Download citation
Download citation
link to html
Molecules of the title compound, [PdCl(C6H4NO2S)(PPh3)2]·­C3H6O, exhibit a slight distortion from exact planarity at the Pd atom towards tetrahedral, with P-Pd-P and Cl-Pd-S angles of 174.98 (3) and 174.19 (3)°, respectively. The Pd-Cl and Pd-S bonds are, respectively, long [2.3550 (11) Å] and short [2.3020 (12) Å] for their types; the S-C bond is also very short [1.744 (4) Å]. The solvating acetone mol­ecule is linked to one of the phosphine ligands by means of a C-H...O hydrogen bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100007320/sk1393sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100007320/sk1393Isup2.hkl
Contains datablock I

CCDC reference: 150317

Comment top

We have recently reported the structures of members of the 2-O2NC6H4SX system containing the 2-nitrophenylthiolate group, in which the α-atom of fragment X can be C or N (Low, Storey et al., 2000) or S (Low, Glidewell & Wardell, 2000). In general, at the global energy minimum conformation, both the nitro group and the α-atom of group X are essentially coplanar with the aryl ring. When X is not in the plane of the aryl ring, rotation about the exocyclic C—S bond is associated with a disrotatory twist of the nitro group about the C—N bond; the occurrence of such conformations seems to depend on the presence in the structure of specific intermolecular interactions, such as C—H···O hydrogen bonds. Seeking to investigate the wider generality of this idea, we report here the structure of a further compound of type 2-O2NC6H4SX, namely trans-chloro(2-nitrobenzenethiolato)bis(triphenylphosphine)palladium(II), (I), in which the α-atom of group X is Pd and which crystallizes from acetone as a 1:1 solvate.

Molecules of (I) lie in general positions (Fig. 1). Although no bond angle at Pd involving a pair of cis substituents deviates from 90° by more than 1.7°, nonetheless there a slight but significant distortion from planarity towards tetrahedral and both bond angles at Pd involving trans pairs of substituents are less than 175° (Table 1). The deviations (Å) of the ligating atoms from their best plane through Pd are: Cl −0.106 (1), S −0.105 (1), P1 0.105 (1) and P2 0.106 (1). In this respect, the configuration of the trans-PdClP2S chromophore in (I) differs from those found in two analogous compounds retrieved from the Cambridge Structural Database (Allen & Kennard, 1993), containing trans-PdCl2P2 and trans-PdP2S2 chromophores. Molecules of trans-[PdCl2(PPh3)2] are centrosymmetric both in the unsolvated compound (BISKIX; Ferguson et al., 1982) and in the bis-chloroform solvate (RAVYUI; Stark & Whitmire, 1997). Similarly, molecules of trans-[Pd{PH(C6H11)2}2(SPh)2] (LETNON; Pasquali et al., 1993) lie across inversion centres. Hence, in all these complexes, palladium and its four ligating atoms are strictly coplanar.

The conformation of (I) is close to that expected (Low, Storey et al., 2000) for the global energy minimum. There is a slight rotation around the C—S bond away from coplanarity of the Pd atom, with the nitrated aryl ring and a disrotatory twist of the nitro group around the C—N bond. The dihedral angles between the nitrated aryl ring and the planes defined by C1—S1—Pd1—Cl1 and C6—NO2 are 6.2 (2) and 16.3 (2)°, respectively. In centrosymmetric molecules of trans-[PdCl2(PPh3)2] (Ferguson et al., 1982; Stark & Whitmire, 1997), the P—C bonds of the two phosphine ligands are necessarily exactly staggered. In contrast in (I), these P—C bonds are almost eclipsed, with a mean deviation of 5.9 (3)° from a fully eclipsed Ph3P—Pd-PPh3 fragment. Presumably, the rotational barriers about the Pd—P bonds are low.

The two independent Pd—P distances in (I) (Table 1) are both very similar to those reported for BISKIX [2.337 (2) Å] and RAVYUI [2.343 (2) Å]. However, the Pd—Cl distance in (I) is very much longer than the corresponding distances in BISKIX [2.291 (2) Å] and RAVYUI [2.293 (2) Å]. On the other hand, the Pd—S distance in (I) is much shorter than those reported for LETNON [2.3393 (16) and 2.3366 (19) Å in two independent molecules]. These observations can all be readily rationalized in terms of the trans influence, t(X), of a ligand X upon the properties of the metal–ligand bond trans to X, which arises from the competition for a common metal d orbital of the π type between ligands occupying trans sites. Ligands of high trans-influence render the metal–ligand bonds trans to themselves longer (Appleton et al., 1973), and ligands can thus be ranked in order of t(X). This is a static thermodynamic phenomenon which closely parallels the dynamic kinetic trans effect describing the influence on the rates of ligand substitution exerted by ligands in trans sites (Basolo & Pearson, 1962). The data for (I) and related compounds show that a Pd—S bond trans to Cl is much shorter than a Pd—S bond trans to another thiolate; hence, t(SR) >> t(Cl). Similarly, Pd—P bonds trans to another P are typically much shorter than Pd—P bonds trans to chloride. For example, in cis-[PdCl2(Me2N=CH)PPh3] (McCrindle et al., 2000), the Pd—P distance is 2.2495 (7) Å, much shorter than the corresponding bonds in (I), BISKIX and RAVYUI. Likewise, in [PdCl2(Me2N=CH)PPh3], the Pd—Cl bond trans to P is very much longer [2.3600 (7) Å] than those in BISKIX [2.291 (2) Å] and RAVYUI [2.293 (2) Å], so that t(PR3) >> t(Cl). The order of PR3 and SR can be established by comparison of analogous cis- and trans-PdP2S2 chromophores, as for example in LETNON and [Pd(Ph2PCH2CH2PPh2)(SCH2Ph)2] (TERREN; Su et al., 1997). On moving form trans to cis geometry, the Pd—P bonds become shorter and the Pd—S bonds become longer, hence, t(PR3) > t(SR) and overall t(PR3) > t(SR) > t(Cl).

There is evidence of C—C bond fixation in the nitrated aryl ring, where the C—C distances range from 1.358 (6) to 1.414 (5) Å. This range is greater than is usual for compounds of this type (Low, Storey et al., 2000; Low, Glidewell & Wardell, 2000), although the C—N distance and the O—N—O angle are both entirely typical of their types, so ruling out any p-quinonoid-type bond fixation, as observed in 2-O2NC6H4SCH=CHPh (Low, Storey et al., 2000). On the other hand, the C—S distance is significantly shorter than those observed in previous examples of 2-O2NC6H4SX compounds. For comparison, the lower quartile value for a C(aryl)—S—C bond distance is 1.765 Å and, indeed, C(aryl)—S bonds as short as that in (I) are generally found only with four-coordinate SVI (Allen et al., 1987). The short C—S bond and the extremely small C—C—C angles ipso to S are together consistent with significant electron donation from S into the adjacent ring (Domenicano & Murray-Rust, 1979).

The solvating acetone molecule is linked to a phenyl group in one of the phosphine ligands of (I) by a C—H···O hydrogen bond (Table 2).

Experimental top

The title compound was obtained from the reaction of trans-[PdCl2(PPh3)2] and 2-O2NC6H4SSnPh3 in acetone solution. The compound was purified by column chromatography on silica using CHCl3 as eluent. The compound obtained decomposed on heating, before melting at 478 K. Crystals suitable for single-crystal X-ray diffraction were obtained from an acetone solution.

Refinement top

Compound (I) crystallized in the monoclinic system as a monoacetone solvate; space group P21/n was assumed from the systematic absences. H atoms were treated as riding atoms with a C—H distance of 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms. The acetone molecule was modelled with six-half occupancy H atoms in the methyl group defined by C7; the O and C atoms of the acetone molecule all had large displacement parameters. Examination of the refined structure with PLATON (Spek, 2000) showed there were no solvent-accessible voids in the structure, but that there were four symmetry-related voids, each with a volume of ca 11 Å3, in the vicinity of the four solvent molecules in the unit cell. These may be associated with the large displacement parameters of the solvent molecule. The sites of maximum and minimum residual density are adjacent to the acetone and Pd atom, respectively.

Computing details top

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992) and FAST/MADNES (Pflugrath & Messerschmidt, 1989); cell refinement: CAD-4-PC Software and FAST/MADNES; data reduction: CAD-4-PC Software and FAST/MADNES; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: NRCVAX96 (Gabe et al., 1989) and SHELXL97 (Sheldrick, 1997); molecular graphics: NRCVAX96, ORTEPII (Johnson, 1976) and PLATON (Spek, 2000); software used to prepare material for publication: NRCVAX96, SHELXL97 and WORDPERFECT macro PREP8 (Ferguson, 1998).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I)·(CH3)2CO showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms bonded to C7 have site-occupation factor 0.5.
trans-Chloro(2-nitrobenzenethiolato-S)bis(triphenylphosphine-P)palladium(II) monoacetone solvate top
Crystal data top
[PdCl(C6H4NO2S)(C18H15P)2]·C3H6OF(000) = 1800
Mr = 878.63Dx = 1.410 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 18.292 (7) ÅCell parameters from 11315 reflections
b = 10.969 (3) Åθ = 1.3–30.5°
c = 21.363 (8) ŵ = 0.68 mm1
β = 105.0928 (17)°T = 150 K
V = 4139 (2) Å3Block, orange
Z = 40.30 × 0.10 × 0.05 mm
Data collection top
Enraf-Nonius
diffractometer with FAST area-detector
11315 independent reflections
Radiation source: fine-focus sealed X-ray tube5642 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
ϕ and ω scans with κ offsetsθmax = 30.1°, θmin = 1.3°
Absorption correction: multi-scan
(FAST/MADNES; Pflugrath & Messerschmidt, 1989)
h = 2525
Tmin = 0.822, Tmax = 0.967k = 1415
49325 measured reflectionsl = 2930
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0686P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
11315 reflectionsΔρmax = 1.54 e Å3
489 parametersΔρmin = 1.10 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0026 (2)
Crystal data top
[PdCl(C6H4NO2S)(C18H15P)2]·C3H6OV = 4139 (2) Å3
Mr = 878.63Z = 4
Monoclinic, P21/nMo Kα radiation
a = 18.292 (7) ŵ = 0.68 mm1
b = 10.969 (3) ÅT = 150 K
c = 21.363 (8) Å0.30 × 0.10 × 0.05 mm
β = 105.0928 (17)°
Data collection top
Enraf-Nonius
diffractometer with FAST area-detector
11315 independent reflections
Absorption correction: multi-scan
(FAST/MADNES; Pflugrath & Messerschmidt, 1989)
5642 reflections with I > 2σ(I)
Tmin = 0.822, Tmax = 0.967Rint = 0.095
49325 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 0.94Δρmax = 1.54 e Å3
11315 reflectionsΔρmin = 1.10 e Å3
489 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.412423 (15)0.00059 (2)0.213104 (13)0.02071 (10)
Cl10.32845 (5)0.15334 (8)0.22875 (5)0.0284 (2)
S10.50238 (5)0.13304 (8)0.19609 (5)0.0278 (2)
P10.46940 (5)0.00014 (8)0.32452 (4)0.0210 (2)
P20.34622 (5)0.00591 (8)0.10405 (4)0.0199 (2)
O10.61027 (18)0.2968 (3)0.18010 (17)0.0551 (9)
O20.5886 (2)0.4828 (3)0.14727 (19)0.0679 (11)
N10.5707 (2)0.3889 (3)0.17161 (18)0.0429 (9)
C10.4673 (2)0.2782 (3)0.20464 (18)0.0285 (9)
C20.3996 (2)0.2942 (4)0.22387 (19)0.0318 (9)
C30.3684 (2)0.4059 (4)0.2299 (2)0.0409 (11)
C40.4040 (3)0.5111 (4)0.2165 (2)0.0435 (12)
C50.4686 (3)0.5008 (4)0.1969 (2)0.0394 (11)
C60.5002 (2)0.3880 (4)0.19153 (19)0.0318 (9)
C1110.5321 (2)0.1258 (3)0.35935 (18)0.0263 (9)
C1120.6042 (2)0.1299 (4)0.34794 (19)0.0346 (10)
C1130.6536 (2)0.2236 (4)0.3721 (2)0.0410 (11)
C1140.6324 (2)0.3149 (4)0.4077 (2)0.0447 (12)
C1150.5618 (3)0.3123 (4)0.4195 (2)0.0489 (13)
C1160.5117 (2)0.2175 (3)0.3955 (2)0.0357 (10)
C1210.3976 (2)0.0008 (3)0.37015 (18)0.0256 (8)
C1220.4003 (2)0.0771 (3)0.42209 (19)0.0308 (9)
C1230.3440 (2)0.0705 (4)0.4550 (2)0.0381 (11)
