Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105006359/sk1820sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270105006359/sk1820Isup2.hkl |
CCDC reference: 269052
threo-2-(2,6-Dimethoxyphenoxy)-1-(4-hydroxy-3,5- dimethoxyphenyl)-1,3-propanediol, (I), was synthesized according to the procedure given by Li et al. (2000). Separation of the erythro and threo forms was accomplished by ion-exchange chromatography (cf. Li et al., 1994). For (I), m.p. 415–417 K. Crystals of (I) suitable for X-ray crystallography were obtained from 2-butanone/ethyl acetate (Ratio?).
H atoms were refined isotropically and were constrained to the ideal geometry using an appropriate riding model. For aromatic H atoms, the C—H distance was kept fixed at 0.95 Å, for secondary H atoms at 0.99 Å and for tertiary at 1.00 Å. For the hydroxyl groups, the O—H distance (0.84 Å) and C—O—H angle (109.5°) were kept fixed, while the torsion angle was allowed to refine, with the starting position based on the circular Fourier synthesis. For methyl groups, the C—H distances (0.98 Å) and C—C—H angles (109.5°) were kept fixed, while the torsion angles were allowed to refine, with the starting position based on the threefold averaged circular Fourier synthesis.
Data collection: SMART(Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT and SADABS (Sheldrick, 2002; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL.
C19H24O8 | F(000) = 1616 |
Mr = 380.38 | Dx = 1.398 Mg m−3 |
Monoclinic, C2/c | Melting point = 415–417 K |
Hall symbol: -C 2yc | Mo Kα radiation, λ = 0.71073 Å |
a = 24.0634 (1) Å | Cell parameters from 7395 reflections |
b = 7.3465 (1) Å | θ = 1.9–30.7° |
c = 22.4459 (3) Å | µ = 0.11 mm−1 |
β = 114.332 (1)° | T = 173 K |
V = 3615.56 (7) Å3 | Prism, colourless |
Z = 8 | 0.28 × 0.24 × 0.22 mm |
Siemens SMART CCD area-detector diffractometer | 5566 independent reflections |
Radiation source: fine-focus sealed tube | 4423 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
ω scans | θmax = 30.7°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −34→34 |
Tmin = 0.758, Tmax = 0.976 | k = −10→10 |
28856 measured reflections | l = −32→32 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.146 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0693P)2 + 4.0089P] where P = (Fo2 + 2Fc2)/3 |
5566 reflections | (Δ/σ)max = 0.001 |
275 parameters | Δρmax = 0.55 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C19H24O8 | V = 3615.56 (7) Å3 |
Mr = 380.38 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 24.0634 (1) Å | µ = 0.11 mm−1 |
b = 7.3465 (1) Å | T = 173 K |
c = 22.4459 (3) Å | 0.28 × 0.24 × 0.22 mm |
β = 114.332 (1)° |
