In the crystal structure of the title complex, [Ni
2(C
10H
20N
4O
2)(C
12H
12N
2)
2](ClO
4)
2 or [Ni(dmaeoxd)Ni(dmbp)
2](ClO
4)
2 {H
2dmaeoxd is
N,
N'-bis[2-(dimethylamino)ethyl]oxamide and dmbp is 4,4'-dimethyl-2,2'-bipyridine}, the deprotonated dmaeoxd
2- ligand is in a
cis conformation and bridges two Ni
II atoms, one of which is located in a slightly distorted square-planar environment, while the other is in an irregular octahedral environment. The cation is located on a twofold symmetry axis running through both Ni atoms. The dmaeoxd
2- ligands interact with each other
via C-H
O hydrogen bonds and
-
interactions, which results in an extended chain along the
c axis.
Supporting information
CCDC reference: 641789
All reagents were of AR grade and were used without further purification. The
H2dmaeoxd ligand was synthesized according to the method of Ojima & Yamada
(1970). [Ni(dmaeoxd)Ni(dmbp)2](ClO4)2 was obtained as follows. To a
solution of H2dmaeoxd (0.0230 g, 0.1 mmol) in methanol (10 ml) was added
successively piperidine (0.2 mmol) and a solution of Ni(ClO4)2·6H2O
(0.0731 g, 0.2 mmol) in methanol (5 ml). After stirring for 20 min, dmbp
(0.0368 g, 0.2 mmol) in methanol (5 ml) was added. The reaction mixture was
stirred at 333 K for a further 2 h. Orange crystals of the title compound
suitable for X-ray analysis were obtained from the solution by slow
evaporation at room temperature on the second day (yield 67%). Spectroscopic
analysis: IR (KBr pellet, γ, cm-1): 1649 (vs), 1615 (vs),
1487 (m), 1471 (s), 1088 (vs), 833 (m), 623
(s).
All H atoms were placed in calculated positions, with C—H distances of 0.93
(aromatic), 0.96 (methyl) or 0.97 Å (methylene), and refined in riding mode,
with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The
CH3 groups bound to the pyridine rings were allowed to rotate freely around
the C—C bond.
Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXL97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: WinGX (Farrugia, 1999).
µ-{
N,
N'-Bis[2-(dimethylamino)ethyl]oxamidato(2-)}-
1
κ2O,
O':2
κ4N,
N',
N'',
N'''-bis(4,4'-dimethyl-2,2'-bipyridine- 1
κ2N,
N')dinickel(II)
bis(perchlorate)
top
Crystal data top
[Ni2(C10H20N4O2)(C12H12N2)2](ClO4)2 | F(000) = 1896 |
Mr = 913.05 | Dx = 1.538 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 2683 reflections |
a = 19.068 (6) Å | θ = 2.3–25.5° |
b = 13.431 (4) Å | µ = 1.16 mm−1 |
c = 15.920 (5) Å | T = 298 K |
β = 104.744 (4)° | Block, orange |
V = 3943 (2) Å3 | 0.45 × 0.38 × 0.29 mm |
Z = 4 | |
Data collection top
Bruker APEX CCD area-detector diffractometer | 3470 independent reflections |
