Download citation
Download citation
link to html
The title compounds are diastereoisomers with antipodean axial chirality. The M isomer crystallizes as a (1/3) acetone solvate, C32H30NO+·Br-·3C3H6O, while the P isomer crystallizes as a (1/1) di­chloro­methane solvate, C32H30NO+·Br-·CH2Cl2. In each structure, O-H...Br hydrogen bonds link the cations and anions to give ion pairs. The seven-membered azepinium ring adopts the usual twisted-boat conformation and its ring strain causes a slight curvature of the plane of each naphthyl ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100006739/sk1391sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100006739/sk1391Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100006739/sk1391IIsup3.hkl
Contains datablock II

CCDC references: 150346; 150347

Comment top

Axially chiral compounds containing a binaphthyl moiety have been used extensively as chiral auxiliaries for asymmetric synthesis, but the production of optically pure compounds of this type can be very tedious. Maigrot & Mazaleyrat (1985) reported a relatively straightforward synthesis for obtaining a mixture of the M and P diastereoisomers of the title quarternary ammonium salts, (I) and (II), respectively, and found that these isomers could readily be separated by crystallization because of their markedly different solubilities in the usual organic solvents. Optically active azepinium compounds have been used in asymmetric phase transfer catalysis (Shi & Masaki, 1994). The corresponding dihydrobenzazepine compounds show pharmacological activity (Wenner, 1951; Hall et al., 1986) and have been used as ligands in asymmetric catalysis (Widhalm et al. 1998). We are currently using these conveniently resolved azepinium salts as precursors in the synthesis of new axially chiral diimine compounds, which can also act as potential ligands in asymmetric catalysis. As we are interested in the conformation of the seven-membered azepinium ring, as well as in the angle between the aromatic planes in the title compounds and in binaphthyldiimines in general, we have determined the structures of (I) and (II). \sch

In both (I) and (II), the bond lengths and angles are within normal ranges and an O—H···Br hydrogen bond exists between the hydroxy group of the cation and the bromide ion, thus forming ion pairs. The asymmetric unit of compound (I) also contains three acetone molecules, which fit rather loosely into their cavities and show signs of disorder. The asymmetric unit of compound (II) includes a single ordered dichloromethane molecule.

The Cambridge Structural Database (CSD, October 1999 release; Allen & Kennard, 1993) contains the structures of ten dibenz- or dinaphthazepine derivatives, of which one is a dibenzazepinium salt (Alilou et al., 1999) and three are neutral dinaphthazepines (Rychnovsky et al., 1996; Widhalm et al., 1998). Of these ten structures, three structures have sp2 C atoms adjacent to the azepine N atom and one has no coordinates in the CSD. In the six remaining structures (Nyburg et al., 1988; Rychnovsky et al., 1996; Mrvoš-Sermek et al., 1998; Widhalm et al., 1998; Alilou et al., 1999), the azepine or azepinium ring adopts a twisted-boat conformation in which one N—C bond and the opposing C—C bond that is fused to one of the naphthyl or phenyl rings forms the floor of the boat. The angle between the planes defined by this four-atom floor and the three-atom bow plane of the boat is in the range 40.9–51.5°, while the angle between the floor and the four-atom stern plane of the boat is in the range 48.5–55.8°. The choice of the two alternatives for the definition of the boat, based on which N—C bond is used, makes little difference to these calculations. In (I) and (II), the corresponding plane angles are in a similar range, which shows that there is no significant difference between the conformations of azepine and azepinium rings. The angles between the mean plane through atoms N1, C11, C12 and C21 and the planes through N1, C12 and C22, and C1, C2, C11 and C21, are 49.7 (5) and 55.7 (3)°, respectively, for (I), and 44.3 (3) and 55.07 (13)°, respectively, for (II). Using the alternative definition of the boat atoms, the angles between the mean plane through atoms N1, C1, C2 and C22 and the planes through N1, C2 and C21, and C1, C11, C12 and C22, are 48.7 (5) and 55.5 (3)°, respectively, for (I), and 52.6 (2) and 54.24 (17)°, respectively, for (II).

The angle between the mean planes through each of the naphthyl rings is not significantly different for (I) and (II), being 59.66 (7) and 60.79 (7)°, respectively. The corresponding plane angle in the six database structures mentioned above is in the range 42.7–66.0°, with that in the dibenzazepinium salt (Alilou et al., 1999) being 49.7°. However, in the structures of both (I) and (II), the naphthyl rings are not highly planar, with the r.m.s. deviation from the mean planes being 0.028 and 0.052 Å for the rings containing C1 and C11, respectively, in (I) and 0.064 and 0.045 Å, respectively, for the corresponding rings in (II). The deviation from planarity results primarily from a small bend about the C1···C4 and C11···C14 axes in each compound, so that each naphthyl ring is composed of two much more planar subsections containing four and eight atoms. In (I), the maximum r.m.s deviation in these sub-planes is only 0.018 Å and the angles between the planes that intersect along the C1···C4 and C11···C14 axes are 3.1 (4) and 7.9 (5)°, respectively. For compound (II), the corresponding angles are 10.09 (16) and 5.9 (3)°, respectively, with the maximum r.m.s deviation in these sub-planes being 0.015 Å. The distortions of the naphthyl ring planes can be attributed to the effect of ring strain in the seven-membered azepinium ring which fuses with both naphthyl moieties in each compound. Despite these distortions, the bond lengths in the naphthyl rings show the usual pattern that is characteristic of naphthalene (Brock & Dunitz, 1982).

Curvature of the naphthyl ring plane is not unusual. Distortions of this nature appear to be quite common in 2,2'-substituted-1,1'-binaphthyl moieties when the 2 and 2' atoms are connected to each other via a seven-membered or smaller cyclic system, as in the case of compounds (I) and (II). The CSD contains 139 such entries with seven-membered rings composed of any element, and angles of up to 10° between the planes about the axes equivalent to C1···C4, as described above, are not uncommon. The mean of the sample is 4(2)°. The CSD shows that larger interplanar angles of around 11 and 14° are found for six and five-membered connecting rings, respectively, which is indicative of the increasing effect of ring strain on the planarity of the naphthyl system. When there is no ring connecting the two naphthyl moieties, the distortions of the naphthyl rings are essentially negligible.

Experimental top

The separated diastereoisomers, (I) and (II), were prepared according to the method of Maigrot & Mazaleyrat (1985). Crystals of (I) (m.p. 473–481 K) were obtained by slowly cooling a warm saturated solution of the compound in acetone to room temperature, while crystals of (II) (m.p. 531–537 K) were obtained by the slow diffusion of hexane into a saturated solution of the compound in dichloromethane.

Refinement top

The data sets for compounds (I) and (II) included the Friedel opposites of all symmetry-unique reflections with θ < 25° and θ < θmax, respectively. For both compounds, the methyl H atoms were constrained to an ideal geometry with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the C—C bonds. The orientation of the hydroxy-H atom was chosen initially by refining its position freely, whereupon it was found that the O—H vector was directed towards the nearest Br atom. The position of the hydroxy-H atom was subsequently geometrically optimized while retaining this orientation and constrained to ride on its parent atom with Uiso(H) = 1.5Ueq(O). All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). There are three acetone molecules in the asymmetric unit of (I). They appear to fit rather loosely into their cavities and show evidence for being slightly disordered. As a result, the atomic displacement parameters for the solvent atoms are large and their bond lengths and angles are not ideal. In addition, the mean position for O3, which has the largest atomic displacement parameters, results in short intermolecular contacts of 2.80 and 2.94 Å with C34 and C35, respectively, from another acetone molecule. Presumably, the true disordered positions for O3 are such that these interactions are minimized. Attempts to model the disorder were not fruitful, nor was an attempt to remove the solvent contribution by using the SQUEEZE procedure (van der Sluis & Spek, 1990) in PLATON (Spek, 2000). In the asymmetric unit of (II) there is one molecule of dichloromethane, which is not significantly disordered.