Siemens SMART CCD area-detector diffractometer | 5566 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 4423 reflections with I > 2σ(I) |
Tmin = 0.758, Tmax = 0.976 | Rint = 0.035 |
28856 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.146 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.55 e Å−3 |
5566 reflections | Δρmin = −0.27 e Å−3 |
275 parameters |
Experimental. Data were collected at low temperature using a Siemens SMART CCD diffractometer equiped with a LT-2 device. A full sphere of reciprocal space was scanned by 0.3° steps in ω with a crystal–to–detector distance of 3.97 cm, 20 s per frame. Preliminary orientation matrix was obtained from the first 100 frames using SMART (Siemens, 1995). The collected frames were integrated using the preliminary orientation matrix which was updated every 100 frames. Final cell parameters were obtained by refinement on the position of 7395 reflections with I>10σ(I) after integration of all the frames data using SAINT (Siemens, 1995). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.26067 (5) | 0.57058 (19) | 0.93706 (5) | 0.0342 (3) | |
O2 | 1.33164 (5) | 0.60577 (18) | 0.87428 (5) | 0.0332 (3) | |
H2 | 1.3495 | 0.6196 | 0.8494 | 0.044 (6)* | |
O3 | 1.28640 (5) | 0.63279 (19) | 0.74418 (6) | 0.0350 (3) | |
O4 | 1.05517 (5) | 0.77079 (14) | 0.69355 (6) | 0.0324 (3) | |
H4 | 1.0226 | 0.7506 | 0.6606 | 0.056 (7)* | |
O5 | 1.07439 (5) | 0.13622 (14) | 0.66710 (5) | 0.0265 (2) | |
H5 | 1.0704 | 0.0297 | 0.6783 | 0.067 (8)* | |
O6 | 0.98651 (4) | 0.45885 (13) | 0.66054 (4) | 0.01855 (19) | |
O7 | 0.97078 (5) | 0.67472 (15) | 0.56114 (5) | 0.0296 (2) | |
O8 | 0.93480 (5) | 0.13097 (15) | 0.64410 (6) | 0.0311 (2) | |
C1 | 1.14385 (6) | 0.61084 (19) | 0.76799 (7) | 0.0230 (3) | |
C2 | 1.16891 (6) | 0.59072 (19) | 0.83541 (7) | 0.0239 (3) | |
H2A | 1.1430 | 0.5774 | 0.8576 | 0.027 (5)* | |
C3 | 1.23207 (6) | 0.5899 (2) | 0.87086 (7) | 0.0251 (3) | |
C4 | 1.27024 (6) | 0.6081 (2) | 0.83844 (7) | 0.0249 (3) | |
C5 | 1.24446 (6) | 0.6239 (2) | 0.77060 (7) | 0.0252 (3) | |
C6 | 1.18159 (6) | 0.6279 (2) | 0.73525 (7) | 0.0255 (3) | |
H6 | 1.1646 | 0.6423 | 0.6891 | 0.029 (5)* | |
C7 | 1.22344 (9) | 0.5300 (3) | 0.97058 (9) | 0.0460 (5) | |
H7A | 1.1946 | 0.6298 | 0.9644 | 0.057 (7)* | |
H7B | 1.2491 | 0.5151 | 1.0173 | 0.060 (7)* | |
H7C | 1.2009 | 0.4171 | 0.9532 | 0.058 (7)* | |
C8 | 1.26462 (8) | 0.6151 (3) | 0.67552 (8) | 0.0351 (4) | |
H8A | 1.2415 | 0.5015 | 0.6615 | 0.048 (6)* | |
H8B | 1.2992 | 0.6133 | 0.6631 | 0.052 (7)* | |
H8C | 1.2380 | 0.7184 | 0.6543 | 0.054 (7)* | |
C9 | 1.07530 (6) | 0.60671 (19) | 0.73068 (7) | 0.0220 (3) | |
H9 | 1.0566 | 0.6007 | 0.7630 | 0.023 (4)* | |
C10 | 1.05236 (6) | 0.44501 (18) | 0.68448 (6) | 0.0189 (2) | |