Radiation source: fine-focus sealed tube | 2338 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −22→22 |
Tmin = 0.612, Tmax = 0.716 | k = −10→15 |
10149 measured reflections | l = −18→18 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0464P)2 + 5.2848P] where P = (Fo2 + 2Fc2)/3 |
3470 reflections | (Δ/σ)max < 0.001 |
256 parameters | Δρmax = 0.50 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
Crystal data top
[Ni2(C10H20N4O2)(C12H12N2)2](ClO4)2 | V = 3943 (2) Å3 |
Mr = 913.05 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 19.068 (6) Å | µ = 1.16 mm−1 |
b = 13.431 (4) Å | T = 298 K |
c = 15.920 (5) Å | 0.45 × 0.38 × 0.29 mm |
β = 104.744 (4)° | |
Data collection top
Bruker APEX CCD area-detector diffractometer | 3470 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 2338 reflections with I > 2σ(I) |
Tmin = 0.612, Tmax = 0.716 | Rint = 0.036 |
10149 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.50 e Å−3 |
3470 reflections | Δρmin = −0.28 e Å−3 |
256 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Ni1 | 0.5000 | 0.15403 (5) | 0.2500 | 0.0409 (2) | |
O1 | 0.44689 (13) | 0.42838 (18) | 0.17369 (14) | 0.0390 (6) | |
N1 | 0.43379 (19) | 0.0663 (3) | 0.1663 (2) | 0.0578 (9) | |
N2 | 0.44962 (16) | 0.2568 (2) | 0.18333 (19) | 0.0426 (8) | |
C1 | 0.4666 (3) | 0.0381 (4) | 0.0955 (3) | 0.0979 (19) | |
H1A | 0.5067 | −0.0059 | 0.1175 | 0.147* | |
H1B | 0.4833 | 0.0967 | 0.0721 | 0.147* | |
H1C | 0.4310 | 0.0049 | 0.0505 | 0.147* | |
C2 | 0.4060 (3) | −0.0225 (4) | 0.2016 (4) | 0.0957 (19) | |
H2A | 0.3673 | −0.0514 | 0.1576 | 0.144* | |
H2B | 0.3881 | −0.0037 | 0.2505 | 0.144* | |
H2C | 0.4443 | −0.0702 | 0.2197 | 0.144* | |
C3 | 0.3676 (3) | 0.1308 (4) | 0.1305 (3) | 0.0742 (15) | |
H3A | 0.3374 | 0.1001 | 0.0786 | 0.089* | |
H3B | 0.3394 | 0.1358 | 0.1731 | 0.089* | |
C4 | 0.3892 (2) | 0.2315 (3) | 0.1092 (3) | 0.0574 (11) | |
H4A | 0.4046 | 0.2310 | 0.0556 | 0.069* | |
H4B | 0.3496 | 0.2784 | 0.1035 | 0.069* | |
C5 | 0.46976 (18) | 0.3467 (3) | 0.2083 (2) | 0.0349 (8) | |
Ni2 | 0.5000 | 0.54830 (5) | 0.2500 | 0.0371 (2) | |
N3 | 0.54611 (16) | 0.6452 (2) | 0.34900 (19) | 0.0389 (7) | |
N4 | 0.42297 (16) | 0.5480 (2) | 0.31922 (18) | 0.0400 (7) | |
C6 | 0.6064 (2) | 0.6995 (3) | 0.3574 (3) | 0.0499 (10) | |
H6 | 0.6269 | 0.7042 | 0.3104 | 0.060* | |
C7 | 0.6392 (2) | 0.7489 (3) | 0.4333 (3) | 0.0520 (10) | |
H7 | 0.6811 | 0.7857 | 0.4367 | 0.062* | |
C8 | 0.6101 (2) | 0.7440 (3) | 0.5045 (3) | 0.0478 (10) | |
C9 | 0.5466 (2) | 0.6893 (3) | 0.4946 (2) | 0.0417 (9) | |
H9 | 0.5248 | 0.6846 | 0.5405 | 0.050* | |
C10 | 0.51560 (18) | 0.6418 (3) | 0.4167 (2) | 0.0360 (8) | |