Computing details top

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1997). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990) for (I); SHELXS86 (Sheldrick, 1986) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1]
[Figure 2]
Fig. 1. The molecular structures of (a) (I) and (b) (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size. The solvent molecules have been omitted for clarity.
(I) (M)-8-[(1S,2R)-2-hydroxy-1-methyl-2-phenylethyl]-8-methyl- 8,9-dihydro-7H-dinaphth[2,1 − c:1',2'-e]azepinium bromide acetone (1/3) solvate top
Crystal data top
C32H30NO+·Br·3C3H6ODx = 1.274 Mg m3
Mr = 698.70Melting point = 473–481 K
Tetragonal, P41Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 41Cell parameters from 22 reflections
a = 16.2515 (16) Åθ = 12.5–17.0°
c = 13.7964 (19) ŵ = 1.17 mm1
V = 3643.8 (7) Å3T = 173 K
Z = 4Prism, colourless
F(000) = 14720.45 × 0.28 × 0.20 mm
Data collection top
Rigaku AFC-5R
diffractometer
3936 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anode generatorRint = 0.055
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
ω/2θ scansh = 1821
Absorption correction: ψ-scan
(North et al., 1968)
k = 2121
Tmin = 0.700, Tmax = 0.792l = 1717
8931 measured reflections3 standard reflections every 150 reflections
8032 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.0719P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
8032 reflectionsΔρmax = 0.46 e Å3
432 parametersΔρmin = 0.41 e Å3
1 restraintAbsolute structure: Flack (1983), 3673 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.017 (13)
Crystal data top
C32H30NO+·Br·3C3H6OZ = 4
Mr = 698.70Mo Kα radiation
Tetragonal, P41µ = 1.17 mm1
a = 16.2515 (16) ÅT = 173 K
c = 13.7964 (19) Å0.45 × 0.28 × 0.20 mm
V = 3643.8 (7) Å3
Data collection top
Rigaku AFC-5R
diffractometer
3936 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.055
Tmin = 0.700, Tmax = 0.7923 standard reflections every 150 reflections
8931 measured reflections intensity decay: none
8032 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.169Δρmax = 0.46 e Å3
S = 1.00Δρmin = 0.41 e Å3
8032 reflectionsAbsolute structure: Flack (1983), 3673 Friedel pairs
432 parametersAbsolute structure parameter: 0.017 (13)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

− 0.7741 (0.0306) x + 6.4522 (0.0190) y − 12.6454 (0.0072) z = 0.0772 (0.0131)

* 0.0319 (0.0053) C1 * −0.0039 (0.0049) C2 * −0.0362 (0.0051) C3 * −0.0162 (0.0053) C4 * 0.0133 (0.0054) C5 * 0.0276 (0.0060) C6 * 0.0108 (0.0065) C7 * −0.0430 (0.0059) C8 * −0.0266 (0.0052) C9 * 0.0422 (0.0053) C10

Rms deviation of fitted atoms = 0.0283

− 2.2572 (0.0291) x + 9.3297 (0.0155) y + 11.1328 (0.0100) z = 2.1991 (0.0192)

Angle to previous plane (with approximate e.s.d.) = 59.66 (0.07)

* 0.0735 (0.0051) C11 * −0.0614 (0.0048) C12 * −0.0662 (0.0050) C13 * 0.0120 (0.0048) C14 * 0.0581 (0.0052) C15 * 0.0267 (0.0052) C16 * −0.0163 (0.0053) C17 * −0.0736 (0.0052) C18 * −0.0126 (0.0048) C19 * 0.0598 (0.0050) C20

Rms deviation of fitted atoms = 0.0522

1.0089 (0.0459) x − 6.0598 (0.0786) y + 12.7727 (0.0276) z = 0.1013 (0.0219)

* 0.0017 (0.0019) C1 * −0.0034 (0.0039) C2 * 0.0035 (0.0040) C3 * −0.0018 (0.0020) C4

Rms deviation of fitted atoms = 0.0027

− 0.5735 (0.0449) x + 6.7660 (0.0414) y − 12.5344 (0.0163) z = 0.2814 (0.0227)

Angle to previous plane (with approximate e.s.d.) = 3.09 (0.43)

* −0.0243 (0.0043) C5 * 0.0022 (0.0052) C6 * 0.0172 (0.0057) C7 * −0.0138 (0.0052) C8 * −0.0085 (0.0046) C9 * 0.0272 (0.0042) C10

Rms deviation of fitted atoms = 0.0178

− 1.9108 (0.0443) x + 8.1187 (0.0738) y + 11.8409 (0.0375) z = 2.2029 (0.0294)

* 0.0041 (0.0018) C11 * −0.0083 (0.0038) C12 * 0.0087 (0.0039) C13 * −0.0045 (0.0020) C14

Rms deviation of fitted atoms = 0.0067

− 2.5169 (0.0387) x + 9.8629 (0.0322) y + 10.7550 (0.0216) z = 2.2565 (0.0278)

Angle to previous plane (with approximate e.s.d.) = 7.93 (0.53)

* −0.0125 (0.0041) C15 * −0.0017 (0.0045) C16 * 0.0172 (0.0047) C17 * −0.0184 (0.0046) C18 * 0.0038 (0.0042) C19 * 0.0116 (0.0039) C20

Rms deviation of fitted atoms = 0.0125

14.4670 (0.0306) x − 7.3095 (0.0482) y + 1.0000 (0.1130) z = 6.9961 (0.0173)

* 0.0000 (0.0000) N1 * 0.0000 (0.0000) C22 * 0.0000 (0.0000) C12

Rms deviation of fitted atoms = 0.0000

11.7275 (0.0413) x − 1.9567 (0.0386) y − 9.4054 (0.0394) z = 4.9154 (0.0238)

Angle to previous plane (with approximate e.s.d.) = 49.67 (0.45)

* −0.0944 (0.0028) N1 * 0.0816 (0.0025) C21 * −0.0955 (0.0029) C11 * 0.1083 (0.0033) C12

Rms deviation of fitted atoms = 0.0955

− 0.5455 (0.0688) x + 6.0262 (0.0455) y − 12.8045 (0.0161) z = 0.0855 (0.0306)

Angle to previous plane (with approximate e.s.d.) = 55.68 (0.28)

* 0.0016 (0.0018) C21 * −0.0033 (0.0038) C2 * 0.0033 (0.0038) C1 * −0.0016 (0.0019) C11

Rms deviation of fitted atoms = 0.0026

12.0540 (0.0397) x + 10.8915 (0.0472) y − 0.3690 (0.1142) z = 6.7682 (0.0115)

* 0.0000 (0.0000) N1 * 0.0000 (0.0000) C21 * 0.0000 (0.0000) C2

Rms deviation of fitted atoms = 0.0000

11.0402 (0.0389) x + 3.3195 (0.0464) y − 9.7241 (0.0382) z = 4.6381 (0.0266)

Angle to previous plane (with approximate e.s.d.) = 48.73 (0.48)

* 0.1314 (0.0028) N1 * −0.1153 (0.0025) C22 * 0.1353 (0.0030) C1 * −0.1514 (0.0033) C2

Rms deviation of fitted atoms = 0.1339

− 1.4026 (0.0681) x + 8.0700 (0.0473) y + 11.9159 (0.0215) z = 2.4788 (0.0398)

Angle to previous plane (with approximate e.s.d.) = 55.53 (0.28)

