and allowed to ride on their parent atoms, with Uiso(H) = 1.2–1.5Ueq(C).
For both compounds, data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
[Fe(C12H20NSi)2] | F(000) = 1008 |
Mr = 468.61 | Dx = 1.196 Mg m−3 |
Monoclinic, P21/n | Melting point = 350–353 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 10.186 (2) Å | Cell parameters from 2478 reflections |
b = 11.736 (3) Å | θ = 2.4–22.9° |
c = 22.341 (5) Å | µ = 0.68 mm−1 |
β = 102.978 (3)° | T = 213 K |
V = 2602.6 (9) Å3 | Block, orange |
Z = 4 | 0.30 × 0.20 × 0.20 mm |
Siemens SMART CCD area-detector diffractometer | 4563 independent reflections |
Radiation source: fine-focus sealed tube | 3637 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
ω scans | θmax = 25.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −12→12 |
Tmin = 0.821, Tmax = 0.875 | k = −13→13 |
10503 measured reflections | l = −13→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.136 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0516P)2 + 1.9533P] where P = (Fo2 + 2Fc2)/3 |
4563 reflections | (Δ/σ)max < 0.001 |
272 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
[Fe(C12H20NSi)2] | V = 2602.6 (9) Å3 |
Mr = 468.61 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.186 (2) Å | µ = 0.68 mm−1 |
b = 11.736 (3) Å | T = 213 K |
c = 22.341 (5) Å | 0.30 × 0.20 × 0.20 mm |
β = 102.978 (3)° |
Siemens SMART CCD area-detector diffractometer | 4563 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3637 reflections with I > 2σ(I) |
Tmin = 0.821, Tmax = 0.875 | Rint = 0.042 |
10503 measured reflections |
R[F2 > 2σ(F2)] = 0.062 | 0 restraints |
wR(F2) = 0.136 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.44 e Å−3 |
4563 reflections | Δρmin = −0.25 e Å−3 |
272 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.44403 (5) | 0.60960 (5) | 0.20887 (2) | 0.03458 (18) | |
N1 | 0.0458 (3) | 0.6962 (3) | 0.12229 (14) | 0.0428 (8) | |
N2 | 0.5682 (3) | 0.4059 (3) | 0.08073 (14) | 0.0415 (8) | |
Si1 | 0.42970 (11) | 0.68184 (11) | 0.36246 (5) | 0.0469 (3) | |
Si2 | 0.48011 (12) | 0.87583 (10) | 0.13649 (6) | 0.0499 (3) | |
C10 | 0.2852 (4) | 0.7026 (4) | 0.39965 (19) | 0.0564 (12) | |
H10A | 0.3163 | 0.7404 | 0.4389 | 0.085* | |
H10B | 0.2471 | 0.6291 | 0.4061 | 0.085* | |
H10C | 0.2171 | 0.7490 | 0.3734 | 0.085* | |
C11 | 0.5471 (6) | 0.5759 (5) | 0.4071 (2) | 0.090 (2) | |
H11A | 0.6250 | 0.5678 | 0.3892 | 0.135* | |
H11B | 0.5017 | 0.5030 | 0.4061 | 0.135* | |
H11C | 0.5759 | 0.6014 | 0.4493 | 0.135* | |
C12 | 0.5145 (4) | 0.8206 (5) | 0.3596 (2) | 0.0697 (15) | |
H12A | 0.5240 | 0.8592 | 0.3987 | 0.105* | |
H12B | 0.4612 | 0.8671 | 0.3273 | 0.105* | |
H12C | 0.6030 | 0.8080 | 0.3514 | 0.105* | |
C22 | 0.4778 (5) | 0.9739 (4) | 0.2013 (2) | 0.0646 (14) | |
H22A | 0.3991 | 0.9583 | 0.2176 | 0.097* | |
H22B | 0.4744 | 1.0520 | 0.1869 | 0.097* | |
H22C | 0.5586 | 0.9627 | 0.2333 | 0.097* | |
C24 | 0.6049 (5) | 0.9286 (5) | 0.0940 (3) | 0.0798 (17) | |
H24A | 0.6917 | 0.9377 | 0.1222 | 0.120* | |
H24B | 0.5753 | 1.0014 | 0.0752 | 0.120* | |
H24C | 0.6129 | 0.8742 | 0.0623 | 0.120* | |
C23 | 0.3120 (5) | 0.8676 (4) | 0.0835 (2) | 0.0643 (13) | |
H23A | 0.3121 | 0.8076 | 0.0537 | 0.096* | |
H23B | 0.2914 | 0.9398 | 0.0624 | 0.096* | |
H23C | 0.2445 | 0.8510 | 0.1068 | 0.096* | |
C3 | 0.3610 (3) | 0.6230 (3) | 0.28451 (16) | 0.0350 (9) | |
C4 | 0.3719 (4) | 0.5063 (3) | 0.26703 (17) | 0.0390 (9) | |
H4 | 0.4239 | 0.4463 | 0.2933 | 0.047* | |
C5 | 0.2977 (3) | 0.4913 (3) | 0.20631 (17) | 0.0370 (9) | |
H5 | 0.2889 | 0.4189 | 0.1830 | 0.044* | |
C1 | 0.2371 (3) | 0.5959 (3) | 0.18425 (17) | 0.0353 (9) | |
C2 | 0.2775 (3) | 0.6770 (3) | 0.23247 (16) | 0.0334 (9) | |
H2 | 0.2527 | 0.7587 | 0.2299 | 0.040* | |