C11 | 0.44678 (18) | 0.5847 (3) | 0.4008 (2) | 0.0339 (8) | |
C12 | 0.40814 (18) | 0.5704 (3) | 0.4616 (2) | 0.0384 (8) | |
H12 | 0.4268 | 0.5938 | 0.5179 | 0.046* | |
C13 | 0.34184 (19) | 0.5219 (3) | 0.4411 (2) | 0.0393 (9) | |
C14 | 0.31761 (19) | 0.4863 (3) | 0.3566 (2) | 0.0454 (10) | |
H14 | 0.2736 | 0.4527 | 0.3394 | 0.055* | |
C15 | 0.3592 (2) | 0.5014 (3) | 0.2988 (2) | 0.0477 (10) | |
H15 | 0.3419 | 0.4778 | 0.2424 | 0.057* | |
C16 | 0.6453 (2) | 0.7946 (4) | 0.5892 (3) | 0.0702 (14) | |
H16A | 0.6911 | 0.7635 | 0.6148 | 0.105* | |
H16B | 0.6144 | 0.7888 | 0.6281 | 0.105* | |
H16C | 0.6528 | 0.8637 | 0.5788 | 0.105* | |
C17 | 0.2994 (2) | 0.5077 (3) | 0.5076 (2) | 0.0550 (11) | |
H17A | 0.3310 | 0.4839 | 0.5608 | 0.083* | |
H17B | 0.2614 | 0.4601 | 0.4867 | 0.083* | |
H17C | 0.2785 | 0.5702 | 0.5181 | 0.083* | |
Cl1 | 0.67672 (6) | 0.83632 (9) | 0.14899 (7) | 0.0614 (3) | |
O11 | 0.7066 (2) | 0.7814 (3) | 0.0902 (2) | 0.1060 (13) | |
O12 | 0.6018 (2) | 0.8186 (3) | 0.1303 (3) | 0.1304 (18) | |
O13 | 0.7061 (3) | 0.8090 (4) | 0.2356 (3) | 0.1341 (17) | |
O14 | 0.6898 (3) | 0.9380 (3) | 0.1419 (3) | 0.1299 (17) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Ni1 | 0.0449 (4) | 0.0382 (4) | 0.0376 (4) | 0.000 | 0.0069 (3) | 0.000 |
O1 | 0.0501 (15) | 0.0394 (15) | 0.0239 (12) | 0.0035 (12) | 0.0029 (10) | −0.0019 (11) |
N1 | 0.071 (2) | 0.044 (2) | 0.055 (2) | −0.0173 (18) | 0.0083 (18) | −0.0053 (17) |
N2 | 0.0452 (18) | 0.0393 (19) | 0.0366 (17) | −0.0020 (15) | −0.0019 (14) | −0.0016 (14) |
C1 | 0.120 (5) | 0.104 (5) | 0.071 (4) | −0.015 (4) | 0.026 (3) | −0.042 (3) |
C2 | 0.102 (4) | 0.064 (3) | 0.113 (5) | −0.038 (3) | 0.012 (4) | 0.009 (3) |
C3 | 0.062 (3) | 0.073 (3) | 0.074 (3) | −0.014 (3) | −0.008 (2) | −0.008 (3) |
C4 | 0.058 (3) | 0.052 (3) | 0.051 (2) | −0.008 (2) | −0.009 (2) | −0.004 (2) |
C5 | 0.0375 (19) | 0.042 (2) | 0.0243 (17) | 0.0011 (18) | 0.0064 (14) | −0.0003 (17) |
Ni2 | 0.0450 (4) | 0.0405 (4) | 0.0256 (3) | 0.000 | 0.0086 (3) | 0.000 |
N3 | 0.0436 (17) | 0.0373 (17) | 0.0362 (17) | −0.0007 (15) | 0.0108 (13) | 0.0011 (14) |
N4 | 0.0430 (17) | 0.0465 (19) | 0.0291 (16) | −0.0042 (15) | 0.0065 (13) | −0.0066 (14) |
C6 | 0.053 (2) | 0.050 (2) | 0.051 (2) | −0.010 (2) | 0.021 (2) | −0.001 (2) |
C7 | 0.044 (2) | 0.045 (2) | 0.065 (3) | −0.0109 (19) | 0.010 (2) | −0.002 (2) |
C8 | 0.047 (2) | 0.041 (2) | 0.049 (2) | 0.0015 (19) | 0.0024 (19) | −0.0075 (19) |
C9 | 0.046 (2) | 0.048 (2) | 0.029 (2) | 0.0001 (18) | 0.0066 (16) | −0.0062 (17) |
C10 | 0.0373 (19) | 0.035 (2) | 0.0339 (19) | 0.0032 (16) | 0.0061 (15) | −0.0002 (16) |