* −0.0043 (0.0019) C22 * 0.0088 (0.0039) C12 * −0.0086 (0.0038) C11 * 0.0041 (0.0018) C1

Rms deviation of fitted atoms = 0.0068

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.69148 (4)0.00881 (5)0.34716 (6)0.0519 (2)
O240.5436 (3)0.0854 (3)0.2445 (3)0.0474 (12)
H240.58590.06290.26740.071*
N10.5079 (3)0.0629 (3)0.1077 (4)0.0328 (11)
C10.4381 (3)0.2488 (3)0.0915 (5)0.0305 (13)
C20.4054 (4)0.1747 (4)0.0585 (4)0.0317 (15)
C30.3189 (4)0.1614 (4)0.0596 (5)0.0395 (16)
H30.29750.11030.03770.047*
C40.2674 (4)0.2197 (4)0.0909 (5)0.0411 (15)
H40.20990.20960.08970.049*
C50.2969 (4)0.2963 (4)0.1259 (4)0.0399 (16)
C60.2417 (4)0.3583 (5)0.1597 (5)0.0524 (19)
H60.18400.34960.15710.063*
C70.2716 (5)0.4281 (5)0.1949 (6)0.058 (2)
H70.23430.46930.21620.070*
C80.3575 (4)0.4436 (5)0.2017 (5)0.0542 (19)
H80.37710.49330.22960.065*
C90.4113 (4)0.3859 (4)0.1677 (4)0.0356 (15)
H90.46880.39590.17220.043*
C100.3836 (4)0.3127 (4)0.1266 (4)0.0331 (15)
C110.5293 (3)0.2602 (3)0.0934 (5)0.0312 (13)
C120.5748 (4)0.1999 (4)0.1410 (4)0.0320 (14)
C130.6613 (4)0.2112 (4)0.1487 (5)0.0386 (16)
H130.69230.17110.18300.046*
C140.7016 (4)0.2755 (4)0.1100 (4)0.0376 (15)
H140.75920.28130.11900.045*
C150.6571 (4)0.3346 (4)0.0556 (4)0.0341 (15)
C160.6981 (4)0.3993 (4)0.0069 (5)0.0397 (17)
H160.75590.40530.01430.048*
C170.6557 (4)0.4536 (4)0.0511 (5)0.0451 (17)
H170.68380.49780.08170.054*
C180.5710 (4)0.4433 (4)0.0648 (5)0.0411 (16)
H180.54250.47890.10790.049*
C190.5287 (4)0.3834 (4)0.0177 (4)0.0333 (14)
H190.47090.37920.02640.040*
C200.5698 (3)0.3265 (3)0.0448 (4)0.0268 (13)
C210.4640 (4)0.1088 (4)0.0246 (4)0.0333 (15)
H2110.50600.13420.01780.040*
H2120.43300.06830.01470.040*
C220.5346 (4)0.1264 (4)0.1850 (4)0.0313 (14)
H2210.48570.14420.22230.038*
H2220.57340.09990.23070.038*
C230.4478 (4)0.0003 (4)0.1540 (4)0.0332 (15)
H230.39450.02920.16440.040*
C240.4760 (4)0.0324 (4)0.2549 (5)0.0360 (15)
H2410.49150.01520.29700.043*
C250.4026 (4)0.0771 (4)0.2988 (4)0.0372 (16)
C260.3321 (4)0.0334 (4)0.3253 (4)0.0423 (18)
H260.32820.02400.31320.051*
C270.2675 (5)0.0754 (5)0.3698 (5)0.058 (2)
H270.21960.04590.38810.070*
C280.2714 (5)0.1573 (6)0.3876 (5)0.062 (2)
H280.22680.18460.41850.074*
C290.3404 (5)0.2009 (4)0.3605 (5)0.0536 (19)
H290.34300.25860.37140.064*
C300.4050 (4)0.1614 (4)0.3182 (4)0.0445 (17)
H300.45280.19190.30150.053*
C310.5825 (4)0.0237 (4)0.0663 (5)0.0464 (19)
H3110.56670.01150.01170.070*
H3120.60950.00970.11610.070*
H3130.62050.06640.04360.070*
C320.4297 (4)0.0721 (4)0.0844 (5)0.0462 (17)
H3210.47820.10770.07990.069*
H3220.41640.05030.02000.069*
H3230.38290.10390.10890.069*
O10.4105 (6)0.1478 (6)0.3842 (7)0.158 (4)
C330.3423 (8)0.2825 (7)0.3926 (8)0.118 (4)
H3310.38430.30250.34740.177*
H3320.34020.31880.44930.177*
H3330.28860.28220.36040.177*
C340.3645 (7)0.1935 (7)0.4257 (8)0.098 (4)
C350.3240 (8)0.1685 (9)0.5114 (10)0.155 (6)
H3510.31070.10980.50730.232*
H3520.27310.20030.51920.232*
H3530.36000.17820.56720.232*
O20.0430 (8)0.0440 (7)0.9278 (8)0.176 (5)
C360.0887 (10)0.1105 (11)0.9362 (17)0.230 (12)
H3610.09470.16160.97340.345*
H3620.12180.11410.87690.345*
H3630.10780.06400.97550.345*
C370.0048 (9)0.0989 (9)0.9115 (8)0.106 (4)
C380.0308 (8)0.1667 (7)0.8577 (10)0.125 (4)
H3810.08120.14820.82530.188*
H3820.00870.18600.80900.188*
H3830.04390.21170.90230.188*
O30.2136 (7)0.1452 (10)0.3452 (15)0.296 (10)
C390.1214 (10)0.0914 (12)0.2354 (17)0.191 (8)
H3910.09340.12590.18740.286*
H3920.08390.04810.25760.286*
H3930.17020.06640.20590.286*
C400.1452 (11)0.1397 (11)0.3141 (12)0.144 (6)
C410.0830 (13)0.1946 (11)0.3535 (15)0.233 (11)
H4110.04700.16380.39750.350*
H4120.05010.21760.30040.350*
H4130.10980.23930.38910.350*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0486 (4)0.0594 (5)0.0479 (4)0.0012 (4)0.0004 (4)0.0067 (4)
O240.045 (3)0.042 (3)0.055 (3)0.007 (2)0.006 (2)0.004 (2)
N10.039 (3)0.036 (3)0.024 (3)0.005 (2)0.006 (2)0.001 (2)
C10.030 (3)0.037 (3)0.024 (3)0.003 (3)0.001 (3)0.011 (3)
C20.038 (4)0.035 (4)0.022 (3)0.008 (3)0.007 (3)0.008 (3)
C30.044 (4)0.044 (4)0.031 (4)0.013 (3)0.007 (3)0.007 (3)
C40.035 (4)0.055 (4)0.033 (3)0.005 (3)0.005 (3)0.013 (4)
C50.040 (4)0.053 (4)0.027 (4)0.003 (3)0.000 (3)0.005 (3)
C60.030 (4)0.076 (6)0.051 (5)0.001 (4)0.005 (3)0.005 (4)
C70.044 (5)0.063 (5)0.067 (5)0.012 (4)0.016 (4)0.018 (4)
C80.047 (5)0.058 (5)0.058 (5)0.001 (4)0.013 (4)0.016 (4)
C90.027 (3)0.040 (4)0.039 (4)0.001 (3)0.002 (3)0.003 (3)
C100.032 (4)0.045 (4)0.022 (3)0.009 (3)0.001 (3)0.002 (3)
C110.030 (3)0.038 (3)0.026 (3)0.002 (3)0.001 (3)0.006 (3)
C120.034 (4)0.038 (4)0.025 (3)0.004 (3)0.003 (3)0.006 (3)
C130.040 (4)0.042 (4)0.034 (4)0.007 (3)0.009 (3)0.003 (3)
C140.037 (4)0.043 (4)0.033 (4)0.000 (3)0.010 (3)0.008 (3)
C150.038 (4)0.038 (4)0.026 (3)0.007 (3)0.004 (3)0.010 (3)
C160.034 (4)0.043 (4)0.041 (4)0.014 (3)0.002 (3)0.007 (3)
C170.048 (4)0.044 (4)0.043 (4)0.011 (3)0.004 (3)0.003 (3)
C180.042 (4)0.040 (4)0.042 (4)0.007 (3)0.001 (3)0.009 (3)
C190.032 (3)0.038 (4)0.030 (3)0.004 (3)0.001 (3)0.002 (3)
C200.027 (3)0.029 (3)0.024 (3)0.006 (3)0.003 (3)0.007 (3)
C210.051 (4)0.032 (4)0.017 (3)0.008 (3)0.002 (3)0.002 (3)
C220.039 (4)0.036 (4)0.018 (3)0.003 (3)0.001 (3)0.000 (3)
C230.046 (4)0.028 (3)0.025 (3)0.001 (3)0.003 (3)0.003 (3)
C240.046 (4)0.026 (3)0.037 (4)0.004 (3)0.008 (3)0.000 (3)
C250.050 (4)0.040 (4)0.022 (3)0.001 (3)0.014 (3)0.004 (3)
C260.046 (4)0.052 (4)0.028 (4)0.008 (3)0.001 (3)0.003 (3)
C270.055 (5)0.080 (6)0.039 (5)0.009 (4)0.004 (4)0.005 (4)
C280.069 (6)0.083 (6)0.034 (4)0.026 (5)0.003 (4)0.010 (4)
C290.073 (5)0.047 (4)0.041 (4)0.019 (4)0.008 (4)0.013 (4)
C300.054 (4)0.047 (4)0.033 (4)0.006 (3)0.015 (3)0.004 (3)
C310.054 (5)0.044 (4)0.042 (4)0.001 (3)0.012 (3)0.005 (3)
C320.067 (5)0.038 (4)0.033 (4)0.006 (3)0.006 (4)0.003 (3)
O10.176 (8)0.138 (7)0.158 (9)0.072 (6)0.103 (7)0.085 (7)
C330.156 (11)0.123 (10)0.075 (7)0.038 (8)0.006 (7)0.029 (7)
C340.108 (8)0.091 (8)0.095 (8)0.011 (7)0.043 (7)0.029 (7)
C350.164 (13)0.167 (13)0.132 (11)0.083 (11)0.072 (11)0.045 (10)
O20.185 (10)0.201 (11)0.143 (8)0.086 (9)0.000 (7)0.047 (8)
C360.152 (15)0.194 (17)0.34 (3)0.071 (13)0.128 (17)0.122 (18)
C370.105 (10)0.133 (11)0.079 (8)0.015 (9)0.015 (7)0.000 (8)
C380.171 (12)0.102 (8)0.102 (9)0.010 (8)0.018 (10)0.021 (8)
O30.122 (9)0.357 (19)0.41 (2)0.043 (10)0.130 (14)0.036 (19)
C390.109 (13)0.22 (2)0.25 (2)0.007 (13)0.017 (14)0.049 (18)
C400.139 (14)0.167 (15)0.127 (14)0.040 (12)0.027 (11)0.011 (11)
C410.31 (3)0.222 (19)0.172 (17)0.13 (2)0.01 (2)0.020 (16)
Geometric parameters (Å, º) top
O24—C241.405 (7)C23—C241.555 (8)
O24—H240.84C23—H231.00
N1—C311.484 (7)C24—C251.521 (9)
N1—C211.542 (7)C24—H2411.00
N1—C221.546 (7)C25—C301.396 (9)
N1—C231.555 (7)C25—C261.397 (9)
C1—C21.392 (8)C26—C271.395 (10)
C1—C101.449 (8)C26—H260.95
C1—C111.493 (7)C27—C281.355 (11)
C2—C31.422 (8)C27—H270.95
C2—C211.508 (8)C28—C291.378 (10)
C3—C41.336 (9)C28—H280.95
C3—H30.95C29—C301.361 (9)
C4—C51.419 (9)C29—H290.95
C4—H40.95C30—H300.95
C5—C61.428 (9)C31—H3110.98
C5—C101.433 (9)C31—H3120.98
C6—C71.326 (10)C31—H3130.98
C6—H60.95C32—H3210.98
C7—C81.421 (10)C32—H3220.98
C7—H70.95C32—H3230.98
C8—C91.365 (9)O1—C341.199 (11)
C8—H80.95C33—C341.559 (14)
C9—C101.393 (8)C33—H3310.98
C9—H90.95C33—H3320.98
C11—C121.394 (8)C33—H3330.98
C11—C201.428 (8)C34—C351.413 (15)
C12—C131.421 (8)C35—H3510.98
C12—C221.491 (8)C35—H3520.98
C13—C141.345 (8)C35—H3530.98
C13—H130.95O2—C371.203 (13)