C16 | 0.6206 (4) | 0.6991 (4) | 0.22255 (19) | 0.0466 (11) | |
H16 | 0.6547 | 0.7511 | 0.2575 | 0.056* | |
C17 | 0.6463 (4) | 0.5814 (4) | 0.22230 (18) | 0.0454 (11) | |
H17 | 0.7020 | 0.5376 | 0.2566 | 0.054* | |
C13 | 0.5792 (3) | 0.5359 (4) | 0.16479 (17) | 0.0383 (9) | |
C14 | 0.5098 (4) | 0.6288 (3) | 0.13080 (17) | 0.0360 (9) | |
H14 | 0.4524 | 0.6231 | 0.0888 | 0.043* | |
C15 | 0.5362 (4) | 0.7320 (3) | 0.16556 (18) | 0.0411 (10) | |
C6 | 0.1458 (4) | 0.6142 (3) | 0.12319 (17) | 0.0382 (9) | |
C7 | 0.1650 (4) | 0.5581 (4) | 0.07430 (18) | 0.0485 (11) | |
H7A | 0.1090 | 0.5724 | 0.0355 | 0.058* | |
H7B | 0.2345 | 0.5040 | 0.0785 | 0.058* | |
C9 | −0.0354 (5) | 0.7237 (4) | 0.06204 (19) | 0.0604 (13) | |
H9A | 0.0229 | 0.7475 | 0.0355 | 0.091* | |
H9C | −0.0971 | 0.7849 | 0.0656 | 0.091* | |
H9B | −0.0862 | 0.6569 | 0.0447 | 0.091* | |
C8 | −0.0385 (4) | 0.6814 (4) | 0.16650 (19) | 0.0517 (11) | |
H8A | −0.0999 | 0.6182 | 0.1539 | 0.078* | |
H8B | −0.0897 | 0.7505 | 0.1683 | 0.078* | |
H8C | 0.0180 | 0.6657 | 0.2067 | 0.078* | |
C18 | 0.5798 (4) | 0.4171 (4) | 0.14367 (18) | 0.0399 (10) | |
C19 | 0.5841 (4) | 0.3300 (4) | 0.1821 (2) | 0.0529 (11) | |
H19A | 0.5793 | 0.2549 | 0.1671 | 0.064* | |
H19B | 0.5921 | 0.3434 | 0.2242 | 0.064* | |
C20 | 0.6608 (4) | 0.4717 (4) | 0.05345 (19) | 0.0484 (11) | |
H20A | 0.6745 | 0.5461 | 0.0728 | 0.073* | |
H20B | 0.6233 | 0.4808 | 0.0098 | 0.073* | |
H20C | 0.7464 | 0.4321 | 0.0596 | 0.073* | |
C21 | 0.5513 (5) | 0.2915 (4) | 0.0561 (2) | 0.0605 (13) | |
H21A | 0.6351 | 0.2498 | 0.0690 | 0.091* | |
H21B | 0.5267 | 0.2949 | 0.0116 | 0.091* | |
H21C | 0.4808 | 0.2531 | 0.0711 | 0.091* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0268 (3) | 0.0466 (4) | 0.0309 (3) | −0.0025 (2) | 0.0079 (2) | −0.0071 (3) |
N1 | 0.0353 (18) | 0.060 (2) | 0.0307 (18) | −0.0023 (16) | 0.0018 (14) | 0.0019 (16) |
N2 | 0.0425 (19) | 0.046 (2) | 0.0380 (19) | 0.0033 (16) | 0.0131 (15) | −0.0064 (16) |
Si1 | 0.0372 (6) | 0.0675 (8) | 0.0324 (6) | 0.0117 (6) | −0.0001 (5) | −0.0123 (6) |
Si2 | 0.0482 (7) | 0.0433 (7) | 0.0633 (8) | −0.0140 (6) | 0.0237 (6) | −0.0106 (6) |
C10 | 0.062 (3) | 0.072 (3) | 0.035 (2) | 0.007 (2) | 0.011 (2) | −0.005 (2) |
C11 | 0.086 (4) | 0.113 (5) | 0.055 (3) | 0.046 (4) | −0.016 (3) | −0.015 (3) |
C12 | 0.045 (3) | 0.097 (4) | 0.067 (3) | −0.008 (3) | 0.013 (2) | −0.038 (3) |
C22 | 0.060 (3) | 0.058 (3) | 0.079 (4) | −0.011 (2) | 0.023 (3) | −0.023 (3) |
C24 | 0.085 (4) | 0.065 (3) | 0.104 (4) | −0.021 (3) | 0.052 (3) | −0.002 (3) |
C23 | 0.063 (3) | 0.053 (3) | 0.076 (4) | −0.006 (2) | 0.012 (3) | −0.003 (2) |
C3 | 0.0270 (18) | 0.051 (2) | 0.027 (2) | 0.0008 (17) | 0.0066 (16) | −0.0064 (18) |
C4 | 0.034 (2) | 0.049 (3) | 0.036 (2) | 0.0028 (18) | 0.0112 (17) | 0.0005 (19) |
C5 | 0.033 (2) | 0.043 (2) | 0.038 (2) | −0.0055 (18) | 0.0141 (17) | −0.0065 (18) |
C1 | 0.0261 (18) | 0.048 (2) | 0.033 (2) | −0.0056 (17) | 0.0096 (16) | −0.0052 (18) |
C2 | 0.0261 (18) | 0.045 (2) | 0.029 (2) | −0.0014 (17) | 0.0073 (16) | −0.0025 (17) |
C16 | 0.028 (2) | 0.065 (3) | 0.048 (3) | −0.012 (2) | 0.0127 (19) | −0.018 (2) |
C17 | 0.0230 (19) | 0.078 (3) | 0.033 (2) | 0.0038 (19) | 0.0030 (17) | −0.003 (2) |
C13 | 0.0268 (19) | 0.056 (3) | 0.037 (2) | 0.0026 (18) | 0.0154 (17) | 0.0004 (19) |
C14 | 0.0310 (19) | 0.047 (2) | 0.032 (2) | −0.0042 (17) | 0.0114 (16) | −0.0029 (18) |
C15 | 0.034 (2) | 0.048 (2) | 0.045 (3) | −0.0128 (18) | 0.0168 (19) | −0.012 (2) |
C6 | 0.035 (2) | 0.049 (2) | 0.031 (2) | −0.0131 (19) | 0.0076 (17) | −0.0043 (19) |
C7 | 0.044 (2) | 0.069 (3) | 0.031 (2) | −0.013 (2) | 0.0060 (19) | −0.009 (2) |
C9 | 0.058 (3) | 0.074 (3) | 0.041 (3) | −0.005 (2) | −0.006 (2) | 0.011 (2) |
C8 | 0.037 (2) | 0.070 (3) | 0.048 (3) | 0.006 (2) | 0.011 (2) | −0.003 (2) |
C18 | 0.030 (2) | 0.052 (3) | 0.039 (2) | 0.0117 (18) | 0.0109 (17) | 0.001 (2) |
C19 | 0.055 (3) | 0.059 (3) | 0.048 (3) | 0.013 (2) | 0.021 (2) | 0.009 (2) |
C20 | 0.044 (2) | 0.062 (3) | 0.043 (2) | 0.007 (2) | 0.017 (2) | 0.006 (2) |
C21 | 0.076 (3) | 0.055 (3) | 0.055 (3) | −0.001 (2) | 0.023 (3) | −0.009 (2) |
Fe1—C14 | 2.017 (4) | C23—H23A | 0.9700 |
Fe1—C5 | 2.029 (4) | C23—H23B | 0.9700 |
Fe1—C4 | 2.031 (4) | C23—H23C | 0.9700 |
Fe1—C17 | 2.041 (4) | C3—C2 | 1.425 (5) |
Fe1—C16 | 2.046 (4) | C3—C4 | 1.435 (5) |
Fe1—C2 | 2.045 (3) | C4—C5 | 1.408 (5) |
Fe1—C13 | 2.055 (4) | C4—H4 | 0.9900 |
Fe1—C3 | 2.058 (4) | C5—C1 | 1.412 (5) |
Fe1—C1 | 2.062 (3) | C5—H5 | 0.9900 |
Fe1—C15 | 2.071 (4) | C1—C2 | 1.427 (5) |
N1—C6 | 1.398 (5) | C1—C6 | 1.484 (5) |
N1—C9 | 1.449 (5) | C2—H2 | 0.9900 |
N1—C8 | 1.457 (5) | C16—C17 | 1.407 (6) |
N2—C18 | 1.391 (5) | C16—C15 | 1.420 (6) |
N2—C21 | 1.446 (5) | C16—H16 | 0.9900 |
N2—C20 | 1.454 (5) | C17—C13 | 1.417 (5) |
Si1—C12 | 1.851 (5) | C17—H17 | 0.9900 |
Si1—C11 | 1.853 (5) | C13—C14 | 1.422 (5) |
Si1—C10 | 1.861 (4) | C13—C18 | 1.473 (6) |
Si1—C3 | 1.858 (4) | C14—C15 | 1.431 (5) |
Si2—C23 | 1.853 (5) | C14—H14 | 0.9900 |
Si2—C22 | 1.854 (4) | C6—C7 | 1.327 (5) |
Si2—C15 | 1.852 (4) | C7—H7A | 0.9400 |
Si2—C24 | 1.855 (5) | C7—H7B | 0.9400 |
C10—H10A | 0.9700 | C9—H9A | 0.9700 |
C10—H10B | 0.9700 | C9—H9C | 0.9700 |
C10—H10C | 0.9700 | C9—H9B | 0.9700 |
C11—H11A | 0.9700 | C8—H8A | 0.9700 |
C11—H11B | 0.9700 | C8—H8B | 0.9700 |
C11—H11C | 0.9700 | C8—H8C | 0.9700 |
C12—H12A | 0.9700 | C18—C19 | 1.329 (5) |
C12—H12B | 0.9700 | C19—H19A | 0.9400 |
C12—H12C | 0.9700 | C19—H19B | 0.9400 |
C22—H22A | 0.9700 | C20—H20A | 0.9700 |
C22—H22B | 0.9700 | C20—H20B | 0.9700 |
C22—H22C | 0.9700 | C20—H20C | 0.9700 |
C24—H24A | 0.9700 | C21—H21A | 0.9700 |
C24—H24B | 0.9700 | C21—H21B | 0.9700 |
C24—H24C | 0.9700 | C21—H21C | 0.9700 |
C14—Fe1—C5 | 115.92 (15) | H23B—C23—H23C | 109.5 |
C14—Fe1—C4 | 149.12 (16) | C2—C3—C4 | 105.7 (3) |
C5—Fe1—C4 | 40.59 (14) | C2—C3—Si1 | 129.0 (3) |
C14—Fe1—C17 | 67.96 (15) | C4—C3—Si1 | 125.0 (3) |
C5—Fe1—C17 | 127.17 (17) | C2—C3—Fe1 | 69.2 (2) |
C4—Fe1—C17 | 107.90 (16) | C4—C3—Fe1 | 68.4 (2) |
C14—Fe1—C16 | 67.66 (16) | Si1—C3—Fe1 | 131.34 (19) |
C5—Fe1—C16 | 166.31 (17) | C5—C4—C3 | 108.9 (3) |
C4—Fe1—C16 | 130.02 (17) | C5—C4—Fe1 | 69.6 (2) |
C17—Fe1—C16 | 40.26 (17) | C3—C4—Fe1 | 70.5 (2) |
C14—Fe1—C2 | 129.48 (15) | C5—C4—H4 | 125.5 |
C5—Fe1—C2 | 67.98 (15) | C3—C4—H4 | 125.5 |
C4—Fe1—C2 | 68.01 (15) | Fe1—C4—H4 | 125.5 |
C17—Fe1—C2 | 153.25 (15) | C4—C5—C1 | 109.0 (3) |
C16—Fe1—C2 | 121.00 (16) | C4—C5—Fe1 | 69.8 (2) |
C14—Fe1—C13 | 40.88 (15) | C1—C5—Fe1 | 71.1 (2) |
C5—Fe1—C13 | 105.40 (15) | C4—C5—H5 | 125.5 |
C4—Fe1—C13 | 115.66 (16) | C1—C5—H5 | 125.5 |
C17—Fe1—C13 | 40.49 (15) | Fe1—C5—H5 | 125.5 |
C16—Fe1—C13 | 68.08 (16) | C5—C1—C2 | 106.7 (3) |
C2—Fe1—C13 | 165.96 (14) | C5—C1—C6 | 125.5 (3) |
C14—Fe1—C3 | 168.23 (16) | C2—C1—C6 | 127.8 (4) |
C5—Fe1—C3 | 68.96 (15) | C5—C1—Fe1 | 68.6 (2) |
C4—Fe1—C3 | 41.09 (15) | C2—C1—Fe1 | 69.03 (19) |
C17—Fe1—C3 | 118.61 (15) | C6—C1—Fe1 | 128.8 (3) |
C16—Fe1—C3 | 110.33 (15) | C3—C2—C1 | 109.8 (3) |
C2—Fe1—C3 | 40.65 (14) | C3—C2—Fe1 | 70.2 (2) |
C13—Fe1—C3 | 150.30 (15) | C1—C2—Fe1 | 70.3 (2) |
C14—Fe1—C1 | 107.25 (15) | C3—C2—H2 | 125.1 |
C5—Fe1—C1 | 40.38 (14) | C1—C2—H2 | 125.1 |
C4—Fe1—C1 | 68.23 (15) | Fe1—C2—H2 | 125.1 |
C17—Fe1—C1 | 164.63 (16) | C17—C16—C15 | 109.8 (4) |
C16—Fe1—C1 | 153.09 (17) | C17—C16—Fe1 | 69.7 (2) |
C2—Fe1—C1 | 40.66 (14) | C15—C16—Fe1 | 70.8 (2) |
C13—Fe1—C1 | 126.46 (15) | C17—C16—H16 | 125.1 |
C3—Fe1—C1 | 68.97 (14) | C15—C16—H16 | 125.1 |
C14—Fe1—C15 | 40.94 (14) | Fe1—C16—H16 | 125.1 |
C5—Fe1—C15 | 150.33 (15) | C16—C17—C13 | 108.7 (4) |
C4—Fe1—C15 | 168.46 (15) | C16—C17—Fe1 | 70.1 (2) |
C17—Fe1—C15 | 68.44 (17) | C13—C17—Fe1 | 70.3 (2) |
C16—Fe1—C15 | 40.35 (16) | C16—C17—H17 | 125.6 |
C2—Fe1—C15 | 109.98 (15) | C13—C17—H17 | 125.6 |
C13—Fe1—C15 | 69.21 (16) | Fe1—C17—H17 | 125.6 |
C3—Fe1—C15 | 130.04 (15) | C17—C13—C14 | 106.0 (4) |
C1—Fe1—C15 | 118.24 (16) | C17—C13—C18 | 127.7 (4) |
C6—N1—C9 | 115.3 (3) | C14—C13—C18 | 126.3 (3) |
C6—N1—C8 | 116.5 (3) | C17—C13—Fe1 | 69.2 (2) |
C9—N1—C8 | 110.9 (3) | C14—C13—Fe1 | 68.1 (2) |
C18—N2—C21 | 116.6 (3) | C18—C13—Fe1 | 127.1 (3) |
C18—N2—C20 | 117.3 (3) | C13—C14—C15 | 110.4 (3) |
C21—N2—C20 | 111.5 (3) | C13—C14—Fe1 | 71.0 (2) |
C12—Si1—C11 | 111.0 (3) | C15—C14—Fe1 | 71.6 (2) |
C12—Si1—C10 | 108.8 (2) | C13—C14—H14 | 124.8 |
C11—Si1—C10 | 109.1 (2) | C15—C14—H14 | 124.8 |
C12—Si1—C3 | 112.0 (2) | Fe1—C14—H14 | 124.8 |
C11—Si1—C3 | 108.4 (2) | C16—C15—C14 | 105.0 (4) |
C10—Si1—C3 | 107.34 (18) | C16—C15—Si2 | 129.7 (3) |
C23—Si2—C22 | 111.1 (2) | C14—C15—Si2 | 125.1 (3) |
C23—Si2—C15 | 110.14 (19) | C16—C15—Fe1 | 68.9 (2) |
C22—Si2—C15 | 110.4 (2) | C14—C15—Fe1 | 67.5 (2) |
C23—Si2—C24 | 109.4 (3) | Si2—C15—Fe1 | 131.3 (2) |
C22—Si2—C24 | 108.9 (2) | C7—C6—N1 | 124.8 (4) |
C15—Si2—C24 | 106.9 (2) | C7—C6—C1 | 120.4 (4) |
Si1—C10—H10A | 109.5 | N1—C6—C1 | 114.7 (3) |
Si1—C10—H10B | 109.5 | C6—C7—H7A | 120.0 |
H10A—C10—H10B | 109.5 | C6—C7—H7B | 120.0 |
Si1—C10—H10C | 109.5 | H7A—C7—H7B | 120.0 |
H10A—C10—H10C | 109.5 | N1—C9—H9A | 109.5 |
H10B—C10—H10C | 109.5 | N1—C9—H9C | 109.5 |
Si1—C11—H11A | 109.5 | H9A—C9—H9C | 109.5 |
Si1—C11—H11B | 109.5 | N1—C9—H9B | 109.5 |
H11A—C11—H11B | 109.5 | H9A—C9—H9B | 109.5 |
Si1—C11—H11C | 109.5 | H9C—C9—H9B | 109.5 |
H11A—C11—H11C | 109.5 | N1—C8—H8A | 109.5 |
H11B—C11—H11C | 109.5 | N1—C8—H8B | 109.5 |
Si1—C12—H12A | 109.5 | H8A—C8—H8B | 109.5 |
Si1—C12—H12B | 109.5 | N1—C8—H8C | 109.5 |
H12A—C12—H12B | 109.5 | H8A—C8—H8C | 109.5 |
Si1—C12—H12C | 109.5 | H8B—C8—H8C | 109.5 |
H12A—C12—H12C | 109.5 | C19—C18—N2 | 124.3 (4) |
H12B—C12—H12C | 109.5 | C19—C18—C13 | 121.6 (4) |
Si2—C22—H22A | 109.5 | N2—C18—C13 | 114.1 (3) |
Si2—C22—H22B | 109.5 | C18—C19—H19A | 120.0 |
H22A—C22—H22B | 109.5 | C18—C19—H19B | 120.0 |
Si2—C22—H22C | 109.5 | H19A—C19—H19B | 120.0 |
H22A—C22—H22C | 109.5 | N2—C20—H20A | 109.5 |
H22B—C22—H22C | 109.5 | N2—C20—H20B | 109.5 |
Si2—C24—H24A | 109.5 | H20A—C20—H20B | 109.5 |
Si2—C24—H24B | 109.5 | N2—C20—H20C | 109.5 |
H24A—C24—H24B | 109.5 | H20A—C20—H20C | 109.5 |
Si2—C24—H24C | 109.5 | H20B—C20—H20C | 109.5 |
H24A—C24—H24C | 109.5 | N2—C21—H21A | 109.5 |
H24B—C24—H24C | 109.5 | N2—C21—H21B | 109.5 |
Si2—C23—H23A | 109.5 | H21A—C21—H21B | 109.5 |
Si2—C23—H23B | 109.5 | N2—C21—H21C | 109.5 |
H23A—C23—H23B | 109.5 | H21A—C21—H21C | 109.5 |
Si2—C23—H23C | 109.5 | H21B—C21—H21C | 109.5 |
H23A—C23—H23C | 109.5 |
[Co(C12H20NSi)2] | Z = 1 |
Mr = 471.69 | F(000) = 253 |
Triclinic, P1 | Dx = 1.206 Mg m−3 |
Hall symbol: -P 1 | Melting point = 353–355 K |
a = 7.891 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.363 (3) Å | Cell parameters from 1963 reflections |
c = 10.440 (3) Å | θ = 2.3–27.1° |
α = 105.531 (3)° | µ = 0.77 mm−1 |
β = 111.101 (3)° | T = 213 K |
γ = 102.658 (3)° | Prism, brown |
V = 649.2 (3) Å3 | 0.30 × 0.20 × 0.20 mm |
Siemens SMART CCD area-detector diffractometer | 2240 independent reflections |
Radiation source: fine-focus sealed tube | 2076 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
ω scans | θmax = 25.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→9 |
Tmin = 0.803, Tmax = 0.862 | k = −11→11 |
3180 measured reflections | l = −9→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0464P)2 + 0.1772P] where P = (Fo2 + 2Fc2)/3 |
2240 reflections | (Δ/σ)max < 0.001 |
138 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
[Co(C12H20NSi)2] | γ = 102.658 (3)° |
Mr = 471.69 | V = 649.2 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.891 (2) Å | Mo Kα radiation |
b = 9.363 (3) Å | µ = 0.77 mm−1 |
c = 10.440 (3) Å | T = 213 K |
α = 105.531 (3)° | 0.30 × 0.20 × 0.20 mm |
β = 111.101 (3)° |
Siemens SMART CCD area-detector diffractometer | 2240 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2076 reflections with I > 2σ(I) |
Tmin = 0.803, Tmax = 0.862 | Rint = 0.017 |
3180 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.24 e Å−3 |
2240 reflections | Δρmin = −0.38 e Å−3 |
138 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.5000 | 0.0000 | 1.0000 | 0.02347 (15) | |
N1 | 0.2661 (3) | −0.1351 (2) | 0.5285 (2) | 0.0366 (5) | |
Si1 | 0.36534 (10) | 0.33374 (8) | 1.14930 (7) | 0.03285 (19) | |
C1 | 0.3288 (3) | −0.0069 (3) | 0.7832 (2) | 0.0272 (5) | |
C2 | 0.2594 (3) | 0.0526 (3) | 0.8870 (3) | 0.0283 (5) | |
H2 | 0.1366 | 0.0042 | 0.8794 | 0.034* | |
C3 | 0.4037 (3) | 0.1971 (3) | 1.0053 (3) | 0.0279 (5) | |
C4 | 0.5682 (3) | 0.2181 (3) | 0.9774 (3) | 0.0289 (5) | |
H4 | 0.6880 | 0.3013 | 1.0376 | 0.035* | |
C5 | 0.5238 (3) | 0.0931 (3) | 0.8436 (3) | 0.0298 (5) | |
H5 | 0.6100 | 0.0796 | 0.8024 | 0.036* | |
C6 | 0.2186 (3) | −0.1477 (3) | 0.6431 (3) | 0.0297 (5) | |
C7 | 0.0921 (4) | −0.2758 (3) | 0.6322 (3) | 0.0408 (6) | |
H7A | 0.0279 | −0.3656 | 0.5432 | 0.049* | |
H7B | 0.0668 | −0.2764 | 0.7135 | 0.049* | |
C8 | 0.2561 (4) | 0.0037 (4) | 0.4914 (3) | 0.0490 (7) | |
H8A | 0.1232 | −0.0153 | 0.4250 | 0.074* | |
H8B | 0.3382 | 0.0234 | 0.4431 | 0.074* | |
H8C | 0.3002 | 0.0951 | 0.5815 | 0.074* | |
C9 | 0.1853 (5) | −0.2786 (4) | 0.3966 (3) | 0.0575 (8) | |
H9A | 0.2107 | −0.3649 | 0.4252 | 0.086* | |
H9B | 0.2448 | −0.2621 | 0.3325 | 0.086* | |
H9C | 0.0463 | −0.3045 | 0.3438 | 0.086* | |
C10 | 0.5746 (4) | 0.5225 (3) | 1.2467 (3) | 0.0538 (8) | |
H10A | 0.6930 | 0.5022 | 1.2919 | 0.081* | |
H10B | 0.5571 | 0.5945 | 1.3230 | 0.081* | |
H10C | 0.5832 | 0.5697 | 1.1760 | 0.081* | |
C11 | 0.1368 (4) | 0.3667 (4) | 1.0503 (3) | 0.0546 (8) | |
H11A | 0.1521 | 0.4163 | 0.9827 | 0.082* | |
H11B | 0.1092 | 0.4350 | 1.1221 | 0.082* | |
H11C | 0.0305 | 0.2659 | 0.9947 | 0.082* | |
C12 | 0.3350 (4) | 0.2487 (4) | 1.2844 (3) | 0.0495 (7) | |
H12A | 0.2241 | 0.1508 | 1.2323 | 0.074* | |
H12B | 0.3141 | 0.3233 | 1.3566 | 0.074* | |
H12C | 0.4508 | 0.2276 | 1.3349 | 0.074* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0237 (2) | 0.0235 (3) | 0.0257 (3) | 0.00977 (18) | 0.01146 (18) | 0.01116 (18) |
N1 | 0.0443 (12) | 0.0380 (12) | 0.0254 (11) | 0.0148 (10) | 0.0153 (9) | 0.0091 (9) |
Si1 | 0.0372 (4) | 0.0318 (4) | 0.0314 (4) | 0.0190 (3) | 0.0140 (3) | 0.0109 (3) |
C1 | 0.0310 (12) | 0.0284 (12) | 0.0266 (12) | 0.0149 (10) | 0.0124 (10) | 0.0142 (10) |
C2 | 0.0277 (12) | 0.0296 (13) | 0.0305 (13) | 0.0135 (10) | 0.0125 (10) | 0.0134 (10) |
C3 | 0.0306 (12) | 0.0260 (12) | 0.0284 (12) | 0.0134 (10) | 0.0113 (10) | 0.0121 (10) |
C4 | 0.0310 (12) | 0.0238 (12) | 0.0315 (13) | 0.0088 (10) | 0.0118 (10) | 0.0134 (10) |
C5 | 0.0354 (13) | 0.0295 (13) | 0.0319 (13) | 0.0139 (10) | 0.0173 (11) | 0.0174 (11) |
C6 | 0.0306 (12) | 0.0309 (13) | 0.0280 (13) | 0.0154 (10) | 0.0114 (10) | 0.0107 (10) |
C7 | 0.0416 (14) | 0.0361 (15) | 0.0356 (14) | 0.0083 (12) | 0.0149 (12) | 0.0080 (12) |
C8 | 0.0586 (18) | 0.0593 (19) | 0.0399 (16) | 0.0259 (15) | 0.0226 (14) | 0.0293 (15) |
C9 | 0.069 (2) | 0.0542 (19) | 0.0350 (16) | 0.0118 (16) | 0.0249 (15) | 0.0023 (14) |
C10 | 0.0604 (19) | 0.0377 (16) | 0.0472 (18) | 0.0132 (14) | 0.0181 (15) | 0.0044 (13) |
C11 | 0.0560 (18) | 0.063 (2) | 0.0485 (18) | 0.0424 (16) | 0.0175 (15) | 0.0173 (15) |
C12 | 0.0551 (17) | 0.065 (2) | 0.0512 (18) | 0.0353 (16) | 0.0340 (15) | 0.0289 (15) |
Co1—C2 | 2.084 (2) | C3—C4 | 1.414 (3) |
Co1—C2i | 2.084 (2) | C4—C5 | 1.427 (3) |
Co1—C5 | 2.091 (2) | C4—H4 | 0.9400 |
Co1—C5i | 2.091 (2) | C5—H5 | 0.9400 |
Co1—C4 | 2.093 (2) | C6—C7 | 1.329 (3) |
Co1—C4i | 2.093 (2) | C7—H7A | 0.9400 |
Co1—C3 | 2.140 (2) | C7—H7B | 0.9400 |
Co1—C3i | 2.140 (2) | C8—H8A | 0.9700 |
Co1—C1 | 2.153 (2) | C8—H8B | 0.9700 |
Co1—C1i | 2.153 (2) | C8—H8C | 0.9700 |
N1—C6 | 1.402 (3) | C9—H9A | 0.9700 |
N1—C9 | 1.452 (3) | C9—H9B | 0.9700 |
N1—C8 | 1.462 (3) | C9—H9C | 0.9700 |
Si1—C10 | 1.853 (3) | C10—H10A | 0.9700 |
Si1—C12 | 1.855 (3) | C10—H10B | 0.9700 |
Si1—C3 | 1.859 (2) | C10—H10C | 0.9700 |
Si1—C11 | 1.868 (3) | C11—H11A | 0.9700 |
C1—C5 | 1.412 (3) | C11—H11B | 0.9700 |
C1—C2 | 1.422 (3) | C11—H11C | 0.9700 |
C1—C6 | 1.477 (3) | C12—H12A | 0.9700 |
C2—C3 | 1.439 (3) | C12—H12B | 0.9700 |
C2—H2 | 0.9400 | C12—H12C | 0.9700 |
C2—Co1—C2i | 180.000 (1) | C1—C2—C3 | 110.5 (2) |
C2—Co1—C5 | 65.67 (9) | C1—C2—Co1 | 73.00 (13) |
C2i—Co1—C5 | 114.33 (9) | C3—C2—Co1 | 72.17 (12) |
C2—Co1—C5i | 114.33 (9) | C1—C2—H2 | 124.8 |
C2i—Co1—C5i | 65.67 (9) | C3—C2—H2 | 124.8 |
C5—Co1—C5i | 180.000 (1) | Co1—C2—H2 | 121.7 |
C2—Co1—C4 | 65.68 (9) | C4—C3—C2 | 105.2 (2) |
C2i—Co1—C4 | 114.32 (9) | C4—C3—Si1 | 128.71 (18) |
C5—Co1—C4 | 39.89 (9) | C2—C3—Si1 | 125.81 (17) |
C5i—Co1—C4 | 140.11 (9) | C4—C3—Co1 | 68.73 (12) |
C2—Co1—C4i | 114.32 (9) | C2—C3—Co1 | 68.03 (12) |
C2i—Co1—C4i | 65.68 (9) | Si1—C3—Co1 | 132.05 (12) |
C5—Co1—C4i | 140.11 (9) | C3—C4—C5 | 109.4 (2) |
C5i—Co1—C4i | 39.89 (9) | C3—C4—Co1 | 72.27 (13) |
C4—Co1—C4i | 180.0 | C5—C4—Co1 | 69.98 (13) |
C2—Co1—C3 | 39.80 (9) | C3—C4—H4 | 125.3 |
C2i—Co1—C3 | 140.20 (9) | C5—C4—H4 | 125.3 |
C5—Co1—C3 | 66.43 (9) | Co1—C4—H4 | 124.0 |
C5i—Co1—C3 | 113.57 (9) | C1—C5—C4 | 108.7 (2) |
C4—Co1—C3 | 39.00 (9) | C1—C5—Co1 | 72.93 (13) |
C4i—Co1—C3 | 141.00 (9) | C4—C5—Co1 | 70.13 (13) |
C2—Co1—C3i | 140.20 (9) | C1—C5—H5 | 125.6 |
C2i—Co1—C3i | 39.80 (9) | C4—C5—H5 | 125.6 |
C5—Co1—C3i | 113.57 (9) | Co1—C5—H5 | 122.9 |
C5i—Co1—C3i | 66.43 (9) | C7—C6—N1 | 124.3 (2) |
C4—Co1—C3i | 141.00 (9) | C7—C6—C1 | 121.6 (2) |
C4i—Co1—C3i | 39.00 (9) | N1—C6—C1 | 114.1 (2) |
C3—Co1—C3i | 180.000 (1) | C6—C7—H7A | 120.0 |
C2—Co1—C1 | 39.19 (9) | C6—C7—H7B | 120.0 |
C2i—Co1—C1 | 140.81 (9) | H7A—C7—H7B | 120.0 |
C5—Co1—C1 | 38.84 (9) | N1—C8—H8A | 109.5 |
C5i—Co1—C1 | 141.16 (9) | N1—C8—H8B | 109.5 |
C4—Co1—C1 | 65.85 (9) | H8A—C8—H8B | 109.5 |
C4i—Co1—C1 | 114.15 (9) | N1—C8—H8C | 109.5 |
C3—Co1—C1 | 66.39 (9) | H8A—C8—H8C | 109.5 |
C3i—Co1—C1 | 113.61 (9) | H8B—C8—H8C | 109.5 |
C2—Co1—C1i | 140.81 (9) | N1—C9—H9A | 109.5 |
C2i—Co1—C1i | 39.19 (9) | N1—C9—H9B | 109.5 |
C5—Co1—C1i | 141.16 (9) | H9A—C9—H9B | 109.5 |
C5i—Co1—C1i | 38.84 (9) | N1—C9—H9C | 109.5 |
C4—Co1—C1i | 114.15 (9) | H9A—C9—H9C | 109.5 |
C4i—Co1—C1i | 65.85 (9) | H9B—C9—H9C | 109.5 |
C3—Co1—C1i | 113.61 (9) | Si1—C10—H10A | 109.5 |
C3i—Co1—C1i | 66.39 (9) | Si1—C10—H10B | 109.5 |
C1—Co1—C1i | 180.000 (1) | H10A—C10—H10B | 109.5 |
C6—N1—C9 | 116.3 (2) | Si1—C10—H10C | 109.5 |
C6—N1—C8 | 117.0 (2) | H10A—C10—H10C | 109.5 |
C9—N1—C8 | 111.9 (2) | H10B—C10—H10C | 109.5 |
C10—Si1—C12 | 110.25 (15) | Si1—C11—H11A | 109.5 |
C10—Si1—C3 | 108.65 (13) | Si1—C11—H11B | 109.5 |
C12—Si1—C3 | 112.33 (12) | H11A—C11—H11B | 109.5 |
C10—Si1—C11 | 110.58 (15) | Si1—C11—H11C | 109.5 |
C12—Si1—C11 | 108.16 (14) | H11A—C11—H11C | 109.5 |
C3—Si1—C11 | 106.82 (12) | H11B—C11—H11C | 109.5 |
C5—C1—C2 | 106.0 (2) | Si1—C12—H12A | 109.5 |
C5—C1—C6 | 127.7 (2) | Si1—C12—H12B | 109.5 |
C2—C1—C6 | 126.3 (2) | H12A—C12—H12B | 109.5 |
C5—C1—Co1 | 68.22 (12) | Si1—C12—H12C | 109.5 |
C2—C1—Co1 | 67.81 (12) | H12A—C12—H12C | 109.5 |
C6—C1—Co1 | 127.23 (15) | H12B—C12—H12C | 109.5 |
Symmetry code: (i) −x+1, −y, −z+2. |
Experimental details
(II) | (III) | |
Crystal data | ||
Chemical formula | [Fe(C12H20NSi)2] | [Co(C12H20NSi)2] |
Mr | 468.61 | 471.69 |
Crystal system, space group | Monoclinic, P21/n | Triclinic, P1 |
Temperature (K) | 213 | 213 |
a, b, c (Å) | 10.186 (2), 11.736 (3), 22.341 (5) | 7.891 (2), 9.363 (3), 10.440 (3) |
α, β, γ (°) | 90, 102.978 (3), 90 | 105.531 (3), 111.101 (3), 102.658 (3) |
V (Å3) | 2602.6 (9) | 649.2 (3) |
Z | 4 | 1 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.68 | 0.77 |
Crystal size (mm) | 0.30 × 0.20 × 0.20 | 0.30 × 0.20 × 0.20 |
Data collection | ||
Diffractometer | Siemens SMART CCD area-detector diffractometer | Siemens SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.821, 0.875 | 0.803, 0.862 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10503, 4563, 3637 | 3180, 2240, 2076 |
Rint | 0.042 | 0.017 |
(sin θ/λ)max (Å−1) | 0.595 | 0.595 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.062, 0.136, 1.09 | 0.037, 0.093, 1.08 |
No. of reflections | 4563 | 2240 |
No. of parameters | 272 | 138 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.25 | 0.24, −0.38 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Group 4 ansa-metallocenes have played a significant role in organometallic chemistry and homogeneous Ziegler–Natta olefin polymerization catalysis. Over the years, Erker and co-workers have contributed to these and related aspects of metallocene chemistry (Erker, 2011; Knüppel et al., 2005). The reaction of (enamino-Cp)Li reagents (Cp = cyclopentadienyl) prepared from the deprotonation of various 6-(dialkylamino)fulvenes with the group 4 metal tetrahalides MCl4 (M = Ti, Zr or Hf) in a 2:1 stoichiometry firstly gave the nonbridged bis(enamino-Cp)MCl2 complexes, which readily underwent an intramolecular Mannich coupling reaction and thus led to the synthesis of the corresponding C3-bridged ansa-metallocenes (Tumay et al., 2009; Venne-Dunker et al., 2003).
Using an analogous route, Erker has also reported the preparation of several similar C3-bridged ansa-ferrocenes from the reaction of FeCl2 with (enamino-Cp)Li reagents that bear different substituents at the enamino N atom, such as dimethyl, diethyl and piperidine (Liptau et al., 2001; Knüppel et al., 1999). In contrast, we now report the noncoupling reaction between FeCl2 and two molar equivalents of lithium 1-[1-(dimethylamino)ethenyl]-3-(trimethylsilyl)cyclopentadienide, which results in the formation of the title nonbridged tetrasubstituted ferrocene compound meso-bis{η5-1-[1-(dimethylamino)ethenyl]-3-(trimethylsilyl)cyclopentadienyl}iron(II), (II). For comparison, the reaction of the same lithium cyclopentadienide with CoCl2 was also undertaken and the similar nonbridged tetrasubstituted cobaltocene compound was isolated, the title compound, meso-bis{η5-1-[1-(dimethylamino)ethenyl]-3-(trimethylsilyl)cyclopentadienyl}cobalt(II), (III). The noncoupling reaction between lithium [1-(dimethylamino)ethyl]cyclopentadienide and CoCl2 has been reported by our group previously (Bai et al., 2001), but to the best of our knowledge the nonbridged enamino-substituted ferrocene system prepared via the fulvene route has not been reported before. It is proposed that the introduction of the sterically bulky trimethylsilyl substituent into the dimethylaminoethyl-substituted Cp ring might exert an important effect on the formation of the nonbridged enamino-substituted ferrocene system.
In the molecule of the tetrasubstituted ferrocene, (II), the FeII cation is nearly symmetrically displaced between the two substituted Cp rings, with distances of 1.6492 (17) and 1.6517 (19) Å (PLATON; Spek, 2009) to the centroids of the Cp rings [Cp1centr and Cp2centr refer to the centroids of Cp rings C1–C5 and C13-C17, respectively]. The dihedral angle between the two planes of the Cp rings is small [3.41 (2)°] (Fig. 1a). As shown in Fig. 1(b), the two Cp rings adopt an almost eclipsed conformation with an average torsion angle of 13.7° [the mean of the five torsion angles: C1—Cp1centr—Cp2centr—C14 = 13.29°, C2—Cp1centr—Cp2centr—C15 = 13.36°, C3—Cp1centr—Cp2centr—C16 =13.63°, C4—Cp1centr—Cp2centr—C17 = 13.90° and C5—Cp1centr—Cp2centr—C13 = 14.19°; Mercury (Macrae et al., 2008)], and two pairs of substituents (two trimethylsilyl and two dimethylaminoethenyl) are interlocked to reduce interannular repulsive interactions. The two pairs of substituents are held at varying torsion angles Csub—Cp1centr—Cp2centr—Csub and the smallest such torsion angle C1—Cp1centr—Cp2centr—C15 = 59.10° (Macrae et al., 2008), where Csub refers to the C atom of the Cp rings at which the substituents are attached. The conformation of the two Cp rings and the orientations of the four substituents in (II) are similar to those of 1,1',3,3'-tetra(trimethylsilyl)ferrocene (Okuda & Herdtweck, 1989) and 1,1',3,3'-tetra(tert-butyl)ferrocene (Abel et al., 1991), respectively. Atoms Si1, Si2, C6 and C18 are bent away from the plane of the Cp rings to which they are directly attached by 0.150, 0.155, 0.061 and 0.036 Å, respectively (Macrae et al., 2008), and away from the FeII cation. Obviously, the bulky trimethylsilyl substitutents are bent out of the Cp ring planes more than the dimethylaminoethenyl substituents. The Fe—CCp bond lengths of the substituted C atoms (C1, C3, C13 and C15) exceed those of the unsubstituted C atoms and the average Fe—C bond length in (II) of 2.046 Å compares well with that in ferrocene (2.052 Å for triclinic ferrocene and 2.045 Å for orthorhombic ferrocene; Reference?). Both the C7/C6/N1/C9 and C19/C18/N2/C21 frameworks lie approximately in a plane (with corresponding mean deviations of 0.0119 and 0.0134 Å) and display small angles of 32.76 (2) and 32.54 (11)°, respectively, with the Cp ring plane to which they are attached. The C6═C7 [1.327 (5) Å] and C18═C19 [1.329 (5) Å] bond lengths are typical for a normal C═C double bond [Standard reference?]; the shorter bond lengths for C6—N1 [1.398 (5) Å] and C18—N2 [1.391 (5) Å] indicate electronic delocalization between the N atoms (N1 and N2) and the double bonds attached to them.
The molecule of the tetrasubstituted cobaltocene, (III), displays a rigorously planar sandwich geometry and the CoII cation occupies a crystallographic inversion centre at (-x + 1, -y, -z + 2), affording a staggered conformation of the Cp ligands with the same distance of 1.7315 (4) Å from the CoII cation to the centroids of the two Cp rings (Cpcentr) (Fig. 2) C1–C5 and C1A–C5A (Spek, 2009). The conformation of the Cp rings in (III) is different from those found in (II) and in 1,1',3,3'-tetra(tert-butyl)cobaltocene (Schneider et al., 1997) so as to meet the steric demands in (III). Just as observed in (II), the Co—Csub (substituted C atoms of the Cp rings) bond lengths exceed those of the unsubstituted C atoms; the average Co—C(ring) distance of 2.112 Å is comparable with the average metal—carbon distances in Cp2Co (2.096 Å) and Cp*2Co (2.105 Å [Which ring is Cp*?]). The slightly longer M—C(ring) bonds in (III) than in (II) are favourable to reduce the transannular steric repulsive interactions. As shown in Fig. 2(b), the two trimethylsilyl and two dimethylaminoethenyl substituents are oriented in opposite directions, respectively, and the trimethylsilyl of one Cp ring and the dimethylaminoethenyl of the other are arranged more closely (torsion angle C1—Cp1centr—Cp2centr—C3A = 35.06°; Macrae et al., 2008) than in II. Furthermore, the trimethylsilyl and dimethylaminoethenyl substitutents are bent away from the Co centre to reduce the transannular steric repulsion interactions from neighbouring substitutents; the perpendicular distances from atoms SiA and C6A to the attached Cp ring plane are 0.243 and 0.077 Å, respectively (Macrae et al., 2008). The planar C7/C6/N/C9 skeleton (mean deviation 0.0223 Å) forms a dihedral angle of 35.51 (2)° with Cp ring plane to which it is attached. The bond distances and angles involving the trimethylsilyl and dimethylaminoethenyl substitutents are as expected and are well within the corresponding range observed in (II).
Although previous studies of the eclipsed and staggered forms of metallocenes have already shown that the eclipsed conformation is energetically more favourable than the staggered one (Swart, 2007; Zlatar et al., 2009), no systematics for the adoption of a certain conformation in multiply ring-substituted metallocenes can be deduced so far. Conformational preferences appear to be even more delicately balanced by the interannular repulsive interactions, metal–ring distances, substitutents on the Cp rings etc. (Okuda, 1991; Phillips et al., 2010).