C11 | 0.0371 (19) | 0.036 (2) | 0.0264 (18) | 0.0014 (16) | 0.0047 (15) | 0.0000 (15) |
C12 | 0.042 (2) | 0.042 (2) | 0.0283 (18) | 0.0008 (17) | 0.0021 (15) | −0.0036 (16) |
C13 | 0.039 (2) | 0.043 (2) | 0.036 (2) | 0.0062 (17) | 0.0106 (16) | 0.0033 (17) |
C14 | 0.033 (2) | 0.062 (3) | 0.038 (2) | −0.0096 (18) | 0.0046 (17) | −0.0061 (19) |
C15 | 0.046 (2) | 0.059 (3) | 0.034 (2) | −0.005 (2) | 0.0034 (17) | −0.0114 (19) |
C16 | 0.062 (3) | 0.076 (3) | 0.067 (3) | −0.013 (3) | 0.006 (2) | −0.028 (3) |
C17 | 0.051 (2) | 0.075 (3) | 0.041 (2) | −0.005 (2) | 0.0146 (19) | 0.002 (2) |
Cl1 | 0.0631 (7) | 0.0709 (8) | 0.0513 (6) | −0.0170 (6) | 0.0161 (5) | −0.0119 (6) |
O11 | 0.101 (3) | 0.132 (4) | 0.091 (3) | 0.007 (3) | 0.036 (2) | −0.036 (3) |
O12 | 0.072 (3) | 0.134 (4) | 0.188 (5) | −0.029 (3) | 0.039 (3) | −0.066 (3) |
O13 | 0.166 (4) | 0.159 (4) | 0.064 (3) | −0.017 (4) | 0.006 (3) | 0.018 (3) |
O14 | 0.181 (4) | 0.073 (3) | 0.160 (4) | −0.039 (3) | 0.088 (4) | −0.007 (3) |
Geometric parameters (Å, º) top
Ni1—N1 | 1.976 (3) | C5—O1 | 1.255 (4) |
Ni1—N1i | 1.976 (3) | C5—C5i | 1.521 (6) |
Ni1—N2 | 1.853 (3) | C6—C7 | 1.381 (5) |
Ni1—N2i | 1.853 (3) | C6—H6 | 0.9300 |
Ni2—N3 | 2.060 (3) | C7—C8 | 1.383 (5) |
Ni2—N3i | 2.060 (3) | C7—H7 | 0.9300 |
Ni2—N4 | 2.048 (3) | C8—C9 | 1.390 (5) |
Ni2—N4i | 2.048 (3) | C8—C16 | 1.508 (5) |
Ni2—O1 | 2.114 (2) | C9—C10 | 1.385 (5) |
Ni2—O1i | 2.114 (2) | C9—H9 | 0.9300 |
N1—C1 | 1.471 (6) | C10—C11 | 1.485 (5) |
N1—C2 | 1.473 (5) | C11—C12 | 1.372 (5) |
N1—C3 | 1.517 (6) | C12—C13 | 1.386 (5) |
N2—C5 | 1.299 (4) | C12—H12 | 0.9300 |
N2—C4 | 1.464 (4) | C13—C14 | 1.391 (5) |
N3—C6 | 1.339 (5) | C13—C17 | 1.500 (5) |
N3—C10 | 1.350 (4) | C14—C15 | 1.373 (5) |
N4—C15 | 1.333 (4) | C14—H14 | 0.9300 |
N4—C11 | 1.355 (4) | C15—H15 | 0.9300 |
C1—H1A | 0.9600 | C16—H16A | 0.9600 |
C1—H1B | 0.9600 | C16—H16B | 0.9600 |
C1—H1C | 0.9600 | C16—H16C | 0.9600 |
C2—H2A | 0.9600 | C17—H17A | 0.9600 |
C2—H2B | 0.9600 | C17—H17B | 0.9600 |
C2—H2C | 0.9600 | C17—H17C | 0.9600 |
C3—C4 | 1.478 (6) | Cl1—O13 | 1.398 (4) |
C3—H3A | 0.9700 | Cl1—O14 | 1.398 (4) |
C3—H3B | 0.9700 | Cl1—O12 | 1.404 (4) |
C4—H4A | 0.9700 | Cl1—O11 | 1.420 (4) |
C4—H4B | 0.9700 | | |
| | | |
N1—Ni1—N1i | 106.7 (2) | N2—C5—C5i | 111.51 (19) |
N1—Ni1—N2 | 84.78 (14) | C5—O1—Ni2 | 110.6 (2) |
N2i—Ni1—N1 | 168.43 (14) | C6—N3—C10 | 118.2 (3) |
N2i—Ni1—N2 | 83.74 (18) | C6—N3—Ni2 | 127.5 (3) |
N2i—Ni1—N1i | 84.78 (14) | C10—N3—Ni2 | 113.8 (2) |
N2—Ni1—N1i | 168.43 (14) | C15—N4—C11 | 117.8 (3) |
O1—Ni2—O1i | 80.74 (13) | C15—N4—Ni2 | 127.2 (2) |
N3—Ni2—O1 | 165.81 (10) | C11—N4—Ni2 | 113.8 (2) |
N3—Ni2—O1i | 89.60 (10) | N3—C6—C7 | 122.3 (4) |
N4—Ni2—O1 | 90.20 (10) | N3—C6—H6 | 118.8 |
N4—Ni2—O1i | 89.63 (11) | C7—C6—H6 | 118.8 |
N4—Ni2—N3 | 79.31 (11) | C6—C7—C8 | 120.5 (4) |
N4—Ni2—N3i | 100.83 (12) | C6—C7—H7 | 119.8 |
N4i—Ni2—N4 | 179.78 (17) | C8—C7—H7 | 119.8 |
N4i—Ni2—N3 | 100.83 (12) | C7—C8—C9 | 116.8 (3) |
N4i—Ni2—N3i | 79.31 (11) | C7—C8—C16 | 122.1 (4) |
N3—Ni2—N3i | 101.66 (16) | C9—C8—C16 | 121.1 (4) |
N4i—Ni2—O1 | 89.63 (11) | C10—C9—C8 | 120.4 (4) |
N3i—Ni2—O1 | 89.60 (10) | C10—C9—H9 | 119.8 |
N4i—Ni2—O1i | 90.20 (10) | C8—C9—H9 | 119.8 |
N3i—Ni2—O1i | 165.81 (10) | N3—C10—C9 | 121.8 (3) |
C1—N1—C2 | 110.4 (4) | N3—C10—C11 | 115.0 (3) |
C1—N1—C3 | 109.5 (4) | C9—C10—C11 | 123.2 (3) |
C2—N1—C3 | 105.1 (4) | N4—C11—C12 | 121.1 (3) |
C1—N1—Ni1 | 110.3 (3) | N4—C11—C10 | 114.7 (3) |
C2—N1—Ni1 | 117.1 (3) | C12—C11—C10 | 124.2 (3) |
C3—N1—Ni1 | 103.9 (3) | C11—C12—C13 | 121.4 (3) |
C5—N2—C4 | 125.0 (3) | C11—C12—H12 | 119.3 |
C5—N2—Ni1 | 116.6 (2) | C13—C12—H12 | 119.3 |
C4—N2—Ni1 | 118.4 (2) | C12—C13—C14 | 116.6 (3) |
N1—C1—H1A | 109.5 | C12—C13—C17 | 121.1 (3) |
N1—C1—H1B | 109.5 | C14—C13—C17 | 122.2 (3) |
H1A—C1—H1B | 109.5 | C15—C14—C13 | 119.4 (3) |
N1—C1—H1C | 109.5 | C15—C14—H14 | 120.3 |
H1A—C1—H1C | 109.5 | C13—C14—H14 | 120.3 |
H1B—C1—H1C | 109.5 | N4—C15—C14 | 123.5 (3) |
N1—C2—H2A | 109.5 | N4—C15—H15 | 118.2 |
N1—C2—H2B | 109.5 | C14—C15—H15 | 118.2 |
H2A—C2—H2B | 109.5 | C8—C16—H16A | 109.5 |
N1—C2—H2C | 109.5 | C8—C16—H16B | 109.5 |
H2A—C2—H2C | 109.5 | H16A—C16—H16B | 109.5 |
H2B—C2—H2C | 109.5 | C8—C16—H16C | 109.5 |
C4—C3—N1 | 110.8 (4) | H16A—C16—H16C | 109.5 |
C4—C3—H3A | 109.5 | H16B—C16—H16C | 109.5 |
N1—C3—H3A | 109.5 | C13—C17—H17A | 109.5 |
C4—C3—H3B | 109.5 | C13—C17—H17B | 109.5 |
N1—C3—H3B | 109.5 | H17A—C17—H17B | 109.5 |
H3A—C3—H3B | 108.1 | C13—C17—H17C | 109.5 |
N2—C4—C3 | 103.6 (3) | H17A—C17—H17C | 109.5 |
N2—C4—H4A | 111.0 | H17B—C17—H17C | 109.5 |
C3—C4—H4A | 111.0 | O13—Cl1—O14 | 107.5 (3) |
N2—C4—H4B | 111.0 | O13—Cl1—O12 | 107.2 (3) |
C3—C4—H4B | 111.0 | O14—Cl1—O12 | 110.0 (3) |
H4A—C4—H4B | 109.0 | O13—Cl1—O11 | 112.7 (3) |
O1—C5—N2 | 129.5 (3) | O14—Cl1—O11 | 110.2 (3) |
O1—C5—C5i | 119.01 (18) | O12—Cl1—O11 | 109.3 (3) |
| | | |
N2i—Ni1—N1—C1 | 99.4 (8) | O1—Ni2—N3—C10 | −27.9 (6) |
N2—Ni1—N1—C1 | 92.7 (3) | O1i—Ni2—N3—C10 | −74.7 (2) |
N1i—Ni1—N1—C1 | −86.2 (3) | N3—Ni2—N4—C15 | 176.0 (3) |
N2i—Ni1—N1—C2 | −133.1 (7) | N3i—Ni2—N4—C15 | 76.0 (3) |
N2—Ni1—N1—C2 | −139.9 (4) | O1—Ni2—N4—C15 | −13.6 (3) |
N1i—Ni1—N1—C2 | 41.2 (3) | O1i—Ni2—N4—C15 | −94.3 (3) |
N2i—Ni1—N1—C3 | −17.8 (8) | N3—Ni2—N4—C11 | −16.5 (2) |
N2—Ni1—N1—C3 | −24.6 (3) | N3i—Ni2—N4—C11 | −116.5 (2) |
N1i—Ni1—N1—C3 | 156.5 (3) | O1—Ni2—N4—C11 | 153.9 (2) |
N2i—Ni1—N2—C5 | 0.98 (19) | O1i—Ni2—N4—C11 | 73.1 (2) |
N1—Ni1—N2—C5 | 179.6 (3) | C10—N3—C6—C7 | 2.2 (6) |
N1i—Ni1—N2—C5 | −5.8 (9) | Ni2—N3—C6—C7 | −168.6 (3) |
N2i—Ni1—N2—C4 | −176.9 (4) | N3—C6—C7—C8 | −0.2 (6) |
N1—Ni1—N2—C4 | 1.7 (3) | C6—C7—C8—C9 | −1.2 (6) |
N1i—Ni1—N2—C4 | 176.3 (6) | C6—C7—C8—C16 | 178.4 (4) |
C1—N1—C3—C4 | −73.1 (5) | C7—C8—C9—C10 | 0.7 (5) |
C2—N1—C3—C4 | 168.3 (4) | C16—C8—C9—C10 | −178.9 (4) |
Ni1—N1—C3—C4 | 44.8 (4) | C6—N3—C10—C9 | −2.7 (5) |
C5—N2—C4—C3 | −155.4 (4) | Ni2—N3—C10—C9 | 169.4 (3) |
Ni1—N2—C4—C3 | 22.4 (4) | C6—N3—C10—C11 | 176.8 (3) |
N1—C3—C4—N2 | −43.2 (5) | Ni2—N3—C10—C11 | −11.2 (4) |
C4—N2—C5—O1 | −5.0 (6) | C8—C9—C10—N3 | 1.2 (5) |
Ni1—N2—C5—O1 | 177.2 (3) | C8—C9—C10—C11 | −178.2 (3) |
C4—N2—C5—C5i | 175.4 (4) | C15—N4—C11—C12 | 2.9 (5) |
Ni1—N2—C5—C5i | −2.4 (5) | Ni2—N4—C11—C12 | −165.8 (3) |
N2—C5—O1—Ni2 | 177.8 (3) | C15—N4—C11—C10 | −175.8 (3) |
C5i—C5—O1—Ni2 | −2.6 (5) | Ni2—N4—C11—C10 | 15.5 (4) |
C5—O1—Ni2—N4i | 91.2 (2) | N3—C10—C11—N4 | −2.8 (4) |
C5—O1—Ni2—N4 | −88.6 (2) | C9—C10—C11—N4 | 176.6 (3) |
C5—O1—Ni2—N3 | −46.6 (5) | N3—C10—C11—C12 | 178.5 (3) |
C5—O1—Ni2—N3i | 170.6 (2) | C9—C10—C11—C12 | −2.1 (5) |
C5—O1—Ni2—O1i | 0.98 (18) | N4—C11—C12—C13 | −2.9 (5) |
N4i—Ni2—N3—C6 | 6.3 (3) | C10—C11—C12—C13 | 175.8 (3) |
N4—Ni2—N3—C6 | −173.9 (3) | C11—C12—C13—C14 | 1.6 (5) |
N3i—Ni2—N3—C6 | −74.9 (3) | C11—C12—C13—C17 | −179.1 (3) |
O1—Ni2—N3—C6 | 143.2 (4) | C12—C13—C14—C15 | −0.5 (5) |
O1i—Ni2—N3—C6 | 96.4 (3) | C17—C13—C14—C15 | −179.8 (4) |
N4i—Ni2—N3—C10 | −164.9 (2) | C11—N4—C15—C14 | −1.9 (6) |
N4—Ni2—N3—C10 | 15.0 (2) | Ni2—N4—C15—C14 | 165.1 (3) |
N3i—Ni2—N3—C10 | 114.0 (3) | C13—C14—C15—N4 | 0.7 (6) |
Symmetry code: (i) −x+1, y, −z+1/2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O13 | 0.93 | 2.57 | 3.379 (6) | 146 |
C12—H12···O1ii | 0.93 | 2.43 | 3.267 (4) | 150 |
Symmetry code: (ii) x, −y+1, z+1/2. |
Experimental details
Crystal data |
Chemical formula | [Ni2(C10H20N4O2)(C12H12N2)2](ClO4)2 |
Mr | 913.05 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 298 |
a, b, c (Å) | 19.068 (6), 13.431 (4), 15.920 (5) |
β (°) | 104.744 (4) |
V (Å3) | 3943 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.16 |
Crystal size (mm) | 0.45 × 0.38 × 0.29 |
|
Data collection |
Diffractometer | Bruker APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.612, 0.716 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10149, 3470, 2338 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.595 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.113, 1.02 |
No. of reflections | 3470 |
No. of parameters | 256 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.50, −0.28 |
Selected geometric parameters (Å, º) topNi1—N1 | 1.976 (3) | Ni2—O1 | 2.114 (2) |
Ni1—N2 | 1.853 (3) | N2—C5 | 1.299 (4) |
Ni2—N3 | 2.060 (3) | C5—O1 | 1.255 (4) |
Ni2—N4 | 2.048 (3) | C5—C5i | 1.521 (6) |
| | | |
N1—Ni1—N1i | 106.7 (2) | N3—Ni2—O1i | 89.60 (10) |
N1—Ni1—N2 | 84.78 (14) | N4—Ni2—O1 | 90.20 (10) |
N2i—Ni1—N1 | 168.43 (14) | N4—Ni2—O1i | 89.63 (11) |
N2i—Ni1—N2 | 83.74 (18) | N4—Ni2—N3 | 79.31 (11) |
O1—Ni2—O1i | 80.74 (13) | N4—Ni2—N3i | 100.83 (12) |
N3—Ni2—O1 | 165.81 (10) | N4i—Ni2—N4 | 179.78 (17) |
| | | |
Ni2—N3—C10—C11 | −11.2 (4) | Ni2—N4—C11—C10 | 15.5 (4) |
Symmetry code: (i) −x+1, y, −z+1/2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O13 | 0.93 | 2.57 | 3.379 (6) | 145.8 |
C12—H12···O1ii | 0.93 | 2.43 | 3.267 (4) | 149.7 |
Symmetry code: (ii) x, −y+1, z+1/2. |
There has been a great interest in the crystal engineering of self-assembled supramolecular architectures formed through relatively weak C—H···O and π–π stacking interactions (Blake et al., 1999; Lin et al., 2003). Considerable attention has been devoted to metal polypyridyl complexes (Kalyanasundaram & Grätzel 1998; Ye et al., 1998), in which the hydrophilic groups are linked via hydrogen bonds while the hydrophobic groups are stacked via π–π interactions. N,N'-Disubstituted oxamidates are well known as versatile bridging ligands, which can afford symmetric and asymmetric oxamidate bridges by the cis–trans conformational change (Ruiz et al., 1999). Four crystal structures of dinuclear oxamidate-bridged NiII complexes with the Ni atoms in different coordination geometries have been reported to date, namely [Ni(obbz)Ni(H2O)4]·2H2O, (II) (Reference?), Ni(aeox)Ni(en)(SCN)2, (III) (Chen et al., 1994), [Ni(aeox)Ni(phen)2](ClO4)2·3H2O, (IV) (Wei et al., 1995), and [Ni(apox)Ni(phen)2](ClO4)2·CH3OH·2H2O, (V) (Jiu et al., 2000) [obbz is deprotonated N,N'-bis(2-aminobenzoato)oxamide, aeox is deprotonated N,N'-bis(2-aminoethyl)oxamide, en is ethylenediamine, phen is 1,10-phenanthroline and apox is deprotonated N,N'-bis(3-aminopropyl)oxamide]. In these complexes, however, the types of hydrogen-bond interactions were not discussed in detail and the π–π stacking was not studied at all. In order to study the supramolecular architecture of this kind of complex, we chose H2dmaeoxd as a polydentate ligand to synthesize the title binuclear NiII complex, (I), formulated as [Ni(dmaeoxd)Ni(dmbp)2](ClO4)2, and report its crystal structure here.
Compound (I) consists of an [Ni(dmaeoxd)Ni(dmbp)2]2+ cation and two uncoordinated ClO4- anions. A view of the compound is depicted in Fig. 1, and selected bond lengths and angles are listed in Table 1. The deprotonated dmaeoxd2- ligand exhibits a cisoid conformation and bridges two NiII atoms, with an Ni···Ni distance of 5.2955 (18) Å. A crystallographic twofold axis passes through this Ni···Ni vector and the middle of the C5—C5i bond [symmetry code: (i) 1 - x, y, 1/2 - z]. Within the bridging oxamide fragment, the C—O and C—N bonds have partial double-bond character [N2—C5 = 1.299 (4) Å and C5—O1 = 1.255 (4) Å], while the C5—C5i bond of 1.521 (6) Å is identical to the standard value of a single bond (Standard reference?). These bonds are similar to those in many other oxamidate complexes (Lloret et al., 1989; Real et al., 1993).
Atom Ni1 is coordinated by four N atoms of dmaeoxd, with the maximum deviation from the coordinated plane being 0.023 (3) Å for atom N2. The Ni1—N2 bond length of 1.853 (3) Å is comparable with the distances between the Ni and amide N atoms in compounds (II)–(V) (1.837–1.895 Å). The Ni1—N1 distance [1.976 (3) Å] is longer than the corresponding distance in compounds (III)–(V), which is perhaps due to the steric hindrance between the two pairs of methyl groups on atom N1. The bridging ligand coordinates atom Ni1 by forming three five-membered chelate rings. Those formed by the ethylene diamine fragment adopt a twist form, with puckering parameters (Cremer & Pople, 1975) of Q = 0.418 (4) Å and ϕ = 62.4 (5)°.
Atom Ni2 is coordinated by four N donors of two dmbp molecules and two O atoms of the dmaeoxd ligand. Due to the rigidity of the three bidentate ligands, the hexacoordinated atom Ni2 has a distorted octahedral geometry. Atom N4 and its symmetry-related atom N4i are axially coordinated, with an approximately linear N—Ni—N angle. The equatorial plane is defined by the other four atoms and the mean displacement from this plane is 0.173 Å. Atom Ni2 lies exactly in the plane. The terminal dmbp ligands are present in the usual chelating bidentate mode, except for the envelope form of the chelate ring on Ni2. The torsion angles Ni2—N3—C10—C11 and Ni2—N4—C11—C10 are -11.2 (4) and 15.5 (4)°, respectively.
As shown in Fig. 2, the binuclear cation complexes and perchlorate anions are connected through a non-classical hydrogen bond, C6—H6···O13 (Table 2), which gives rise to an ion triplet, [Ni(dmaeoxd)Ni(dmbp)2]2+·2ClO4-. These triplets are linked into a one-dimensional ribbon along the c axis by a combination of a C12—H12···O1ii [symmetry code: (ii) x, 1 - y, 1/2 + z] interaction and a π–π stacking interaction between the dmbp ligand and that generated by the symmetry operation (1 - x, 1 - y, 1 - z), with separations of 3.505 (4) [atom C9 at (1 - x, 1 - y, 1 - z)] and 3.526 (4) Å [atom C13 at (1 - x, 1 - y, 1 - z)].