H10 | 1.0643 | 0.4615 | 0.6471 | 0.022 (4)* | |
C11 | 1.07503 (7) | 0.26098 (19) | 0.71608 (7) | 0.0241 (3) | |
H11A | 1.1170 | 0.2728 | 0.7504 | 0.044 (6)* | |
H11B | 1.0484 | 0.2156 | 0.7367 | 0.031 (5)* | |
C12 | 0.95217 (6) | 0.39685 (18) | 0.59825 (6) | 0.0192 (2) | |
C13 | 0.94180 (6) | 0.5109 (2) | 0.54514 (7) | 0.0235 (3) | |
C14 | 0.90435 (8) | 0.4543 (2) | 0.48201 (7) | 0.0334 (3) | |
H14 | 0.8973 | 0.5309 | 0.4455 | 0.044 (6)* | |
C15 | 0.87777 (8) | 0.2844 (3) | 0.47373 (8) | 0.0367 (4) | |
H15 | 0.8528 | 0.2441 | 0.4307 | 0.048 (6)* | |
C16 | 0.88619 (7) | 0.1714 (2) | 0.52561 (8) | 0.0305 (3) | |
H16 | 0.8667 | 0.0560 | 0.5184 | 0.040 (6)* | |
C17 | 0.92351 (6) | 0.22747 (19) | 0.58878 (7) | 0.0231 (3) | |
C18 | 0.96536 (10) | 0.7951 (2) | 0.50902 (9) | 0.0396 (4) | |
H18A | 0.9832 | 0.7378 | 0.4815 | 0.043 (6)* | |
H18B | 0.9870 | 0.9089 | 0.5272 | 0.058 (7)* | |
H18C | 0.9222 | 0.8213 | 0.4826 | 0.052 (7)* | |
C19 | 0.90465 (9) | −0.0389 (2) | 0.63792 (10) | 0.0365 (4) | |
H19A | 0.8604 | −0.0205 | 0.6161 | 0.037 (5)* | |
H19B | 0.9151 | −0.0909 | 0.6814 | 0.058 (7)* | |
H19C | 0.9176 | −0.1224 | 0.6120 | 0.046 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0231 (5) | 0.0535 (7) | 0.0231 (5) | −0.0006 (5) | 0.0067 (4) | 0.0049 (5) |
O2 | 0.0157 (5) | 0.0538 (7) | 0.0264 (5) | −0.0008 (5) | 0.0050 (4) | 0.0034 (5) |
O3 | 0.0205 (5) | 0.0563 (8) | 0.0282 (5) | −0.0051 (5) | 0.0100 (4) | −0.0018 (5) |
O4 | 0.0255 (5) | 0.0190 (5) | 0.0407 (6) | −0.0022 (4) | 0.0017 (5) | −0.0004 (4) |
O5 | 0.0275 (5) | 0.0202 (5) | 0.0326 (5) | 0.0014 (4) | 0.0133 (4) | −0.0006 (4) |
O6 | 0.0140 (4) | 0.0221 (5) | 0.0177 (4) | −0.0009 (3) | 0.0046 (3) | −0.0025 (3) |
O7 | 0.0373 (6) | 0.0234 (5) | 0.0270 (5) | 0.0005 (4) | 0.0123 (4) | 0.0069 (4) |
O8 | 0.0358 (6) | 0.0250 (5) | 0.0321 (6) | −0.0112 (4) | 0.0136 (5) | −0.0004 (4) |
C1 | 0.0183 (6) | 0.0209 (6) | 0.0274 (7) | −0.0010 (5) | 0.0070 (5) | −0.0025 (5) |
C2 | 0.0205 (6) | 0.0233 (6) | 0.0279 (7) | −0.0011 (5) | 0.0100 (5) | −0.0023 (5) |
C3 | 0.0215 (6) | 0.0273 (7) | 0.0234 (6) | −0.0005 (5) | 0.0060 (5) | −0.0002 (5) |
C4 | 0.0174 (6) | 0.0266 (7) | 0.0270 (7) | −0.0014 (5) | 0.0055 (5) | −0.0004 (5) |
C5 | 0.0193 (6) | 0.0275 (7) | 0.0281 (7) | −0.0035 (5) | 0.0091 (5) | −0.0017 (5) |
C6 | 0.0205 (6) | 0.0293 (7) | 0.0242 (6) | −0.0027 (5) | 0.0065 (5) | −0.0011 (5) |
C7 | 0.0334 (9) | 0.0759 (15) | 0.0272 (8) | −0.0074 (9) | 0.0109 (7) | 0.0087 (9) |
C8 | 0.0296 (8) | 0.0479 (10) | 0.0304 (8) | −0.0054 (7) | 0.0148 (6) | −0.0041 (7) |
C9 | 0.0170 (6) | 0.0218 (6) | 0.0250 (6) | −0.0019 (5) | 0.0066 (5) | −0.0032 (5) |
C10 | 0.0142 (5) | 0.0214 (6) | 0.0201 (6) | 0.0004 (4) | 0.0062 (4) | 0.0002 (5) |