C14—C151.417 (8)C36—C371.419 (18)
C14—H140.95C36—H3610.98
C15—C161.415 (8)C36—H3620.98
C15—C201.432 (8)C36—H3630.98
C16—C171.376 (9)C37—C381.449 (15)
C16—H160.95C38—H3810.98
C17—C181.401 (9)C38—H3820.98
C17—H170.95C38—H3830.98
C18—C191.358 (9)O3—C401.196 (17)
C18—H180.95C39—C401.39 (2)
C19—C201.430 (8)C39—H3910.98
C19—H190.95C39—H3920.98
C21—H2110.99C39—H3930.98
C21—H2120.99C40—C411.45 (2)
C22—H2210.99C41—H4110.98
C22—H2220.99C41—H4120.98
C23—C321.540 (8)C41—H4130.98
C24—O24—H24109.5C24—C23—H23106.7
C31—N1—C21107.4 (5)N1—C23—H23106.7
C31—N1—C22108.8 (5)O24—C24—C25111.1 (5)
C21—N1—C22108.7 (4)O24—C24—C23110.1 (5)
C31—N1—C23112.8 (4)C25—C24—C23106.6 (5)
C21—N1—C23109.5 (4)O24—C24—H241109.6
C22—N1—C23109.5 (4)C25—C24—H241109.6
C2—C1—C10119.7 (5)C23—C24—H241109.6
C2—C1—C11119.5 (5)C30—C25—C26118.1 (6)
C10—C1—C11120.8 (5)C30—C25—C24121.6 (6)
C1—C2—C3120.4 (6)C26—C25—C24120.2 (6)
C1—C2—C21118.3 (5)C27—C26—C25118.9 (7)
C3—C2—C21121.2 (6)C27—C26—H26120.6
C4—C3—C2121.0 (6)C25—C26—H26120.6
C4—C3—H3119.5C28—C27—C26121.8 (8)
C2—C3—H3119.5C28—C27—H27119.1
C3—C4—C5121.4 (6)C26—C27—H27119.1
C3—C4—H4119.3C27—C28—C29119.5 (7)
C5—C4—H4119.3C27—C28—H28120.2
C4—C5—C6121.2 (6)C29—C28—H28120.2
C4—C5—C10119.8 (6)C30—C29—C28120.1 (7)
C6—C5—C10118.9 (6)C30—C29—H29120.0
C7—C6—C5119.6 (7)C28—C29—H29120.0
C7—C6—H6120.2C29—C30—C25121.6 (7)
C5—C6—H6120.2C29—C30—H30119.2
C6—C7—C8122.3 (7)C25—C30—H30119.2
C6—C7—H7118.8N1—C31—H311109.5
C8—C7—H7118.8N1—C31—H312109.5
C9—C8—C7119.0 (7)H311—C31—H312109.5
C9—C8—H8120.5N1—C31—H313109.5
C7—C8—H8120.5H311—C31—H313109.5
C8—C9—C10121.3 (6)H312—C31—H313109.5
C8—C9—H9119.4C23—C32—H321109.5
C10—C9—H9119.4C23—C32—H322109.5
C9—C10—C5118.6 (6)H321—C32—H322109.5
C9—C10—C1123.4 (5)C23—C32—H323109.5
C5—C10—C1117.8 (5)H321—C32—H323109.5
C12—C11—C20120.4 (5)H322—C32—H323109.5
C12—C11—C1116.6 (5)C34—C33—H331109.5
C20—C11—C1122.9 (5)C34—C33—H332109.5
C11—C12—C13118.0 (6)H331—C33—H332109.5
C11—C12—C22121.6 (5)C34—C33—H333109.5
C13—C12—C22120.4 (6)H331—C33—H333109.5
C14—C13—C12123.5 (6)H332—C33—H333109.5
C14—C13—H13118.2O1—C34—C35120.8 (12)
C12—C13—H13118.2O1—C34—C33125.4 (11)
C13—C14—C15119.3 (6)C35—C34—C33113.8 (10)
C13—C14—H14120.4C34—C35—H351109.5
C15—C14—H14120.4C34—C35—H352109.5
C16—C15—C14121.0 (6)H351—C35—H352109.5
C16—C15—C20119.1 (6)C34—C35—H353109.5
C14—C15—C20119.9 (6)H351—C35—H353109.5
C17—C16—C15121.1 (6)H352—C35—H353109.5
C17—C16—H16119.4C37—C36—H361109.5
C15—C16—H16119.4C37—C36—H362109.5
C16—C17—C18119.6 (6)H361—C36—H362109.5
C16—C17—H17120.2C37—C36—H363109.5
C18—C17—H17120.2H361—C36—H363109.5
C19—C18—C17121.2 (6)H362—C36—H363109.5
C19—C18—H18119.4O2—C37—C36132.4 (17)
C17—C18—H18119.4O2—C37—C38113.7 (13)
C18—C19—C20121.1 (6)C36—C37—C38113.9 (15)
C18—C19—H19119.4C37—C38—H381109.5
C20—C19—H19119.4C37—C38—H382109.5
C11—C20—C19123.7 (5)H381—C38—H382109.5
C11—C20—C15118.5 (5)C37—C38—H383109.5
C19—C20—C15117.7 (5)H381—C38—H383109.5
C2—C21—N1113.9 (4)H382—C38—H383109.5
C2—C21—H211108.8C40—C39—H391109.5
N1—C21—H211108.8C40—C39—H392109.5
C2—C21—H212108.8H391—C39—H392109.5
N1—C21—H212108.8C40—C39—H393109.5
H211—C21—H212107.7H391—C39—H393109.5
C12—C22—N1112.1 (4)H392—C39—H393109.5
C12—C22—H221109.2O3—C40—C39125 (2)
N1—C22—H221109.2O3—C40—C41117.8 (19)
C12—C22—H222109.2C39—C40—C41116.3 (18)
N1—C22—H222109.2C40—C41—H411109.5
H221—C22—H222107.9C40—C41—H412109.5
C32—C23—C24111.2 (5)H411—C41—H412109.5
C32—C23—N1111.4 (5)C40—C41—H413109.5
C24—C23—N1113.8 (5)H411—C41—H413109.5
C32—C23—H23106.7H412—C41—H413109.5
C10—C1—C2—C30.3 (9)C12—C11—C20—C19170.1 (6)
C11—C1—C2—C3177.6 (5)C1—C11—C20—C196.3 (9)
C10—C1—C2—C21178.6 (5)C12—C11—C20—C157.0 (9)
C11—C1—C2—C210.7 (8)C1—C11—C20—C15176.6 (5)
C1—C2—C3—C40.8 (10)C18—C19—C20—C11177.5 (6)
C21—C2—C3—C4179.1 (5)C18—C19—C20—C150.3 (8)
C2—C3—C4—C51.2 (10)C16—C15—C20—C11179.2 (6)
C3—C4—C5—C6179.7 (6)C14—C15—C20—C112.7 (8)
C3—C4—C5—C100.9 (9)C16—C15—C20—C191.9 (8)
C4—C5—C6—C7177.8 (7)C14—C15—C20—C19174.6 (5)
C10—C5—C6—C72.8 (10)C1—C2—C21—N176.0 (7)
C5—C6—C7—C81.0 (12)C3—C2—C21—N1102.3 (6)
C6—C7—C8—C92.5 (12)C31—N1—C21—C2159.9 (5)
C7—C8—C9—C100.0 (11)C22—N1—C21—C242.2 (6)
C8—C9—C10—C53.8 (9)C23—N1—C21—C277.3 (6)
C8—C9—C10—C1178.6 (6)C11—C12—C22—N175.1 (7)
C4—C5—C10—C9175.4 (6)C13—C12—C22—N1106.3 (6)
C6—C5—C10—C95.2 (9)C31—N1—C22—C1270.6 (6)
C4—C5—C10—C10.4 (8)C21—N1—C22—C1246.2 (6)
C6—C5—C10—C1179.8 (6)C23—N1—C22—C12165.7 (5)
C2—C1—C10—C9174.9 (6)C31—N1—C23—C3250.1 (6)
C11—C1—C10—C93.0 (9)C21—N1—C23—C3269.5 (6)
C2—C1—C10—C50.1 (9)C22—N1—C23—C32171.5 (5)
C11—C1—C10—C5177.8 (5)C31—N1—C23—C2476.5 (6)
C2—C1—C11—C1252.7 (8)C21—N1—C23—C24163.9 (5)
C10—C1—C11—C12125.2 (7)C22—N1—C23—C2444.8 (6)
C2—C1—C11—C20123.8 (7)C32—C23—C24—O2454.9 (7)
C10—C1—C11—C2058.3 (8)N1—C23—C24—O2471.8 (6)
C20—C11—C12—C136.7 (9)C32—C23—C24—C2565.8 (6)
C1—C11—C12—C13176.7 (5)N1—C23—C24—C25167.5 (5)
C20—C11—C12—C22174.7 (5)O24—C24—C25—C304.0 (8)
C1—C11—C12—C221.9 (9)C23—C24—C25—C30116.1 (6)
C11—C12—C13—C142.1 (9)O24—C24—C25—C26172.8 (5)
C22—C12—C13—C14179.3 (6)C23—C24—C25—C2667.1 (7)
C12—C13—C14—C152.2 (9)C30—C25—C26—C270.1 (9)
C13—C14—C15—C16174.6 (6)C24—C25—C26—C27176.8 (6)
C13—C14—C15—C201.8 (8)C25—C26—C27—C280.3 (10)
C14—C15—C16—C17175.7 (6)C26—C27—C28—C290.5 (11)
C20—C15—C16—C170.7 (9)C27—C28—C29—C301.5 (11)
C15—C16—C17—C182.1 (10)C28—C29—C30—C251.7 (10)
C16—C17—C18—C193.7 (10)C26—C25—C30—C290.9 (9)
C17—C18—C19—C202.5 (10)C24—C25—C30—C29177.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O24—H24···Br10.842.353.182 (5)172
(II) (P)-8-[(1S,2R)-2-hydroxy-1-methyl-2-phenylethyl]-8-methyl- 8,9-dihydro-7H-dinaphth[2,1 − c:1',2'-e]azepinium bromide dichloromethane (1/1) solvate top
Crystal data top
C32H30NO1·Br1·CH2Cl2Dx = 1.407 Mg m3
Mr = 609.40Melting point = 531–537 K
Monoclinic, P21Mo Kα radiation, λ = 0.71069 Å
a = 8.234 (3) ÅCell parameters from 22 reflections
b = 12.267 (2) Åθ = 13.5–17.5°
c = 14.3806 (19) ŵ = 1.64 mm1
β = 98.015 (15)°T = 173 K
V = 1438.3 (5) Å3Plate, colourless
Z = 20.42 × 0.30 × 0.12 mm
F(000) = 628
Data collection top
Rigaku AFC-5R
diffractometer
5208 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anode generatorRint = 0.026
Graphite monochromatorθmax = 27.5°, θmin = 2.7°
ω/2θ scansh = 1010
Absorption correction: ψ-scan
(North et al., 1968)
k = 1515
Tmin = 0.596, Tmax = 0.821l = 1818
7400 measured reflections3 standard reflections every 150 reflections
6614 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.3206P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6614 reflectionsΔρmax = 0.45 e Å3
345 parametersΔρmin = 0.32 e Å3
1 restraintAbsolute structure: Flack (1983), 3142 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.003 (8)
Crystal data top
C32H30NO1·Br1·CH2Cl2V = 1438.3 (5) Å3
Mr = 609.40Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.234 (3) ŵ = 1.64 mm1
b = 12.267 (2) ÅT = 173 K
c = 14.3806 (19) Å0.42 × 0.30 × 0.12 mm
β = 98.015 (15)°
Data collection top
Rigaku AFC-5R
diffractometer
5208 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.596, Tmax = 0.8213 standard reflections every 150 reflections
7400 measured reflections intensity decay: none
6614 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.096Δρmax = 0.45 e Å3
S = 1.02Δρmin = 0.32 e Å3
6614 reflectionsAbsolute structure: Flack (1983), 3142 Friedel pairs
345 parametersAbsolute structure parameter: 0.003 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

7.2630 (0.0045) x − 5.7400 (0.0107) y − 0.9890 (0.0092) z = 2.9643 (0.0095)

* −0.0755 (0.0024) C1 * 0.0937 (0.0023) C2 * 0.0735 (0.0025) C3 * −0.0393 (0.0028) C4 * −0.0622 (0.0030) C5 * −0.0333 (0.0031) C6 * 0.0516 (0.0032) C7 * 0.0776 (0.0029) C8 * −0.0089 (0.0027) C9 * −0.0771 (0.0027) C10

Rms deviation of fitted atoms = 0.0641

3.3876 (0.0058) x − 1.9942 (0.0121) y + 11.9460 (0.0064) z = 5.1155 (0.0059)

Angle to previous plane (with approximate e.s.d.) = 60.79 (0.07)

* 0.0724 (0.0024) C11 * −0.0157 (0.0024) C12 * −0.0630 (0.0026) C13 * −0.0200 (0.0029) C14 * 0.0358 (0.0031) C15 * 0.0463 (0.0031) C16 * 0.0078 (0.0030) C17 * −0.0631 (0.0029) C18 * −0.0385 (0.0027) C19 * 0.0381 (0.0028) C20

Rms deviation of fitted atoms = 0.0450

7.1864 (0.0061) x − 5.5943 (0.0166) y + 0.7284 (0.0362) z = 3.3955 (0.0167)

* −0.0074 (0.0009) C1 * 0.0148 (0.0018) C2 * −0.0150 (0.0019) C3 * 0.0076 (0.0009) C4

Rms deviation of fitted atoms = 0.0118

7.2742 (0.0058) x − 5.7477 (0.0151) y − 1.7855 (0.0201) z = 2.6055 (0.0161)

Angle to previous plane (with approximate e.s.d.) = 10.09 (0.16)

* 0.0189 (0.0023) C5 * −0.0161 (0.0027) C6 * −0.0008 (0.0028) C7 * 0.0148 (0.0026) C8 * −0.0113 (0.0023) C9 * −0.0056 (0.0022) C10

Rms deviation of fitted atoms = 0.0129

3.5920 (0.0180) x − 2.6581 (0.0202) y + 11.5619 (0.0230) z = 4.9699 (0.0082)

* −0.0003 (0.0010) C11 * 0.0005 (0.0020) C12 * −0.0005 (0.0020) C13 * 0.0003 (0.0010) C14

Rms deviation of fitted atoms = 0.0004

3.3297 (0.0104) x − 1.5378 (0.0187) y + 12.0901 (0.0113) z = 5.3210 (0.0086)

Angle to previous plane (with approximate e.s.d.) = 5.85 (0.27)

* −0.0215 (0.0024) C15 * 0.0034 (0.0027) C16 * 0.0153 (0.0027) C17 * −0.0157 (0.0026) C18 * −0.0028 (0.0024) C19 * 0.0213 (0.0023) C20

Rms deviation of fitted atoms = 0.0154

1.5325 (0.0316) x + 10.5884 (0.0241) y + 6.3107 (0.0279) z = 5.8325 (0.0246)

* 0.0000 (0.0000) N1 * 0.0000 (0.0000) C22 * 0.0000 (0.0000) C12

Rms deviation of fitted atoms = 0.0000

6.1404 (0.0090) x + 4.4770 (0.0254) y + 6.4419 (0.0140) z = 7.8758 (0.0046)

Angle to previous plane (with approximate e.s.d.) = 44.32 (0.28)

* 0.1588 (0.0015) N1 * −0.1385 (0.0013) C21 * 0.1627 (0.0015) C11 * −0.1831 (0.0017) C12

Rms deviation of fitted atoms = 0.1616

6.9510 (0.0084) x − 6.0051 (0.0231) y + 1.4177 (0.0202) z = 3.1638 (0.0185)

Angle to previous plane (with approximate e.s.d.) = 55.07 (0.13)

* 0.0144 (0.0009) C21 * −0.0297 (0.0018) C2 * 0.0298 (0.0018) C1 * −0.0144 (0.0009) C11

Rms deviation of fitted atoms = 0.0234

5.7170 (0.0228) x + 6.3941 (0.0171) y − 8.4583 (0.0422) z = 6.5108 (0.0233)

* 0.0000 (0.0000) N1 * 0.0000 (0.0000) C21 * 0.0000 (0.0000) C2

Rms deviation of fitted atoms = 0.0000

7.5650 (0.0045) x + 2.9366 (0.0173) y + 2.6289 (0.0254) z = 8.4414 (0.0051)

Angle to previous plane (with approximate e.s.d.) = 52.63 (0.21)

* −0.0686 (0.0014) N1 * 0.0595 (0.0012) C22 * −0.0691 (0.0014) C1 * 0.0783 (0.0016) C2

Rms deviation of fitted atoms = 0.0692

3.1500 (0.0158) x − 2.5473 (0.0184) y + 12.0532 (0.0144) z = 4.8100 (0.0144)

Angle to previous plane (with approximate e.s.d.) = 54.24 (0.17)

* 0.0127 (0.0009) C22 * −0.0261 (0.0019) C12 * 0.0261 (0.0019) C11 * −0.0127 (0.0009) C1

Rms deviation of fitted atoms = 0.0205

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.87778 (4)0.50000 (3)0.19849 (2)0.03912 (10)
O241.1250 (3)0.36375 (18)0.05338 (15)0.0301 (5)
H241.06140.38550.10050.045*
N10.9313 (3)0.3445 (2)0.12013 (17)0.0207 (5)
C10.8193 (3)0.4841 (3)0.2862 (2)0.0214 (7)
C20.8564 (3)0.5165 (3)0.1995 (2)0.0213 (7)
C30.9328 (4)0.6185 (3)0.1887 (2)0.0269 (7)
H30.95170.64140.12800.032*
C40.9794 (4)0.6842 (3)0.2640 (3)0.0328 (8)
H41.02470.75410.25510.039*
C50.9604 (4)0.6484 (3)0.3558 (2)0.0303 (7)
C61.0232 (5)0.7089 (3)0.4364 (3)0.0429 (10)
H61.07130.77820.42900.052*
C71.0162 (5)0.6701 (4)0.5240 (3)0.0497 (11)
H71.06200.71160.57710.060*
C80.9415 (5)0.5689 (4)0.5371 (3)0.0448 (10)
H80.93910.54160.59870.054*
C90.8725 (4)0.5097 (4)0.4608 (2)0.0324 (7)
H90.81890.44290.47010.039*
C100.8800 (4)0.5471 (3)0.3677 (2)0.0239 (6)
C110.7233 (4)0.3820 (3)0.2929 (2)0.0230 (6)
C120.7767 (4)0.2867 (2)0.2545 (2)0.0209 (6)
C130.6906 (4)0.1883 (3)0.2586 (2)0.0279 (7)
H130.72890.12410.23180.033*
C140.5511 (4)0.1844 (3)0.3011 (2)0.0330 (8)
H140.49520.11710.30500.040*
C150.4905 (4)0.2799 (3)0.3388 (2)0.0308 (8)
C160.3421 (4)0.2793 (4)0.3817 (3)0.0404 (9)
H160.28780.21210.38880.049*
C170.2793 (4)0.3721 (4)0.4118 (3)0.0416 (9)
H170.18230.36940.44060.050*
C180.3553 (4)0.4726 (3)0.4011 (3)0.0403 (10)
H180.30720.53780.42010.048*
C190.4993 (4)0.4773 (3)0.3631 (2)0.0328 (8)
H190.55070.54580.35700.039*
C200.5726 (4)0.3811 (3)0.3327 (2)0.0255 (7)
C210.8158 (4)0.4424 (2)0.1161 (2)0.0209 (6)
H2110.82300.48420.05790.025*
H2120.70160.41610.11360.025*
C220.9375 (4)0.2866 (2)0.2157 (2)0.0215 (6)
H2210.97250.21020.20880.026*
H2221.02150.32260.26150.026*
C231.1097 (3)0.3798 (3)0.1119 (2)0.0206 (6)
H231.14370.43170.16460.025*
C241.1270 (4)0.4407 (2)0.0204 (2)0.0227 (6)
H2411.03090.49060.00530.027*
C251.2841 (3)0.5095 (3)0.03249 (19)0.0233 (6)
C261.3237 (4)0.5798 (3)0.1086 (2)0.0283 (7)
H261.25710.58010.15750.034*
C271.4572 (4)0.6491 (3)0.1147 (2)0.0328 (8)
H271.48250.69540.16770.039*
C281.5550 (4)0.6508 (3)0.0424 (3)0.0330 (8)
H281.64480.69980.04480.040*
C291.5189 (4)0.5801 (3)0.0323 (2)0.0317 (8)
H291.58600.57990.08100.038*
C301.3858 (4)0.5089 (4)0.0376 (2)0.0281 (7)
H301.36420.45990.08900.034*
C310.8612 (4)0.2667 (3)0.0443 (2)0.0289 (7)
H3110.75500.23960.05780.043*
H3120.93650.20520.04180.043*
H3130.84640.30440.01640.043*
C321.2279 (4)0.2847 (3)0.1252 (2)0.0281 (7)
H3211.19420.22910.07750.042*
H3221.22740.25330.18780.042*
H3231.33870.31010.11890.042*
Cl10.32522 (16)0.38563 (12)0.69750 (10)0.0719 (4)
Cl20.5770 (2)0.26093 (11)0.62252 (12)0.0822 (4)
C330.5102 (5)0.3914 (3)0.6510 (3)0.0486 (10)
H3310.59500.42570.69740.058*
H3320.49570.43730.59390.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04471 (19)0.03210 (16)0.03773 (17)0.0003 (2)0.00412 (13)0.0017 (2)
O240.0411 (14)0.0291 (12)0.0205 (11)0.0010 (11)0.0055 (10)0.0035 (10)
N10.0224 (13)0.0216 (13)0.0178 (12)0.0005 (10)0.0018 (10)0.0012 (10)
C10.0197 (12)0.0192 (18)0.0254 (14)0.0058 (12)0.0029 (10)0.0010 (13)
C20.0181 (12)0.0196 (18)0.0263 (14)0.0049 (12)0.0029 (10)0.0001 (13)
C30.0264 (16)0.0219 (15)0.0334 (18)0.0034 (13)0.0071 (14)0.0059 (14)
C40.0330 (18)0.0186 (16)0.047 (2)0.0035 (14)0.0068 (16)0.0012 (16)
C50.0240 (16)0.0277 (18)0.0384 (19)0.0072 (14)0.0016 (14)0.0109 (15)
C60.039 (2)0.035 (2)0.054 (3)0.0016 (17)0.0028 (18)0.0187 (19)
C70.045 (2)0.057 (3)0.044 (2)0.011 (2)0.0048 (18)0.029 (2)
C80.049 (2)0.057 (3)0.0271 (19)0.023 (2)0.0020 (16)0.0085 (18)
C90.0347 (16)0.039 (2)0.0240 (14)0.0117 (19)0.0046 (12)0.0074 (19)
C100.0241 (15)0.0239 (14)0.0238 (15)0.0088 (13)0.0040 (12)0.0034 (13)
C110.0244 (15)0.0233 (15)0.0209 (15)0.0017 (13)0.0019 (12)0.0040 (12)
C120.0210 (14)0.0224 (15)0.0194 (14)0.0004 (12)0.0029 (11)0.0038 (12)
C130.0336 (18)0.0185 (15)0.0315 (18)0.0031 (13)0.0042 (14)0.0019 (13)
C140.0334 (19)0.0273 (17)0.0384 (19)0.0062 (15)0.0058 (15)0.0031 (15)
C150.0241 (16)0.038 (2)0.0305 (18)0.0023 (15)0.0061 (13)0.0078 (16)
C160.0290 (19)0.047 (2)0.047 (2)0.0054 (17)0.0106 (17)0.0092 (19)
C170.0277 (18)0.061 (3)0.039 (2)0.0018 (18)0.0124 (15)0.0031 (19)
C180.0354 (19)0.047 (3)0.041 (2)0.0139 (16)0.0131 (15)0.0022 (17)
C190.0296 (16)0.035 (2)0.0351 (17)0.0054 (14)0.0086 (13)0.0026 (14)
C200.0238 (15)0.0302 (17)0.0225 (15)0.0021 (13)0.0034 (12)0.0048 (13)
C210.0196 (14)0.0221 (15)0.0202 (15)0.0041 (12)0.0003 (11)0.0018 (12)
C220.0245 (15)0.0184 (15)0.0219 (15)0.0039 (12)0.0040 (12)0.0036 (12)
C230.0192 (14)0.0219 (15)0.0210 (15)0.0005 (12)0.0035 (12)0.0009 (12)
C240.0254 (15)0.0229 (16)0.0202 (15)0.0010 (13)0.0041 (12)0.0003 (12)
C250.0226 (13)0.0248 (16)0.0230 (13)0.0044 (15)0.0042 (10)0.0085 (16)
C260.0292 (17)0.0318 (17)0.0247 (16)0.0019 (14)0.0064 (13)0.0014 (14)
C270.0336 (19)0.0351 (19)0.0288 (17)0.0012 (15)0.0013 (14)0.0013 (15)
C280.0208 (16)0.0360 (19)0.041 (2)0.0022 (14)0.0025 (14)0.0143 (16)
C290.0251 (16)0.0403 (19)0.0315 (18)0.0043 (15)0.0106 (14)0.0112 (16)
C300.0283 (14)0.0300 (17)0.0268 (14)0.0068 (18)0.0072 (11)0.0063 (18)
C310.0269 (16)0.0310 (17)0.0292 (17)0.0078 (14)0.0052 (13)0.0122 (14)
C320.0266 (16)0.0288 (17)0.0301 (17)0.0070 (14)0.0082 (14)0.0047 (14)
Cl10.0608 (8)0.0672 (8)0.0904 (10)0.0082 (6)0.0197 (7)0.0177 (8)
Cl20.0865 (10)0.0542 (8)0.1060 (12)0.0151 (7)0.0139 (9)0.0224 (8)
C330.051 (2)0.033 (2)0.059 (3)0.0001 (19)0.003 (2)0.005 (2)
Geometric parameters (Å, º) top
O24—C241.419 (4)C17—C181.401 (6)
O24—H240.84C17—H170.95
N1—C311.503 (4)C18—C191.374 (5)
N1—C211.529 (4)C18—H180.95
N1—C221.541 (4)C19—C201.422 (5)
N1—C231.551 (4)C19—H190.95
C1—C21.382 (4)C21—H2110.99
C1—C101.434 (4)C21—H2120.99
C1—C111.492 (4)C22—H2210.99
C2—C31.420 (4)C22—H2220.99
C2—C211.505 (4)C23—C321.514 (4)
C3—C41.361 (5)C23—C241.538 (4)
C3—H30.95C23—H231.00
C4—C51.422 (5)C24—C251.533 (4)
C4—H40.95C24—H2411.00
C5—C61.411 (5)C25—C261.396 (5)
C5—C101.429 (5)C25—C301.398 (4)
C6—C71.356 (6)C26—C271.382 (5)
C6—H60.95C26—H260.95
C7—C81.410 (7)C27—C281.400 (5)
C7—H70.95C27—H270.95
C8—C91.371 (5)C28—C291.381 (5)
C8—H80.95C28—H280.95
C9—C101.425 (5)C29—C301.395 (5)
C9—H90.95C29—H290.95
C11—C121.390 (4)C30—H300.95
C11—C201.437 (4)C31—H3110.98
C12—C131.406 (4)C31—H3120.98
C12—C221.507 (4)C31—H3130.98
C13—C141.375 (5)C32—H3210.98
C13—H130.95C32—H3220.98
C14—C151.412 (5)C32—H3230.98
C14—H140.95Cl1—C331.748 (4)
C15—C201.421 (5)Cl2—C331.759 (4)
C15—C161.443 (5)C33—H3310.99
C16—C171.347 (6)C33—H3320.99
C16—H160.95
C24—O24—H24109.5C15—C20—C19118.7 (3)
C31—N1—C21107.3 (2)C15—C20—C11118.4 (3)
C31—N1—C22108.5 (2)C19—C20—C11122.9 (3)
C21—N1—C22109.8 (2)C2—C21—N1112.1 (2)
C31—N1—C23113.2 (2)C2—C21—H211109.2
C21—N1—C23111.6 (2)N1—C21—H211109.2
C22—N1—C23106.4 (2)C2—C21—H212109.2
C2—C1—C10119.1 (3)N1—C21—H212109.2
C2—C1—C11119.0 (3)H211—C21—H212107.9
C10—C1—C11121.8 (3)C12—C22—N1114.1 (2)
C1—C2—C3120.6 (3)C12—C22—H221108.7
C1—C2—C21119.6 (3)N1—C22—H221108.7
C3—C2—C21119.9 (3)C12—C22—H222108.7
C4—C3—C2121.0 (3)N1—C22—H222108.7
C4—C3—H3119.5H221—C22—H222107.6
C2—C3—H3119.5C32—C23—C24110.3 (2)
C3—C4—C5120.0 (3)C32—C23—N1112.0 (2)
C3—C4—H4120.0C24—C23—N1113.7 (2)
C5—C4—H4120.0C32—C23—H23106.8
C6—C5—C4121.6 (3)C24—C23—H23106.8
C6—C5—C10118.8 (3)N1—C23—H23106.8
C4—C5—C10119.5 (3)O24—C24—C25111.9 (2)
C7—C6—C5121.4 (4)O24—C24—C23108.9 (2)
C7—C6—H6119.3C25—C24—C23110.4 (2)
C5—C6—H6119.3O24—C24—H241108.6
C6—C7—C8120.5 (4)C25—C24—H241108.6
C6—C7—H7119.7C23—C24—H241108.6
C8—C7—H7119.7C26—C25—C30118.1 (3)
C9—C8—C7119.9 (4)C26—C25—C24122.0 (3)
C9—C8—H8120.0C30—C25—C24119.8 (3)
C7—C8—H8120.0C27—C26—C25121.7 (3)
C8—C9—C10121.0 (4)C27—C26—H26119.1
C8—C9—H9119.5C25—C26—H26119.1
C10—C9—H9119.5C26—C27—C28119.8 (3)
C9—C10—C5118.2 (3)C26—C27—H27120.1
C9—C10—C1122.6 (3)C28—C27—H27120.1
C5—C10—C1119.1 (3)C29—C28—C27119.0 (3)
C12—C11—C20119.4 (3)C29—C28—H28120.5
C12—C11—C1118.7 (3)C27—C28—H28120.5
C20—C11—C1121.8 (3)C28—C29—C30121.2 (3)
C11—C12—C13121.1 (3)C28—C29—H29119.4
C11—C12—C22119.4 (3)C30—C29—H29119.4
C13—C12—C22119.3 (3)C29—C30—C25120.2 (3)
C14—C13—C12120.4 (3)C29—C30—H30119.9
C14—C13—H13119.8C25—C30—H30119.9
C12—C13—H13119.8N1—C31—H311109.5
C13—C14—C15120.2 (3)N1—C31—H312109.5
C13—C14—H14119.9H311—C31—H312109.5
C15—C14—H14119.9N1—C31—H313109.5
C14—C15—C20120.3 (3)H311—C31—H313109.5
C14—C15—C16121.7 (3)H312—C31—H313109.5
C20—C15—C16118.0 (3)C23—C32—H321109.5
C17—C16—C15121.2 (4)C23—C32—H322109.5
C17—C16—H16119.4H321—C32—H322109.5
C15—C16—H16119.4C23—C32—H323109.5
C16—C17—C18120.7 (3)H321—C32—H323109.5
C16—C17—H17119.6H322—C32—H323109.5
C18—C17—H17119.6Cl1—C33—Cl2111.7 (2)
C19—C18—C17120.3 (3)Cl1—C33—H331109.3
C19—C18—H18119.9Cl2—C33—H331109.3
C17—C18—H18119.9Cl1—C33—H332109.3
C18—C19—C20120.9 (3)Cl2—C33—H332109.3
C18—C19—H19119.5H331—C33—H332107.9
C20—C19—H19119.5
C10—C1—C2—C39.0 (4)C14—C15—C20—C19173.9 (3)
C11—C1—C2—C3173.6 (3)C16—C15—C20—C194.1 (5)
C10—C1—C2—C21170.8 (3)C14—C15—C20—C114.1 (5)
C11—C1—C2—C216.7 (4)C16—C15—C20—C11178.0 (3)
C1—C2—C3—C43.6 (4)C18—C19—C20—C152.5 (5)
C21—C2—C3—C4176.2 (3)C18—C19—C20—C11179.7 (3)
C2—C3—C4—C53.6 (5)C12—C11—C20—C155.6 (4)
C3—C4—C5—C6173.1 (3)C1—C11—C20—C15178.4 (3)
C3—C4—C5—C105.1 (5)C12—C11—C20—C19172.3 (3)
C4—C5—C6—C7174.7 (4)C1—C11—C20—C193.8 (5)
C10—C5—C6—C73.5 (5)C1—C2—C21—N173.3 (3)
C5—C6—C7—C81.7 (6)C3—C2—C21—N1106.4 (3)
C6—C7—C8—C91.2 (6)C31—N1—C21—C2169.7 (2)
C7—C8—C9—C102.3 (5)C22—N1—C21—C252.0 (3)
C8—C9—C10—C50.4 (5)C23—N1—C21—C265.7 (3)
C8—C9—C10—C1175.6 (3)C11—C12—C22—N175.0 (4)
C6—C5—C10—C92.4 (4)C13—C12—C22—N1110.5 (3)
C4—C5—C10—C9175.8 (3)C31—N1—C22—C1281.5 (3)
C6—C5—C10—C1178.6 (3)C21—N1—C22—C1235.5 (3)
C4—C5—C10—C10.3 (4)C23—N1—C22—C12156.4 (3)
C2—C1—C10—C9168.7 (3)C31—N1—C23—C3264.3 (3)
C11—C1—C10—C98.7 (4)C21—N1—C23—C32174.5 (2)
C2—C1—C10—C57.3 (4)C22—N1—C23—C3254.8 (3)
C11—C1—C10—C5175.4 (3)C31—N1—C23—C2461.7 (3)
C2—C1—C11—C1252.0 (4)C21—N1—C23—C2459.5 (3)
C10—C1—C11—C12125.3 (3)C22—N1—C23—C24179.3 (2)
C2—C1—C11—C20124.1 (3)C32—C23—C24—O2448.3 (3)
C10—C1—C11—C2058.6 (4)N1—C23—C24—O2478.6 (3)
C20—C11—C12—C133.6 (4)C32—C23—C24—C2574.9 (3)
C1—C11—C12—C13179.8 (3)N1—C23—C24—C25158.3 (2)
C20—C11—C12—C22178.0 (3)O24—C24—C25—C26171.0 (3)
C1—C11—C12—C225.8 (4)C23—C24—C25—C2649.6 (4)
C11—C12—C13—C140.1 (5)O24—C24—C25—C3013.9 (4)
C22—C12—C13—C14174.3 (3)C23—C24—C25—C30135.3 (3)
C12—C13—C14—C151.7 (5)C30—C25—C26—C271.3 (5)
C13—C14—C15—C200.5 (5)C24—C25—C26—C27173.8 (3)
C13—C14—C15—C16178.3 (3)C25—C26—C27—C281.0 (5)
C14—C15—C16—C17175.4 (4)C26—C27—C28—C292.2 (5)
C20—C15—C16—C172.5 (5)C27—C28—C29—C301.1 (5)
C15—C16—C17—C180.9 (6)C28—C29—C30—C251.2 (5)
C16—C17—C18—C192.7 (6)C26—C25—C30—C292.4 (5)
C17—C18—C19—C201.0 (5)C24—C25—C30—C29172.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O24—H24···Br10.842.383.179 (2)160

Experimental details

(I)(II)
Crystal data
Chemical formulaC32H30NO+·Br·3C3H6OC32H30NO1·Br1·CH2Cl2
Mr698.70609.40
Crystal system, space groupTetragonal, P41Monoclinic, P21
Temperature (K)173173
a, b, c (Å)16.2515 (16), 16.2515 (16), 13.7964 (19)8.234 (3), 12.267 (2), 14.3806 (19)
α, β, γ (°)90, 90, 9090, 98.015 (15), 90
V3)3643.8 (7)1438.3 (5)
Z42
Radiation typeMo KαMo Kα
µ (mm1)1.171.64
Crystal size (mm)0.45 × 0.28 × 0.200.42 × 0.30 × 0.12
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Rigaku AFC-5R
diffractometer
Absorption correctionψ-scan
(North et al., 1968)
ψ-scan
(North et al., 1968)
Tmin, Tmax0.700, 0.7920.596, 0.821
No. of measured, independent and
observed [I > 2σ(I)] reflections
8931, 8032, 3936 7400, 6614, 5208
Rint0.0550.026
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.169, 1.00 0.039, 0.096, 1.02
No. of reflections80326614
No. of parameters432345
No. of restraints11
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.410.45, 0.32
Absolute structureFlack (1983), 3673 Friedel pairsFlack (1983), 3142 Friedel pairs
Absolute structure parameter0.017 (13)0.003 (8)

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1997), SHELXS86 (Sheldrick, 1990), SHELXS86 (Sheldrick, 1986), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O24—H24···Br10.842.353.182 (5)172
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O24—H24···Br10.842.383.179 (2)160
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds