Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100007460/sk1397sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270100007460/sk1397Isup2.hkl |
CCDC reference: 150315
A solution of diiodine (76.2 mg, 0.30 mmol) in acetonitrile (5 ml) was added to the solution of [Ru(16-TMC)Cl2]Cl (98.3 mg, 0.20 mmol) in acetontrile (10 ml). After slow evaporation of the solvent, dark-red crystals were formed and washed with acetontrile [yield 125.6 mg (75.0%)].
Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 1990).
Fig. 1. The structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme. |
[RuCl2(C16H36N4)]I3 | F(000) = 1588 |
Mr = 837.16 | Dx = 2.212 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 6317 reflections |
a = 7.7198 (1) Å | θ = 1.6–28.4° |
b = 20.4639 (3) Å | µ = 4.53 mm−1 |
c = 15.9112 (2) Å | T = 293 K |
V = 2513.61 (6) Å3 | Needle, red |
Z = 4 | 0.18 × 0.16 × 0.14 mm |
Siemens SMART CCD area detector diffractometer | 3199 independent reflections |
Radiation source: fine-focus sealed tube | 2682 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
Detector resolution: 8.33 pixels mm-1 | θmax = 28.3°, θmin = 1.6° |
ω scans | h = −10→10 |
Absorption correction: empirical (using intensity measurements) SADABS (Sheldrick, 1996) | k = −27→27 |
Tmin = 0.462, Tmax = 0.530 | l = −11→21 |
18757 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.087 | H-atom parameters constrained |
S = 1.16 | w = 1/[σ2(Fo2) + (0.0275P)2 + 6.6027P] where P = (Fo2 + 2Fc2)/3 |
3199 reflections | (Δ/σ)max = 0.001 |
124 parameters | Δρmax = 1.29 e Å−3 |
0 restraints | Δρmin = −1.96 e Å−3 |
[RuCl2(C16H36N4)]I3 | V = 2513.61 (6) Å3 |
Mr = 837.16 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 7.7198 (1) Å | µ = 4.53 mm−1 |
b = 20.4639 (3) Å | T = 293 K |
c = 15.9112 (2) Å | 0.18 × 0.16 × 0.14 mm |
Siemens SMART CCD area detector diffractometer | 3199 independent reflections |
Absorption correction: empirical (using intensity measurements) SADABS (Sheldrick, 1996) | 2682 reflections with I > 2σ(I) |
Tmin = 0.462, Tmax = 0.530 | Rint = 0.052 |
18757 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.087 | H-atom parameters constrained |
S = 1.16 | Δρmax = 1.29 e Å−3 |
3199 reflections | Δρmin = −1.96 e Å−3 |
124 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The data collection covered over a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was −35°. Coverage of the unique set is over 99% complete. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the duplicate reflections, and was found to be negligible. |
x | y | z | Uiso*/Ueq | ||
Ru1 | 0.0000 | 0.5000 | 0.0000 | 0.01963 (10) | |
Cl1 | 0.24338 (13) | 0.51679 (6) | −0.08482 (7) | 0.0393 (3) | |
I1 | 0.12920 (11) | 0.2500 | 0.31048 (4) | 0.0846 (2) | |
I2 | 0.07460 (5) | 0.2500 | 0.48974 (3) | 0.03676 (12) | |
I3 | 0.00071 (9) | 0.2500 | 0.67157 (3) | 0.06406 (18) | |
N1 | 0.1098 (5) | 0.40085 (17) | 0.0343 (2) | 0.0334 (8) | |
N2 | 0.1359 (4) | 0.54223 (17) | 0.1140 (2) | 0.0295 (7) | |
C1 | 0.2812 (7) | 0.4078 (3) | 0.0775 (4) | 0.0500 (13) | |
H1A | 0.3548 | 0.4355 | 0.0433 | 0.060* | |
H1B | 0.3353 | 0.3651 | 0.0801 | 0.060* | |
C2 | 0.2754 (8) | 0.4359 (3) | 0.1657 (3) | 0.0517 (13) | |
H2A | 0.2476 | 0.4006 | 0.2041 | 0.062* | |
H2B | 0.3908 | 0.4511 | 0.1797 | 0.062* | |
C3 | 0.1501 (7) | 0.4913 (2) | 0.1821 (3) | 0.0435 (11) | |
H3A | 0.0360 | 0.4728 | 0.1914 | 0.052* | |
H3B | 0.1846 | 0.5130 | 0.2337 | 0.052* | |
C4 | 0.3144 (6) | 0.5684 (2) | 0.0972 (3) | 0.0432 (11) | |
H4A | 0.3626 | 0.5853 | 0.1484 | 0.065* | |
H4B | 0.3078 | 0.6028 | 0.0563 | 0.065* | |
H4C | 0.3868 | 0.5339 | 0.0763 | 0.065* | |
C5 | 0.0356 (7) | 0.5958 (3) | 0.1559 (3) | 0.0468 (12) | |
H5A | 0.1010 | 0.6109 | 0.2042 | 0.056* | |
H5B | −0.0725 | 0.5777 | 0.1766 | 0.056* | |
C6 | −0.0056 (8) | 0.6543 (2) | 0.1006 (4) | 0.0522 (13) | |
H6A | −0.0352 | 0.6913 | 0.1359 | 0.063* | |
H6B | 0.0963 | 0.6659 | 0.0682 | 0.063* | |
C7 | −0.1547 (7) | 0.6403 (3) | 0.0411 (4) | 0.0515 (13) | |
H7A | −0.2457 | 0.6185 | 0.0723 | 0.062* | |
H7B | −0.2011 | 0.6817 | 0.0214 | 0.062* | |
C8 | −0.0052 (8) | 0.3595 (3) | 0.0882 (4) | 0.0567 (14) | |
H8A | 0.0510 | 0.3186 | 0.0996 | 0.085* | |
H8B | −0.1125 | 0.3516 | 0.0594 | 0.085* | |
H8C | −0.0279 | 0.3817 | 0.1401 | 0.085* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.01643 (19) | 0.02450 (19) | 0.01795 (18) | −0.00081 (14) | 0.00222 (15) | −0.00071 (15) |
Cl1 | 0.0249 (5) | 0.0606 (7) | 0.0324 (5) | −0.0066 (5) | 0.0096 (4) | −0.0008 (5) |
I1 | 0.1060 (6) | 0.1040 (5) | 0.0439 (3) | 0.000 | −0.0040 (3) | 0.000 |
I2 | 0.0293 (2) | 0.0335 (2) | 0.0475 (2) | 0.000 | −0.00335 (18) | 0.000 |
I3 | 0.0944 (5) | 0.0556 (3) | 0.0422 (3) | 0.000 | 0.0056 (3) | 0.000 |
N1 | 0.0319 (18) | 0.0292 (17) | 0.0392 (19) | 0.0020 (14) | −0.0039 (15) | −0.0012 (15) |
N2 | 0.0290 (17) | 0.0345 (17) | 0.0250 (16) | −0.0050 (14) | −0.0029 (13) | −0.0029 (14) |
C1 | 0.045 (3) | 0.046 (3) | 0.060 (3) | 0.011 (2) | −0.016 (2) | 0.003 (2) |
C2 | 0.058 (3) | 0.050 (3) | 0.047 (3) | 0.001 (3) | −0.024 (2) | 0.011 (2) |
C3 | 0.048 (3) | 0.055 (3) | 0.027 (2) | −0.009 (2) | −0.0086 (19) | 0.007 (2) |
C4 | 0.035 (2) | 0.049 (3) | 0.046 (3) | −0.012 (2) | −0.006 (2) | −0.004 (2) |
C5 | 0.049 (3) | 0.054 (3) | 0.037 (2) | 0.002 (2) | 0.000 (2) | −0.019 (2) |
C6 | 0.065 (3) | 0.037 (2) | 0.054 (3) | 0.008 (2) | −0.008 (3) | −0.021 (2) |
C7 | 0.054 (3) | 0.041 (3) | 0.059 (3) | 0.014 (2) | −0.004 (3) | −0.012 (2) |
C8 | 0.068 (4) | 0.038 (3) | 0.064 (4) | −0.010 (3) | −0.004 (3) | 0.016 (2) |
Ru1—N1 | 2.266 (3) | N1—C7i | 1.506 (6) |
Ru1—N1i | 2.266 (3) | N2—C5 | 1.499 (6) |
Ru1—N2i | 2.266 (3) | N2—C4 | 1.503 (6) |
Ru1—N2 | 2.266 (3) | N2—C3 | 1.508 (6) |
Ru1—Cl1 | 2.339 (1) | C1—C2 | 1.517 (7) |
Ru1—Cl1i | 2.3387 (10) | C2—C3 | 1.514 (7) |
I1—I2 | 2.883 (1) | C5—C6 | 1.520 (8) |
I2—I3 | 2.949 (1) | C6—C7 | 1.518 (8) |
N1—C8 | 1.497 (6) | C7—N1i | 1.506 (6) |
N1—C1 | 1.498 (6) | ||
N1—Ru1—N1i | 180.0 (2) | C8—N1—C7i | 106.0 (4) |
N1—Ru1—N2i | 91.4 (1) | C1—N1—C7i | 102.4 (4) |
N1i—Ru1—N2i | 88.61 (13) | C8—N1—Ru1 | 115.0 (3) |
N1—Ru1—N2 | 88.6 (1) | C1—N1—Ru1 | 110.9 (3) |
N1i—Ru1—N2 | 91.39 (13) | C7i—N1—Ru1 | 113.3 (3) |
N2i—Ru1—N2 | 180.00 (19) | C5—N2—C4 | 107.0 (4) |
N1—Ru1—Cl1 | 88.3 (1) | C5—N2—C3 | 102.8 (3) |
N1i—Ru1—Cl1 | 91.7 (1) | C4—N2—C3 | 107.9 (4) |
N2i—Ru1—Cl1 | 88.1 (1) | C5—N2—Ru1 | 113.4 (3) |
N2—Ru1—Cl1 | 91.94 (9) | C4—N2—Ru1 | 114.8 (3) |
N1—Ru1—Cl1i | 91.73 (10) | C3—N2—Ru1 | 110.3 (3) |
N1i—Ru1—Cl1i | 88.27 (10) | N1—C1—C2 | 115.8 (4) |
N2i—Ru1—Cl1i | 91.94 (9) | C3—C2—C1 | 117.6 (4) |
N2—Ru1—Cl1i | 88.06 (9) | N2—C3—C2 | 116.1 (4) |
Cl1—Ru1—Cl1i | 180.0 (1) | N2—C5—C6 | 115.2 (4) |
I1—I2—I3 | 177.25 (3) | C7—C6—C5 | 111.8 (5) |
C8—N1—C1 | 108.3 (4) | N1i—C7—C6 | 115.3 (4) |
N1i—Ru1—N1—C8 | 33 (60) | N2i—Ru1—N2—C4 | 152 (100) |
N2i—Ru1—N1—C8 | −87.3 (3) | Cl1—Ru1—N2—C4 | 3.6 (3) |
N2—Ru1—N1—C8 | 92.7 (3) | Cl1i—Ru1—N2—C4 | −176.4 (3) |
Cl1—Ru1—N1—C8 | −175.4 (3) | N1—Ru1—N2—C3 | −30.2 (3) |
Cl1i—Ru1—N1—C8 | 4.6 (3) | N1i—Ru1—N2—C3 | 149.8 (3) |
N1i—Ru1—N1—C1 | −90 (59) | N2i—Ru1—N2—C3 | 29 (100) |
N2i—Ru1—N1—C1 | 149.4 (3) | Cl1—Ru1—N2—C3 | −118.4 (3) |
N2—Ru1—N1—C1 | −30.6 (3) | Cl1i—Ru1—N2—C3 | 61.6 (3) |
Cl1—Ru1—N1—C1 | 61.4 (3) | C8—N1—C1—C2 | −56.7 (6) |
Cl1i—Ru1—N1—C1 | −118.6 (3) | C7i—N1—C1—C2 | −168.5 (4) |
N1i—Ru1—N1—C7i | 155 (60) | Ru1—N1—C1—C2 | 70.4 (5) |
N2i—Ru1—N1—C7i | 34.8 (3) | N1—C1—C2—C3 | −39.6 (7) |
N2—Ru1—N1—C7i | −145.2 (3) | C5—N2—C3—C2 | −168.3 (4) |
Cl1—Ru1—N1—C7i | −53.2 (3) | C4—N2—C3—C2 | −55.5 (5) |
Cl1i—Ru1—N1—C7i | 126.8 (3) | Ru1—N2—C3—C2 | 70.5 (4) |
N1—Ru1—N2—C5 | −144.9 (3) | C1—C2—C3—N2 | −40.5 (6) |
N1i—Ru1—N2—C5 | 35.1 (3) | C4—N2—C5—C6 | 68.6 (5) |
N2i—Ru1—N2—C5 | −85 (100) | C3—N2—C5—C6 | −177.9 (4) |
Cl1—Ru1—N2—C5 | 126.9 (3) | Ru1—N2—C5—C6 | −58.9 (5) |
Cl1i—Ru1—N2—C5 | −53.1 (3) | N2—C5—C6—C7 | 77.4 (6) |
N1—Ru1—N2—C4 | 91.8 (3) | C5—C6—C7—N1i | −77.1 (6) |
N1i—Ru1—N2—C4 | −88.2 (3) |
Symmetry code: (i) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [RuCl2(C16H36N4)]I3 |
Mr | 837.16 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 293 |
a, b, c (Å) | 7.7198 (1), 20.4639 (3), 15.9112 (2) |
V (Å3) | 2513.61 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.53 |
Crystal size (mm) | 0.18 × 0.16 × 0.14 |
Data collection | |
Diffractometer | Siemens SMART CCD area detector diffractometer |
Absorption correction | Empirical (using intensity measurements) SADABS (Sheldrick, 1996) |
Tmin, Tmax | 0.462, 0.530 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18757, 3199, 2682 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.087, 1.16 |
No. of reflections | 3199 |
No. of parameters | 124 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.29, −1.96 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL and PLATON (Spek, 1990).
Ru1—N1 | 2.266 (3) | I1—I2 | 2.883 (1) |
Ru1—N2 | 2.266 (3) | I2—I3 | 2.949 (1) |
Ru1—Cl1 | 2.339 (1) | ||
N1—Ru1—N1i | 180.0 (2) | N2i—Ru1—Cl1 | 88.1 (1) |
N1—Ru1—N2i | 91.4 (1) | N2—Ru1—Cl1 | 91.94 (9) |
N1—Ru1—N2 | 88.6 (1) | Cl1—Ru1—Cl1i | 180.0 (1) |
N1i—Ru1—Cl1 | 91.7 (1) | I1—I2—I3 | 177.25 (3) |
Symmetry code: (i) −x, −y+1, −z. |
Crystal engineering has become an area of great interest over recent years (Roboson et al., 1992; Desiraju, 1989; Zuo et al., 1998). Different cation networks have been developed through ligand design and the use of different transition metal ions such as Zn2+, Cd2+, Cu+ and Ag+ (Xiong et al., 1999 and references therein). However, the only examples of anionic and nonzeolitic supramolecular architectures are iodine-rich compounds (Blake et al., 1996, 1998). The synthesis and structural characterization of polyiodides continue to be an active area of investigation. Metal thioether macrocyclic complexes have been used as templating agents in the preparation of polymeric one-dimensional chain structures or infinite two or three-dimensional networks, in which the polyiodide arrays form unusual supramolecular inorganic matrices. High-valent oxo complexes of ruthenium are of interest because of their potential usefulness as oxidative catalysts (Mak et al., 1985). Several trichloro ruthenium complexes of macrocyclic amines have been studied by Che et al. (1986). Owing to their strong σ donor properties, the tetradentate macrocyclic tertiary amines, such as 16-TMC (1,5,9,13-tetramethyl-1,5,9,13-tetrazacyclohexadecane) are introduced being capable of stabilizing high valent metal-oxo complexes. In this paper, we choose the cation, [Ru(16-TMC)Cl2]+, (I), as a template to synthesize extended polyiodide arrays. \sch
The asymmetric unit contains a half molecule and the overall symmetry of the centrosymmetric cation is approximately C2h. The Ru—N bond lengths, Ru1—N1 = 2.266 (4) and Ru1—N2 = 2.267 (3) Å, are slightly longer than that in [Ru(16-TMC)O2]2+ [2.17–2.22 (2) Å] (Mak et al., 1985). The anions are slightly asymmetric I3− ions with bond distances I1—I2 = 2.883 (1) and I2—I3 = 2.949 (1) Å, which is different from the symmetric I3− in [Ag([18]aneS6)I3] (Blake et al., 1995). The Ru—N and Ru—Cl distances are slightly longer than the values reported in the literature (Allen et al., 1989). The 16-membered ring leaving the Ru and Cl atoms is essentially planar and the C4 and C8 atoms are in axial orientation. The six-membered rings adopt twist-boat conformation.
The I···I (x − 1/2, y, −z + 1/2) distance is 4.313 (1) Å. The cations and the linear anions are arranged as alternate layers and thus forming the intercalating structure along the b direction.