C11 | 0.0238 (6) | 0.0219 (6) | 0.0242 (6) | 0.0045 (5) | 0.0074 (5) | 0.0021 (5) |
C12 | 0.0159 (5) | 0.0215 (6) | 0.0187 (6) | 0.0012 (4) | 0.0055 (4) | −0.0020 (5) |
C13 | 0.0231 (6) | 0.0248 (6) | 0.0215 (6) | 0.0046 (5) | 0.0082 (5) | 0.0008 (5) |
C14 | 0.0338 (8) | 0.0411 (9) | 0.0197 (6) | 0.0096 (7) | 0.0056 (6) | 0.0017 (6) |
C15 | 0.0296 (8) | 0.0461 (10) | 0.0240 (7) | 0.0041 (7) | 0.0006 (6) | −0.0116 (7) |
C16 | 0.0224 (7) | 0.0304 (7) | 0.0336 (8) | −0.0027 (5) | 0.0063 (6) | −0.0123 (6) |
C17 | 0.0190 (6) | 0.0234 (6) | 0.0262 (6) | −0.0007 (5) | 0.0086 (5) | −0.0031 (5) |
C18 | 0.0551 (11) | 0.0316 (8) | 0.0412 (9) | 0.0136 (8) | 0.0291 (8) | 0.0161 (7) |
C19 | 0.0396 (9) | 0.0227 (7) | 0.0542 (10) | −0.0083 (6) | 0.0261 (8) | −0.0040 (7) |
O1—C3 | 1.3635 (18) | C7—H7B | 0.9800 |
O1—C7 | 1.419 (2) | C7—H7C | 0.9800 |
O2—C4 | 1.3605 (17) | C8—H8A | 0.9800 |
O2—H2 | 0.8400 | C8—H8B | 0.9800 |
O3—C5 | 1.3666 (18) | C8—H8C | 0.9800 |
O3—C8 | 1.415 (2) | C9—C10 | 1.5230 (19) |
O4—C9 | 1.4316 (18) | C9—H9 | 1.0000 |
O4—H4 | 0.8400 | C10—C11 | 1.5197 (19) |
O5—C11 | 1.4266 (17) | C10—H10 | 1.0000 |
O5—H5 | 0.8400 | C11—H11A | 0.9900 |
O6—C12 | 1.3758 (15) | C11—H11B | 0.9900 |
O6—C10 | 1.4520 (15) | C12—C13 | 1.3928 (19) |
O7—C13 | 1.3631 (19) | C12—C17 | 1.3958 (19) |
O7—C18 | 1.4291 (19) | C13—C14 | 1.393 (2) |
O8—C17 | 1.3567 (18) | C14—C15 | 1.380 (3) |
O8—C19 | 1.4211 (18) | C14—H14 | 0.9500 |
C1—C2 | 1.387 (2) | C15—C16 | 1.376 (3) |
C1—C6 | 1.389 (2) | C15—H15 | 0.9500 |
C1—C9 | 1.5118 (18) | C16—C17 | 1.392 (2) |
C2—C3 | 1.3952 (19) | C16—H16 | 0.9500 |
C2—H2A | 0.9500 | C18—H18A | 0.9800 |
C3—C4 | 1.394 (2) | C18—H18B | 0.9800 |
C4—C5 | 1.392 (2) | C18—H18C | 0.9800 |
C5—C6 | 1.3891 (19) | C19—H19A | 0.9800 |
C6—H6 | 0.9500 | C19—H19B | 0.9800 |
C7—H7A | 0.9800 | C19—H19C | 0.9800 |
C3—O1—C7 | 117.02 (12) | C10—C9—H9 | 108.3 |
C4—O2—H2 | 109.5 | O6—C10—C11 | 111.23 (11) |
C5—O3—C8 | 117.39 (12) | O6—C10—C9 | 103.38 (10) |
C9—O4—H4 | 109.5 | C11—C10—C9 | 114.61 (11) |
C11—O5—H5 | 109.5 | O6—C10—H10 | 109.1 |
C12—O6—C10 | 117.38 (10) | C11—C10—H10 | 109.1 |
C13—O7—C18 | 117.83 (13) | C9—C10—H10 | 109.1 |
C17—O8—C19 | 117.89 (13) | O5—C11—C10 | 108.91 (11) |
C2—C1—C6 | 120.11 (13) | O5—C11—H11A | 109.9 |
C2—C1—C9 | 119.14 (12) | C10—C11—H11A | 109.9 |
C6—C1—C9 | 120.71 (13) | O5—C11—H11B | 109.9 |
C1—C2—C3 | 120.30 (13) | C10—C11—H11B | 109.9 |
C1—C2—H2A | 119.9 | H11A—C11—H11B | 108.3 |
C3—C2—H2A | 119.9 | O6—C12—C13 | 119.44 (12) |
O1—C3—C2 | 124.34 (13) | O6—C12—C17 | 120.15 (12) |
O1—C3—C4 | 115.71 (12) | C13—C12—C17 | 120.17 (12) |
C2—C3—C4 | 119.95 (13) | O7—C13—C12 | 114.44 (12) |
O2—C4—C5 | 122.26 (13) | O7—C13—C14 | 125.30 (14) |
O2—C4—C3 | 118.61 (13) | C12—C13—C14 | 120.26 (14) |
C5—C4—C3 | 119.11 (13) | C15—C14—C13 | 118.47 (15) |
O3—C5—C6 | 125.19 (13) | C15—C14—H14 | 120.8 |
O3—C5—C4 | 113.73 (12) | C13—C14—H14 | 120.8 |
C6—C5—C4 | 121.07 (13) | C14—C15—C16 | 122.25 (14) |
C5—C6—C1 | 119.43 (13) | C14—C15—H15 | 118.9 |
C5—C6—H6 | 120.3 | C16—C15—H15 | 118.9 |
C1—C6—H6 | 120.3 | C17—C16—C15 | 119.46 (15) |
O1—C7—H7A | 109.5 | C17—C16—H16 | 120.3 |
O1—C7—H7B | 109.5 | C15—C16—H16 | 120.3 |
H7A—C7—H7B | 109.5 | O8—C17—C16 | 125.42 (14) |
O1—C7—H7C | 109.5 | O8—C17—C12 | 115.24 (12) |
H7A—C7—H7C | 109.5 | C16—C17—C12 | 119.35 (14) |
H7B—C7—H7C | 109.5 | O7—C18—H18A | 109.5 |
O3—C8—H8A | 109.5 | O7—C18—H18B | 109.5 |
O3—C8—H8B | 109.5 | H18A—C18—H18B | 109.5 |
H8A—C8—H8B | 109.5 | O7—C18—H18C | 109.5 |
O3—C8—H8C | 109.5 | H18A—C18—H18C | 109.5 |
H8A—C8—H8C | 109.5 | H18B—C18—H18C | 109.5 |
H8B—C8—H8C | 109.5 | O8—C19—H19A | 109.5 |
O4—C9—C1 | 109.63 (11) | O8—C19—H19B | 109.5 |
O4—C9—C10 | 108.64 (11) | H19A—C19—H19B | 109.5 |
C1—C9—C10 | 113.54 (11) | O8—C19—H19C | 109.5 |
O4—C9—H9 | 108.3 | H19A—C19—H19C | 109.5 |
C1—C9—H9 | 108.3 | H19B—C19—H19C | 109.5 |
C6—C1—C2—C3 | 0.8 (2) | O4—C9—C10—O6 | −63.99 (13) |
C9—C1—C2—C3 | 178.55 (13) | C1—C9—C10—O6 | 173.76 (11) |
C7—O1—C3—C2 | 6.8 (2) | O4—C9—C10—C11 | 174.79 (11) |
C7—O1—C3—C4 | −172.67 (16) | C1—C9—C10—C11 | 52.54 (16) |
C1—C2—C3—O1 | −179.87 (14) | O6—C10—C11—O5 | 88.62 (13) |
C1—C2—C3—C4 | −0.4 (2) | C9—C10—C11—O5 | −154.57 (11) |
O1—C3—C4—O2 | −0.1 (2) | C10—O6—C12—C13 | −83.77 (15) |
C2—C3—C4—O2 | −179.61 (14) | C10—O6—C12—C17 | 101.89 (14) |
O1—C3—C4—C5 | 178.41 (14) | C18—O7—C13—C12 | 176.37 (13) |
C2—C3—C4—C5 | −1.1 (2) | C18—O7—C13—C14 | −3.7 (2) |
C8—O3—C5—C6 | −10.8 (2) | O6—C12—C13—O7 | 3.51 (18) |
C8—O3—C5—C4 | 168.63 (15) | C17—C12—C13—O7 | 177.85 (12) |
O2—C4—C5—O3 | 1.2 (2) | O6—C12—C13—C14 | −176.40 (13) |
C3—C4—C5—O3 | −177.24 (14) | C17—C12—C13—C14 | −2.1 (2) |
O2—C4—C5—C6 | −179.30 (14) | O7—C13—C14—C15 | −179.48 (15) |
C3—C4—C5—C6 | 2.2 (2) | C12—C13—C14—C15 | 0.4 (2) |
O3—C5—C6—C1 | 177.57 (15) | C13—C14—C15—C16 | 1.2 (3) |
C4—C5—C6—C1 | −1.8 (2) | C14—C15—C16—C17 | −1.1 (3) |
C2—C1—C6—C5 | 0.3 (2) | C19—O8—C17—C16 | −2.3 (2) |
C9—C1—C6—C5 | −177.40 (13) | C19—O8—C17—C12 | 177.10 (13) |
C2—C1—C9—O4 | 123.33 (14) | C15—C16—C17—O8 | 178.82 (15) |
C6—C1—C9—O4 | −58.97 (17) | C15—C16—C17—C12 | −0.6 (2) |
C2—C1—C9—C10 | −114.96 (14) | O6—C12—C17—O8 | −3.02 (18) |
C6—C1—C9—C10 | 62.73 (18) | C13—C12—C17—O8 | −177.32 (12) |
C12—O6—C10—C11 | −87.44 (13) | O6—C12—C17—C16 | 176.42 (12) |
C12—O6—C10—C9 | 149.09 (11) | C13—C12—C17—C16 | 2.1 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O3 | 0.84 | 2.22 | 2.6707 (16) | 114 |
O2—H2···O5i | 0.84 | 2.02 | 2.7851 (15) | 152 |
O5—H5···O4ii | 0.84 | 1.99 | 2.8284 (15) | 173 |
O4—H4···O6 | 0.84 | 2.31 | 2.7424 (14) | 112 |
O4—H4···O7 | 0.84 | 2.13 | 2.9123 (16) | 154 |
C9—H9···O6iii | 1.00 | 2.56 | 3.5139 (17) | 159 |
C18—H18C···O2iv | 0.98 | 2.57 | 3.466 (2) | 153 |
C19—H19C···O7ii | 0.98 | 2.52 | 3.491 (2) | 169 |
C11—H11A···O3v | 0.99 | 2.50 | 3.2171 (18) | 129 |
Symmetry codes: (i) −x+5/2, y+1/2, −z+3/2; (ii) x, y−1, z; (iii) −x+2, y, −z+3/2; (iv) x−1/2, −y+3/2, z−1/2; (v) −x+5/2, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C19H24O8 |
Mr | 380.38 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 173 |
a, b, c (Å) | 24.0634 (1), 7.3465 (1), 22.4459 (3) |
β (°) | 114.332 (1) |
V (Å3) | 3615.56 (7) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.28 × 0.24 × 0.22 |
Data collection | |
Diffractometer | Siemens SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2002) |
Tmin, Tmax | 0.758, 0.976 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 28856, 5566, 4423 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.718 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.146, 1.04 |
No. of reflections | 5566 |
No. of parameters | 275 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.55, −0.27 |
Computer programs: SMART(Siemens, 1995), SAINT (Siemens, 1995), SAINT and SADABS (Sheldrick, 2002, SHELXTL (Bruker, 1997), SHELXTL, DIAMOND (Brandenburg, 2005).
Label | D—H···A | D—H | H···A | D···A | D—H···A |
a | O2—H2···O3 | 0.84 | 2.22 | 2.6707 (16) | 114 |
b | O2—H2···O5i | 0.84 | 2.02 | 2.7851 (15) | 152 |
c | O4—H4···O6 | 0.84 | 2.31 | 2.7424 (14) | 112 |
d | O4—H4···O7 | 0.84 | 2.13 | 2.9123 (16) | 154 |
e | O5—H5···O4ii | 0.84 | 1.99 | 2.8284 (15) | 173 |
f | C9—H9···O6iii | 1.00 | 2.56 | 3.5139 (17) | 159 |
g | C11—H11A···O3iv | 0.99 | 2.50 | 3.2171 (18) | 129 |
h | C18—H18C···O2v | 0.98 | 2.57 | 3.466 (2) | 153 |
i | C19—H19C···O7ii | 0.98 | 2.52 | 3.491 (2) | 169 |
Symmetry codes: (i) 5/2 − x, 1/2 + y, 3/2 − z; (ii) x, y − 1, z; (iii) 2 − x, y, 3/2 − z; (iv) 5/2 − x, y − 1/2, 3/2 − z; (v) x − 1/2, 3/2 − y, z − 1/2. |
This paper describes the crystal structure of the title threo form, (I), of a lignin model compound representative of structural elements in lignin of the arylglycerol β-syringyl ether type. The crystal structure of the erythro form, (II), has been reported previously (Langer, Li & Lundquist, 2002). Arylglycerol β-syringyl ethers constitute a major type of structural element in hardwood lignins, e.g. in birch lignin (Larsson & Miksche, 1971). The erythro form of such structural elements predominates (Lundquist & von Unge, 1986; Bardet et al., 1998; Akiyama et al., 2003).
In (I), the C9—C10—O6—C12 torsion angle is 149.09 (11)° and the C1—C9—C10—O6 torsion angle is 173.76 (11)° (the enantiomer with the R configuration at the benzylic C atom is considered throughout the discussion of torsion angles in this paper). The C1···C12 distance is 4.8766 (19) Å. In the erythro form, (II), the corresponding data are −75.26 (13)°, −177.27 (10)° and 4.4458 (17) Å, respectively. The C1···C12 distance in (II) is about the same as the corresponding distances in other examined erythro forms of the arylglycerol β-syringyl ether type (Stomberg & Lundquist, 1989; Langer & Lundquist, 2001; Langer et al., 2005). Obviously, the aromatic rings in the erythro form, (II) (and related compounds), are not separated as much as they are in the threo form, (I). The angle between the aromatic ring planes is 67.66 (6)° in (I) and 57.27 (5)° in (II). The C1···C12 distance in (I) [4.8766 (1)9 Å] is very close to the calculated maximum value (4.92 Å).
In the crystal structure of (I), there are three intramolecular (Fig. 1) and two intermolecular hydrogen bonds of the O—H···O type and four intermolecular hydrogen bonds of the weak C—H···O type (Table 1). On the first-level graph-set (Bernstein et al., 1995; Grell et al., 1999), the intramolecular hydrogen bonds are classified as S(5) for bonds a and c, and S(8) for d (Fig. 1). The intermolecular hydrogen bonds b and e form C(10) and C(6) chains, respectively (Fig 2). The weak intramolecular hydrogen bonds f, g, h and i form R22(8) rings and C(8), C(13) and C(7) chains, respectively. On the second-level graph-set, many chains and rings could be identified, the most important ones being C22(10) and C22(16) chain types, both formed by bonds b and e. These two hydrogen bonds thus form R33(22) rings (Fig 2). The assignment of graph-set descriptors was performed using PLUTO, as described by Motherwell et al. (1999). The hydrogen-bonding patterns of threo (I) and erythro (II) (Langer, Li & Lundquist, 2002) are similar with respect to intramolecular hydrogen bonds.
As pointed out above, the title threo β-syringyl ether, (I), adopts a conformation in which the aryl groups are almost as far apart as possible. This is actually what could be expected from computational studies (Besombes et al., 2003a). In a second threo fom of an arylglycerol β-syringyl ether, threo- 2-(2,6-dimethoxyphenoxy)-1-(3,4-dimethoxyphenoxy)-1,3-propanediol, the C(aryl)—C—C—O(aryloxy) torsion angle is −70.5 (2)° and the C(aryl)-O—C—C(benzylic) torsion angle is −148.25 (19)° (Langer, Lundquist et al., 2002). This leads to a C(aryl)···C(aryl) distance of 4.319 (3) Å, which deviates significantly from the maximum value (ca 5 Å). However, according to computational studies, the conformation adopted by this compound is fairly favoured (Besombes et al., 2003a). All the threo forms of models of the arylglycerol β-guaiacyl ether type which have been examined to date [(III) (Stomberg et al., 1988); (IV) and its triacetate (Lundquist et al., 1996); (V) (Langer & Lundquist, 2002)] adopt conformations in which the aromatic groups are far apart from each other. This is in accordance with expectations based on computational studies (Simon & Eriksson, 1998; Besombes et al., 2003b). The crystal structure of the threo form of a trimeric model compound of the arylglyderol β-aryl ether type, (VI), has been reported by Karhunen et al. (1996). Calculations based on their data show that this compound also adopts an extended conformation: the C(aryl)—C—C—O(aryloxy) torsion angle is 175.7° and the C(aryl)—O—C—C(benzylic) torsion angle is 171.9°.