C1240.2863 (2)0.0132 (4)0.4372 (2)0.0389 (11)
C1250.2834 (2)0.0907 (4)0.3855 (2)0.0404 (11)
C1260.3382 (2)0.0832 (4)0.3521 (2)0.0333 (10)
C1310.5289 (2)0.1325 (3)0.35103 (18)0.0256 (8)
C1320.5247 (2)0.2343 (4)0.3114 (2)0.0341 (10)
C1330.5743 (2)0.3318 (4)0.3316 (2)0.0443 (12)
C1340.6273 (2)0.3276 (4)0.3895 (2)0.0439 (12)
C1350.6316 (3)0.2283 (4)0.4299 (2)0.0464 (12)
C1360.5823 (2)0.1322 (4)0.4107 (2)0.0391 (11)
C2110.2452 (2)0.0239 (3)0.09887 (18)0.0231 (8)
C2120.1911 (2)0.0528 (4)0.0615 (2)0.0315 (9)
C2130.1155 (2)0.0394 (4)0.0604 (2)0.0397 (11)
C2140.0928 (2)0.0497 (4)0.0965 (2)0.0376 (10)
C2150.1468 (2)0.1265 (4)0.1347 (2)0.0343 (10)
C2160.2220 (2)0.1133 (3)0.13582 (19)0.0320 (9)
C2210.3684 (2)0.1270 (3)0.05327 (17)0.0234 (8)
C2220.4364 (2)0.1183 (3)0.03580 (19)0.0309 (9)
C2230.4562 (2)0.2047 (4)0.0036 (2)0.0401 (11)
C2240.4091 (3)0.3025 (4)0.0246 (2)0.0457 (12)
C2250.3421 (3)0.3147 (4)0.0074 (2)0.0434 (11)
C2260.3222 (2)0.2264 (3)0.0322 (2)0.0351 (10)
C2310.3535 (2)0.1287 (3)0.05621 (18)0.0248 (8)
C2320.3819 (2)0.2382 (3)0.08609 (19)0.0303 (9)
C2330.3859 (2)0.3413 (3)0.0485 (2)0.0342 (10)
C2340.3618 (2)0.3344 (4)0.0183 (2)0.0382 (11)
C2350.3344 (2)0.2258 (4)0.0480 (2)0.0357 (10)
C2360.3303 (2)0.1239 (3)0.01082 (19)0.0310 (9)
O30.2651 (3)0.0434 (4)0.1423 (2)0.0982 (15)
C70.3458 (5)0.1230 (7)0.2021 (4)0.146 (4)
C80.2880 (4)0.0371 (6)0.1895 (3)0.0751 (19)
C90.2630 (4)0.0568 (7)0.2386 (3)0.106 (2)
H20.37420.22360.23310.038*
H30.32280.41140.24320.049*
H40.38340.58910.22100.052*
H50.49250.57230.18670.047*
H1120.61910.06710.32320.042*
H1130.70240.22500.36420.049*
H1140.66630.37990.42420.054*
H1150.54730.37550.44420.059*
H1160.46330.21610.40410.043*
H1220.44030.13440.43500.037*
H1230.34550.12430.49010.046*
H1240.24850.01770.46030.047*
H1250.24380.14890.37320.048*
H1260.33530.13530.31600.040*
H1320.48820.23740.27070.041*
H1330.57090.40160.30470.053*
H1340.66160.39360.40230.053*
H1350.66820.22610.47060.056*
H1360.58490.06430.43880.047*
H2120.20590.11510.03640.038*
H2130.07880.09230.03430.048*
H2140.04090.05850.09540.045*
H2150.13180.18820.16000.041*
H2160.25860.16590.16220.038*
H2220.46960.05200.05130.037*
H2230.50210.19680.01620.048*
H2240.42310.36240.05150.055*
H2250.30980.38230.02220.052*
H2260.27640.23470.04480.042*
H2320.39860.24280.13200.036*
H2330.40520.41580.06890.041*
H2340.36410.40460.04380.046*
H2350.31830.22110.09400.043*
H2360.31140.04960.03160.037*
H7A0.35930.18270.16690.219*0.50
H7B0.32500.16530.24330.219*0.50
H7C0.39110.07720.20440.219*0.50
H7D0.35760.10080.24280.219*0.50
H7E0.39190.11820.16640.219*0.50
H7F0.32590.20630.20530.219*0.50
H9A0.21930.09990.23060.159*
H9B0.30430.11470.23670.159*
H9C0.24840.01890.28160.159*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02289 (16)0.01881 (15)0.01983 (16)0.00052 (12)0.00448 (11)0.00098 (12)
Cl10.0317 (5)0.0254 (5)0.0278 (5)0.0046 (4)0.0073 (4)0.0022 (4)
S10.0273 (5)0.0278 (5)0.0288 (6)0.0031 (4)0.0079 (4)0.0001 (4)
P10.0225 (5)0.0201 (5)0.0197 (5)0.0007 (4)0.0042 (4)0.0006 (4)
P20.0203 (5)0.0198 (5)0.0195 (5)0.0014 (4)0.0048 (4)0.0006 (4)
O10.052 (2)0.047 (2)0.078 (3)0.0015 (17)0.038 (2)0.0035 (18)
O20.081 (3)0.046 (2)0.091 (3)0.0153 (18)0.048 (2)0.0146 (19)
N10.050 (2)0.040 (2)0.042 (2)0.010 (2)0.020 (2)0.0010 (18)
C10.031 (2)0.032 (2)0.020 (2)0.0024 (18)0.0031 (17)0.0002 (16)
C20.032 (2)0.028 (2)0.035 (2)0.0011 (18)0.0068 (19)0.0010 (18)
C30.037 (2)0.037 (3)0.047 (3)0.003 (2)0.009 (2)0.001 (2)
C40.056 (3)0.026 (2)0.047 (3)0.003 (2)0.012 (2)0.0005 (19)
C50.054 (3)0.026 (2)0.037 (3)0.006 (2)0.009 (2)0.0041 (19)
C60.038 (2)0.029 (2)0.029 (2)0.0065 (19)0.0096 (19)0.0015 (17)
C1110.032 (2)0.0209 (19)0.023 (2)0.0022 (17)0.0008 (17)0.0038 (16)
C1120.035 (2)0.040 (2)0.027 (2)0.006 (2)0.0056 (19)0.0053 (19)
C1130.034 (2)0.044 (3)0.045 (3)0.009 (2)0.009 (2)0.000 (2)
C1140.037 (3)0.028 (2)0.060 (3)0.009 (2)0.002 (2)0.000 (2)
C1150.047 (3)0.027 (2)0.070 (4)0.003 (2)0.009 (3)0.016 (2)
C1160.028 (2)0.031 (2)0.044 (3)0.0015 (18)0.002 (2)0.008 (2)
C1210.028 (2)0.0252 (19)0.023 (2)0.0044 (18)0.0067 (16)0.0055 (17)
C1220.037 (2)0.025 (2)0.030 (2)0.0011 (18)0.0073 (19)0.0004 (17)
C1230.048 (3)0.039 (3)0.031 (3)0.006 (2)0.018 (2)0.0029 (19)
C1240.035 (2)0.050 (3)0.037 (3)0.006 (2)0.019 (2)0.005 (2)
C1250.036 (2)0.046 (3)0.040 (3)0.004 (2)0.011 (2)0.001 (2)
C1260.032 (2)0.038 (2)0.029 (2)0.004 (2)0.0076 (19)0.0048 (18)
C1310.025 (2)0.026 (2)0.025 (2)0.0034 (17)0.0073 (17)0.0041 (16)
C1320.030 (2)0.037 (2)0.032 (2)0.0030 (19)0.0031 (19)0.0026 (19)
C1330.042 (3)0.033 (2)0.054 (3)0.007 (2)0.005 (2)0.005 (2)
C1340.035 (3)0.033 (2)0.059 (3)0.009 (2)0.004 (2)0.009 (2)
C1350.048 (3)0.036 (2)0.044 (3)0.006 (2)0.008 (2)0.004 (2)
C1360.050 (3)0.031 (2)0.029 (2)0.006 (2)0.004 (2)0.0034 (19)
C2110.0250 (19)0.023 (2)0.021 (2)0.0001 (15)0.0066 (16)0.0034 (15)
C2120.029 (2)0.030 (2)0.036 (3)0.0000 (18)0.008 (2)0.0069 (18)
C2130.029 (2)0.044 (2)0.045 (3)0.009 (2)0.006 (2)0.008 (2)
C2140.028 (2)0.043 (2)0.044 (3)0.000 (2)0.015 (2)0.002 (2)
C2150.036 (2)0.036 (2)0.033 (2)0.0046 (19)0.014 (2)0.0054 (19)
C2160.032 (2)0.032 (2)0.033 (2)0.0015 (18)0.0100 (19)0.0059 (18)
C2210.025 (2)0.0233 (19)0.019 (2)0.0038 (16)0.0009 (16)0.0003 (15)
C2220.031 (2)0.030 (2)0.032 (2)0.0023 (18)0.0100 (19)0.0083 (18)
C2230.034 (2)0.042 (3)0.048 (3)0.000 (2)0.019 (2)0.005 (2)
C2240.055 (3)0.034 (2)0.054 (3)0.007 (2)0.026 (3)0.014 (2)
C2250.051 (3)0.031 (2)0.051 (3)0.007 (2)0.018 (2)0.013 (2)
C2260.036 (2)0.033 (2)0.039 (3)0.0032 (19)0.014 (2)0.0082 (19)
C2310.0231 (19)0.026 (2)0.026 (2)0.0035 (16)0.0080 (17)0.0026 (16)
C2320.040 (2)0.025 (2)0.029 (2)0.0039 (18)0.016 (2)0.0014 (17)
C2330.040 (2)0.025 (2)0.043 (3)0.0013 (19)0.022 (2)0.0024 (18)
C2340.041 (3)0.034 (2)0.046 (3)0.010 (2)0.023 (2)0.010 (2)
C2350.037 (2)0.043 (3)0.029 (2)0.004 (2)0.010 (2)0.0075 (19)
C2360.032 (2)0.030 (2)0.032 (2)0.0022 (18)0.0093 (19)0.0025 (18)
O30.128 (4)0.106 (3)0.079 (3)0.048 (3)0.059 (3)0.028 (3)
C70.190 (9)0.082 (5)0.216 (11)0.001 (6)0.141 (8)0.002 (6)
C80.097 (5)0.077 (4)0.070 (4)0.044 (4)0.054 (4)0.024 (3)
C90.088 (5)0.137 (6)0.099 (6)0.025 (5)0.034 (5)0.024 (5)
Geometric parameters (Å, º) top
Pd1—S12.3020 (11)C133—H1330.9500
Pd1—P12.3366 (13)C134—C1351.379 (6)
Pd1—P22.3303 (12)C134—H1340.9500
Pd1—Cl12.3550 (11)C135—C1361.378 (5)
S1—C11.744 (4)C135—H1350.9500
P1—C1111.824 (4)C136—H1360.9500
P1—C1211.828 (4)C211—C2121.384 (5)
P1—C1311.817 (4)C211—C2161.392 (5)
P2—C2111.833 (4)C212—C2131.385 (5)
P2—C2211.826 (4)C212—H2120.9500
P2—C2311.821 (4)C213—C2141.374 (6)
O1—N11.228 (4)C213—H2130.9500
O2—N11.237 (4)C214—C2151.389 (5)
N1—C61.458 (5)C214—H2140.9500
C1—C61.407 (5)C215—C2161.378 (5)
C1—C21.414 (5)C215—H2150.9500
C2—C31.371 (5)C216—H2160.9500
C2—H20.9500C221—C2221.393 (5)
C3—C41.391 (6)C221—C2261.380 (5)
C3—H30.9500C222—C2231.377 (5)
C4—C51.358 (6)C222—H2220.9500
C4—H40.9500C223—C2241.376 (6)
C5—C61.383 (5)C223—H2230.9500
C5—H50.9500C224—C2251.376 (6)
C111—C1121.403 (5)C224—H2240.9500
C111—C1161.377 (5)C225—C2261.394 (5)
C112—C1131.378 (5)C225—H2250.9500
C112—H1120.9500C226—H2260.9500
C113—C1141.374 (6)C231—C2321.395 (5)
C113—H1130.9500C231—C2361.384 (5)
C114—C1151.378 (6)C232—C2331.400 (5)
C114—H1140.9500C232—H2320.9500
C115—C1161.393 (5)C233—C2341.381 (6)
C115—H1150.9500C233—H2330.9500
C116—H1160.9500C234—C2351.381 (6)
C121—C1221.391 (5)C234—H2340.9500
C121—C1261.388 (5)C235—C2361.385 (5)
C122—C1231.390 (5)C235—H2350.9500
C122—H1220.9500C236—H2360.9500
C123—C1241.376 (6)O3—C81.192 (6)
C123—H1230.9500C7—C81.491 (9)
C124—C1251.383 (6)C7—H7A0.9800
C124—H1240.9500C7—H7B0.9800
C125—C1261.377 (6)C7—H7C0.9800
C125—H1250.9500C7—H7D0.9800
C126—H1260.9500C7—H7E0.9800
C131—C1321.391 (5)C7—H7F0.9800
C131—C1361.390 (5)C8—C91.456 (9)
C132—C1331.395 (5)C9—H9A0.9800
C132—H1320.9500C9—H9B0.9800
C133—C1341.359 (6)C9—H9C0.9800
Cl1—Pd1—P189.56 (4)C136—C135—H135120.3
Cl1—Pd1—P288.59 (4)C134—C135—H135120.3
S1—Pd1—P190.63 (4)C135—C136—C131121.4 (4)
S1—Pd1—P291.69 (4)C135—C136—H136119.3
Cl1—Pd1—S1174.19 (3)C131—C136—H136119.3
P1—Pd1—P2174.98 (3)C212—C211—C216118.6 (4)
C1—S1—Pd1105.52 (14)C212—C211—P2121.8 (3)
C131—P1—C111102.51 (17)C216—C211—P2119.5 (3)
C131—P1—C121106.98 (17)C211—C212—C213120.4 (4)
C111—P1—C121104.01 (17)C211—C212—H212119.8
C131—P1—Pd1112.75 (13)C213—C212—H212119.8
C111—P1—Pd1118.99 (12)C214—C213—C212120.8 (4)
C121—P1—Pd1110.57 (12)C214—C213—H213119.6
C231—P2—C221101.35 (17)C212—C213—H213119.6
C231—P2—C211105.87 (17)C213—C214—C215119.3 (4)
C221—P2—C211105.18 (16)C213—C214—H214120.4
C231—P2—Pd1116.20 (13)C215—C214—H214120.4
C221—P2—Pd1118.57 (12)C216—C215—C214120.0 (4)
C211—P2—Pd1108.48 (12)C216—C215—H215120.0
O1—N1—O2122.4 (4)C214—C215—H215120.0
O1—N1—C6118.9 (3)C215—C216—C211121.0 (4)
O2—N1—C6118.6 (4)C215—C216—H216119.5
C2—C1—C6113.8 (4)C211—C216—H216119.5
C2—C1—S1121.2 (3)C226—C221—C222118.7 (3)
C6—C1—S1125.0 (3)C226—C221—P2123.9 (3)
C3—C2—C1123.7 (4)C222—C221—P2117.5 (3)
C3—C2—H2118.1C223—C222—C221120.8 (4)
C1—C2—H2118.1C223—C222—H222119.6
C2—C3—C4119.6 (4)C221—C222—H222119.6
C2—C3—H3120.2C224—C223—C222119.6 (4)
C4—C3—H3120.2C224—C223—H223120.2
C5—C4—C3119.1 (4)C222—C223—H223120.2
C5—C4—H4120.5C225—C224—C223120.9 (4)
C3—C4—H4120.5C225—C224—H224119.5
C4—C5—C6121.1 (4)C223—C224—H224119.5
C4—C5—H5119.5C224—C225—C226119.1 (4)
C6—C5—H5119.5C224—C225—H225120.5
C1—C6—C5122.7 (4)C226—C225—H225120.5
C1—C6—N1121.3 (4)C221—C226—C225120.9 (4)
C5—C6—N1116.0 (4)C221—C226—H226119.6
C116—C111—C112118.6 (4)C225—C226—H226119.6
C116—C111—P1123.2 (3)C236—C231—C232118.9 (3)
C112—C111—P1118.2 (3)C236—C231—P2120.2 (3)
C113—C112—C111120.9 (4)C232—C231—P2120.9 (3)
C113—C112—H112119.5C231—C232—C233120.1 (4)
C111—C112—H112119.5C231—C232—H232120.0
C114—C113—C112119.9 (4)C233—C232—H232120.0
C114—C113—H113120.1C234—C233—C232119.9 (4)
C112—C113—H113120.1C234—C233—H233120.0
C113—C114—C115120.0 (4)C232—C233—H233120.0
C113—C114—H114120.0C233—C234—C235120.1 (4)
C115—C114—H114120.0C233—C234—H234119.9
C114—C115—C116120.4 (4)C235—C234—H234119.9
C114—C115—H115119.8C234—C235—C236119.9 (4)
C116—C115—H115119.8C234—C235—H235120.0
C111—C116—C115120.2 (4)C236—C235—H235120.0
C111—C116—H116119.9C231—C236—C235121.0 (4)
C115—C116—H116119.9C231—C236—H236119.5
C126—C121—C122118.9 (4)C235—C236—H236119.5
C126—C121—P1118.2 (3)C8—C7—H7A109.5
C122—C121—P1122.8 (3)C8—C7—H7B109.5
C123—C122—C121119.6 (4)H7A—C7—H7B109.5
C123—C122—H122120.2C8—C7—H7C109.5
C121—C122—H122120.2H7A—C7—H7C109.5
C124—C123—C122120.7 (4)H7B—C7—H7C109.5
C124—C123—H123119.6C8—C7—H7D109.5
C122—C123—H123119.6H7A—C7—H7D141.1
C123—C124—C125119.9 (4)H7B—C7—H7D56.3
C123—C124—H124120.1H7C—C7—H7D56.3
C125—C124—H124120.1C8—C7—H7E109.5
C126—C125—C124119.7 (4)H7A—C7—H7E56.3
C126—C125—H125120.2H7B—C7—H7E141.1
C124—C125—H125120.2H7C—C7—H7E56.3
C125—C126—C121121.2 (4)H7D—C7—H7E109.5
C125—C126—H126119.4C8—C7—H7F109.5
C121—C126—H126119.4H7A—C7—H7F56.3
C136—C131—C132118.3 (3)H7B—C7—H7F56.3
C136—C131—P1120.3 (3)H7C—C7—H7F141.1
C132—C131—P1121.3 (3)H7D—C7—H7F109.5
C131—C132—C133119.9 (4)H7E—C7—H7F109.5
C131—C132—H132120.0O3—C8—C9122.5 (7)
C133—C132—H132120.0O3—C8—C7122.6 (7)
C134—C133—C132120.5 (4)C9—C8—C7114.9 (6)
C134—C133—H133119.7C8—C9—H9A109.5
C132—C133—H133119.7C8—C9—H9B109.5
C133—C134—C135120.4 (4)H9A—C9—H9B109.5
C133—C134—H134119.8C8—C9—H9C109.5
C135—C134—H134119.8H9A—C9—H9C109.5
C136—C135—C134119.4 (4)H9B—C9—H9C109.5
P2—Pd1—S1—C187.58 (13)P1—C121—C126—C125178.2 (3)
P1—Pd1—S1—C187.97 (13)C111—P1—C131—C13633.4 (4)
S1—Pd1—P1—C131100.03 (13)C121—P1—C131—C13675.6 (3)
S1—Pd1—P1—C11120.03 (15)Pd1—P1—C131—C136162.6 (3)
Cl1—Pd1—P1—C111165.77 (15)C111—P1—C131—C132143.6 (3)
S1—Pd1—P1—C121140.26 (12)C121—P1—C131—C132107.3 (3)
Cl1—Pd1—P1—C12145.54 (13)Pd1—P1—C131—C13214.4 (4)
Cl1—Pd1—P1—C13174.17 (13)C136—C131—C132—C1330.9 (6)
S1—Pd1—P2—C231106.54 (13)P1—C131—C132—C133176.2 (3)
Cl1—Pd1—P2—C21151.41 (12)C131—C132—C133—C1340.8 (7)
S1—Pd1—P2—C22114.64 (14)C132—C133—C134—C1351.7 (7)
Cl1—Pd1—P2—C221171.16 (14)C133—C134—C135—C1360.9 (7)
S1—Pd1—P2—C211134.39 (12)C134—C135—C136—C1310.8 (7)
Cl1—Pd1—P2—C23167.66 (13)C132—C131—C136—C1351.7 (6)
Pd1—S1—C1—C6172.9 (3)P1—C131—C136—C135175.4 (4)
Pd1—S1—C1—C24.8 (3)C231—P2—C211—C2122.9 (4)
C6—C1—C2—C30.5 (6)C221—P2—C211—C212103.9 (3)
S1—C1—C2—C3178.4 (3)Pd1—P2—C211—C212128.3 (3)
C1—C2—C3—C40.2 (6)C231—P2—C211—C216174.0 (3)
C2—C3—C4—C50.8 (6)C221—P2—C211—C21679.2 (3)
C3—C4—C5—C61.5 (7)Pd1—P2—C211—C21648.6 (3)
C4—C5—C6—C11.2 (7)C216—C211—C212—C2130.9 (6)
C4—C5—C6—N1178.5 (4)P2—C211—C212—C213177.7 (3)
C2—C1—C6—C50.2 (6)C211—C212—C213—C2140.3 (7)
S1—C1—C6—C5177.6 (3)C212—C213—C214—C2150.2 (7)
C2—C1—C6—N1179.5 (3)C213—C214—C215—C2160.2 (7)
S1—C1—C6—N12.7 (6)C214—C215—C216—C2110.3 (6)
O1—N1—C6—C5163.5 (4)C212—C211—C216—C2150.9 (6)
O2—N1—C6—C515.9 (6)P2—C211—C216—C215177.8 (3)
O1—N1—C6—C116.2 (6)C231—P2—C221—C226125.7 (3)
O2—N1—C6—C1164.4 (4)C211—P2—C221—C22615.6 (4)
C131—P1—C111—C116129.4 (3)Pd1—P2—C221—C226105.8 (3)
C121—P1—C111—C11618.1 (4)C231—P2—C221—C22255.1 (3)
Pd1—P1—C111—C116105.4 (3)C211—P2—C221—C222165.2 (3)
C131—P1—C111—C11251.4 (3)Pd1—P2—C221—C22273.4 (3)
C121—P1—C111—C112162.7 (3)C226—C221—C222—C2232.2 (6)
Pd1—P1—C111—C11273.7 (3)P2—C221—C222—C223178.5 (3)
C116—C111—C112—C1130.2 (6)C221—C222—C223—C2241.6 (7)
P1—C111—C112—C113179.0 (3)C222—C223—C224—C2250.6 (7)
C111—C112—C113—C1140.3 (6)C223—C224—C225—C2260.2 (7)
C112—C113—C114—C1150.4 (7)C222—C221—C226—C2251.8 (6)
C113—C114—C115—C1160.1 (7)P2—C221—C226—C225179.0 (3)
C112—C111—C116—C1150.5 (6)C224—C225—C226—C2210.8 (7)
P1—C111—C116—C115178.6 (3)C221—P2—C231—C23636.0 (3)
C114—C115—C116—C1110.4 (7)C211—P2—C231—C23673.5 (3)
C131—P1—C121—C126170.7 (3)Pd1—P2—C231—C236166.0 (3)
C111—P1—C121—C12681.3 (3)C221—P2—C231—C232144.3 (3)
Pd1—P1—C121—C12647.5 (3)C211—P2—C231—C232106.2 (3)
C131—P1—C121—C1229.6 (4)Pd1—P2—C231—C23214.3 (4)
C111—P1—C121—C12298.5 (3)C236—C231—C232—C2330.8 (6)
Pd1—P1—C121—C122132.7 (3)P2—C231—C232—C233179.0 (3)
C126—C121—C122—C1230.4 (6)C231—C232—C233—C2340.1 (6)
P1—C121—C122—C123179.3 (3)C232—C233—C234—C2350.6 (6)
C121—C122—C123—C1240.8 (6)C233—C234—C235—C2360.7 (6)
C122—C123—C124—C1250.8 (6)C232—C231—C236—C2350.7 (6)
C123—C124—C125—C1260.3 (7)P2—C231—C236—C235179.0 (3)
C124—C125—C126—C1211.5 (6)C234—C235—C236—C2310.0 (6)
C122—C121—C126—C1251.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C236—H236···O30.952.513.307 (6)141

Experimental details

Crystal data
Chemical formula[PdCl(C6H4NO2S)(C18H15P)2]·C3H6O
Mr878.63
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)18.292 (7), 10.969 (3), 21.363 (8)
β (°) 105.0928 (17)
V3)4139 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.30 × 0.10 × 0.05
Data collection
DiffractometerEnraf-Nonius
diffractometer with FAST area-detector
Absorption correctionMulti-scan
(FAST/MADNES; Pflugrath & Messerschmidt, 1989)
Tmin, Tmax0.822, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
49325, 11315, 5642
Rint0.095
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.147, 0.94
No. of reflections11315
No. of parameters489
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.54, 1.10

Computer programs: CAD-4-PC Software (Enraf-Nonius, 1992) and FAST/MADNES (Pflugrath & Messerschmidt, 1989), CAD-4-PC Software and FAST/MADNES, SHELXS97 (Sheldrick, 1997), NRCVAX96 (Gabe et al., 1989) and SHELXL97 (Sheldrick, 1997), NRCVAX96, ORTEPII (Johnson, 1976) and PLATON (Spek, 2000), NRCVAX96, SHELXL97 and WORDPERFECT macro PREP8 (Ferguson, 1998).

Selected geometric parameters (Å, º) top
Pd1—S12.3020 (11)S1—C11.744 (4)
Pd1—P12.3366 (13)O1—N11.228 (4)
Pd1—P22.3303 (12)O2—N11.237 (4)
Pd1—Cl12.3550 (11)N1—C61.458 (5)
Cl1—Pd1—P189.56 (4)O1—N1—O2122.4 (4)
Cl1—Pd1—P288.59 (4)C2—C1—C6113.8 (4)
S1—Pd1—P190.63 (4)C2—C1—S1121.2 (3)
S1—Pd1—P291.69 (4)C6—C1—S1125.0 (3)
Cl1—Pd1—S1174.19 (3)C1—C6—C5122.7 (4)
P1—Pd1—P2174.98 (3)C1—C6—N1121.3 (4)
C1—S1—Pd1105.52 (14)C5—C6—N1116.0 (4)
Cl1—Pd1—P1—C111165.77 (15)Cl1—Pd1—P2—C21151.41 (12)
Cl1—Pd1—P1—C12145.54 (13)Cl1—Pd1—P2—C221171.16 (14)
Cl1—Pd1—P1—C13174.17 (13)Cl1—Pd1—P2—C23167.66 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C236—H236···O30.952.513.307 (6)141
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds