Download citation
Download citation
link to html
In the first title salt, [Cu(C12H8N2)2(C5H10N2Se)](ClO4)2, the CuII centre occupies a distorted trigonal-bipyramidal environment defined by four N donors from two 1,10-phenanthroline (phen) ligands and by the Se donor of a 1,3-dimethyl­imidazolidine-2-selone ligand, with the equatorial plane defined by the Se and by two N donors from different phen ligands and the axial sites occupied by the two remaining N donors, one from each phen ligand. The Cu-N distances span the range 1.980 (10)-2.114 (11) Å and the Cu-Se distance is 2.491 (3) Å. Inter­molecular [pi]-[pi] contacts between imidazolidine rings and the central rings of phen ligands generate chains of cations. In the second salt, [Cu(C10H8N2)2(C3H6N2S)](ClO4)2, the CuII centre occupies a similar dis­torted trigonal-bipyramidal environment comprising four N donors from two 2,2'-bipyridyl (bipy) ligands and an S donor from an imidazolidine-2-thione ligand. The equatorial plane is defined by the S donor and two N donors from different bipy ligands. The Cu-N distances span the range 1.984 (6)-2.069 (7) Å and the Cu-S distance is 2.366 (3) Å. Inter­molecular [pi]-[pi] contacts between imidazolidine and pyridyl rings form chains of cations. A major difference between the two structures is due to the presence in the second complex of two N-H...O hydrogen bonds linking the imidazolidine N-H hydrogen-bond donors to perchlorate O-atom acceptors.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107026753/sk3135sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107026753/sk3135Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107026753/sk3135IIsup3.hkl
Contains datablock II

CCDC references: 659113; 659114

Comment top

Copper plays an important role in redox-active metalloproteins where evidence for metal–sulfur coordination is consistent with a chemical environment favouring the copper(I) state (Karlin et al., 1982; Lippard & Berg, 1994). Thio- and seleno-amido ligands, –NR–CS(Se)–, react with copper(II) salts yielding S– and Se-bonded copper(I) complexes. In particular, several copper(I) complexes have been prepared and structurally characterized by reacting ligands such as imidazolidine-, thiazolidine-, benzothiazole- and oxazolidine-2-thione and, when possible, also their -2-selone parent compounds with CuII salts (Hussein et al., 1985; Devillanova et al., 1986; Battaglia et al. 1979). One approach to studying the redox and coordination chemistry of CuII in the presence of soft reducing S– or Se-ketonic donors is to consider complexes of polydentate ligands containing N atoms in which copper is stabilized in the oxidation state two (McKee, 1993).

To preserve the CuII oxidation state in the reaction with thiourea and other reducing ligands, Montenero & Pelizzi (1972) have used as starting material copper(II) chelated complexes with π-acceptor ligands such as 1,10-phenanthroline (phen) and 2,2'-bipyridine (bipy). Here we report the synthesis and structural characterization of (dimethylimidazolidine-2-selone-κSe)bis(1,10-phenanthroline- κ2N,N')copper(II) bis(perchlorate), (I), and bis(2,2'-bipyridyl-κ2N,N')(imidazolidine-2-thione-κS)copper(II) bis(perchlorate), (II).

The CuII centre in (I) is coordinated in a distorted trigonal–bipyramidal (TBP) environment by four N donors from the two phen ligands and by an Se atom from the dimethylimidazolidine-2-selone ligand (Fig. 1 [the atom labelling in the phen ligands does not match that in CIF/text; please supply correctly labelled figure]). The equatorial plane is defined by the Se atom and by two N donors (N8A and N8B) from different phen ligands, with angles subtended at Cu1 ranging from 112.5 (3) to 128.8 (3)°. The axial sites are occupied by the two remaining N donors (N1A and N1B) from each phen ligand and the N1A—Cu1—N1B angle is 177.6 (5)°. Owing to the narrow bite angle of the phen ligands (ca 80°) which bridge pairs of axial and equatorial sites, the N1A—Cu1—N1B vector deviates significantly from orthogonality with the equatorial plane. A TBP coordination geometry is not common in the case of CuII complexes, particularly when they contain ligands with reducing properties (Barclay et al., 1963; Ferrari et al., 1973, 1975). Thus (I) represents, to our knowledge, the only case of a structurally characterized CuII mixed-ligand complex featuring a TBP coordination geometry in which the coordination environment contains an Se-atom donor and chelating ligands such as 1,10-phenanthroline (phen) and 2,2'-bipyridine (bipy) with strong π-conjugation properties.

The Cu—N distances range from 1.980 (10) to 2.114 (11) Å, while the Cu—Se distance is 2.491 (3) Å (Table 1). Each phen ligand participates in one long and one short Cu—N bond to the metal, an asymmetry that we attribute to the steric congestion between the two bidentate ligands. This congestion is also expressed in the high degree of twist between the phen units; the dihedral angle between the least-squares mean planes through the five-membered rings Cu1/N1A/C6A/C7A/N8A and Cu1/N1B/C6B/C7B/N8B is 59.6 (3)°. The N—C—C—N torsion angles are essentially zero, indicating that there is no twisting of this unit in either phen ligand. The dihedral angle between the plane through the dimethylimidazolidine-2-selone ring and that through the phen ligand containing atoms N1A and N8A [16.3 (6)°] is much smaller than the corresponding dihedral angle involving the other phen ligand [57.4 (4)°], and therefore only the former is involved in a possible ππ stacking with the N1A–C6A ring [the centroid–centroid distance is 3.506 (10) Å and the perpendicular distance 3.466 (10) Å].

Intermolecular ππ contacts with a centroid–centroid distance of 3.829 (10) Å between the imidazolidine ring in one cation and the central ring (C5B–C7B/C12B–C14B) of the phen ligand in a neighbouring cation at (1/2 + x, 3/2 - y, -z) (Fig. 2) give rise to chains running along the a axis in (I). The mutual inclination of these rings is only 1.6 (6)° and the perpendicular distance is 3.515 (10) Å.

In (II), the CuII centre also occupies a distorted trigonal–bipyramidal (TBP) environment, similarly consisting of four N donors from two bipy ligands but with the fifth site occupied by an S-atom donor from an imidazolidine-2-thione ligand (Fig. 3). The equatorial plane is defined by coordination from the S atom and atoms N1A and N8B from different bipy ligands; the angles subtended at Cu1 occupy a somewhat narrower range between 115.44 (18) and 124.72 (19)°, and the axial donors N1B and N8A subtend an angle of 176.7 (2)° at Cu1. The principal deviation from ideal trigonal–bipyamidal geometry is the result of the narrow bite angle of the bipy ligand; there is a significant deviation from orthogonality between the equatorial plane and the N1B—Cu1—N8A vector.

The Cu—N distances range from 1.984 (6) to 2.069 (7) Å, while the Cu—S distance is 2.366 (3) Å (Table 2). This latter is of the same order of magnitude as that found in CuI–thiourea complexes (Okaya & Knobler, 1964), a feature also observed in CuII–thiourea complexes containing coordinated bipy or phen-chelating ligands (Ferrari et al., 1973, 1975). This observation suggests charge transfer to the metal centre by the chelating ligands through a π-donor effect. The same pattern of asymmetry seen in (I) appears in the Cu—N distances, and in the twist between the Cu1/N1A/C6A/C7A/N8A and Cu1/N1B/C6B/C7B/N8B rings [61.2 (2)°)]. While the N—C—C—N torsion angle in one ligand is essentially zero as in (I), the value of -7.7 (10)° for N1A—C6A—C7A–N8A indicates a slight twist for the other. There are again marked differences in the dihedral angles between the imidazolidine ring and the five-membered rings formed by the coordination of the two bipy ligands. For the Cu1/N1A/C6A/C7A/N8A ring this angle is 59.2 (2)°, but the lower value of 30.9 (3)° suggests the possibility of ππ interaction between the imidazolidine and C7A–C12A rings; the relevant centroid–centroid distance is 3.559 (7) Å, the perpendicular distance is 3.455 (7) Å and the rings are mutually inclined at 24.1 (3)°.

A major difference between the two structures arises from the presence of imidazolidine N—H hydrogen-bond donors in (II) instead of the NMe groups in (I). This leads to the formation of two N—H···O hydrogen bonds to perchlorate O atoms (Fig. 3 and Table 3).

The imidazolidine ring and a pyridyl ring in two neighbouring cations related by the symmetry operation (2 - x, -1/2 + y, 1/2 - z) are involved in intermolecular ππ contacts with a centroid–centroid distance of 3.820 (10) Å to form chains of cations (Fig. 4) running along the b axis in (II). The rings are inclined to each other at an angle of only 6.7 (6)° and the perpendicular distance is 3.392 (10) Å.

Related literature top

For related literature, see: Barclay et al. (1963); Battaglia et al. (1979); Devillanova et al. (1986); Ferrari et al. (1973, 1975); Hussein et al. (1985); Karlin et al. (1982); Lippard & Berg (1994); McKee (1993); Montenero & Pelizzi (1972); Okaya & Knobler (1964).

Experimental top

[Cu(phen)2](ClO4)2 and [Cu(bipy)2](ClO4)2 were prepared by reacting Cu(ClO4)2 with phen or bipy in 1:2 molar ratio in ethanol. The products separated out of the reaction mixtures and were washed with ethanol and dried under reduced pressure. For the preparation of (I), a solution of N,N'-dimethylimidazolidine-2-selone (30.0 mg, 0.17 mmol) in MeCN (2 ml) was added dropwise at room temperature to a solution of [Cu(phen)2](ClO4)2 (53.0 mg, 0.085 mmol) in MeCN (3 ml). The colour of the reaction mixture turned green immediately. Crystals of the title compound were obtained by slow evaporation of the solvent (52.0 mg 76.5% yield). Analysis found (calculated for C29H26Cl2CuN6O8Se): C 43.20 (43.54), H 3.30 (3.27), N 10.35 (10.50)%. For the preparation of (II), a solution of imidazolidine-2-thione (30.0 mg, 029 mmol) in MeCN (3 ml) was added dropwise at room temperature to a solution of [Cu(bipy)2](ClO4)2 (83.4 mg, 0.145 mmol) in MeCN (3 ml). The colour of the reaction mixture turned green immediately. Crystals of the title compound were obtained by slow evaporation of the solvent (88.0 mg, 89.6% yield). Analysis found (calculated for C23H22Cl2CuN6O8S): C 40.60 (40.81), H 3.25 (3.28), N 12.35 (12.41), S 4.52 (4.74)%.

Refinement top

NH and NMe H atoms were located in difference Fourier syntheses. The NH H atoms were then refined subject to an N—H distance restraint of 0.90 (2) Å and with Uiso(H) = 1.2Ueq(N); NMe H atoms were refined as part of a rigid rotating group with Uiso(H) = 1.5Ueq(C). All other H atoms were included in calculated positions and refined using a riding model with Uiso(H) = 1.2Ueq(C). Similarity restraints were applied to the Cl—O distances in (I).

The intermediate value of 0.41 (3) for the Flack parameter of (I) suggests that the crystal selected was a racemic twin with approximately equal amounts of each twin component.

Computing details top

For both compounds, data collection: STADI4 (Stoe & Cie, 1996); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), showing the atom-numbering scheme adopted. The perchlorate anions are not shown. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Chains running along the a axis in (I) are formed via intermolecular ππ contacts of 3.829 (10) Å between the imidazolidine ring in one cation and and the central ring of the phen ligand.
[Figure 3] Fig. 3. A view of the structure of (II), showing the atom-numbering scheme adopted and the N—H···O hydrogen bonds between the imidazolidine ring and the perchlorate anions. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4] Fig. 4. Chains of cations are formed along the a axis in (II) via intermolecular ππ contacts of 3.820 (10) Å between the imidazolidine ring in one cation and a pyridyl ring in a neighbouring cation.
(I) (Dimethylimidazolidine-2-selone-κSe)bis(1,10-phenanthroline- κ2N,N')copper(II) bis(perchlorate) top
Crystal data top
[Cu(C12H8N2)2(C5H10N2Se)](ClO4)2F(000) = 1612
Mr = 799.96Dx = 1.703 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 11.606 (6) Åθ = 12.5–13.9°
b = 12.155 (2) ŵ = 2.10 mm1
c = 22.120 (4) ÅT = 150 K
V = 3120.5 (18) Å3Column, green
Z = 40.51 × 0.14 × 0.10 mm
Data collection top
Stoe Stadi-4 four-circle
diffractometer
2621 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Graphite monochromatorθmax = 25.1°, θmin = 2.5°
ω/θ scansh = 213
Absorption correction: numerical
(X-RED; Stoe & Cie, 1996)
k = 014
Tmin = 0.700, Tmax = 0.830l = 026
3878 measured reflections3 standard reflections every 60 min
3511 independent reflections intensity decay: random variation +5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: included in calculated positions, except for N-Me (found from delta-F)
R[F2 > 2σ(F2)] = 0.074H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + 24.56P]
where P = (Fo2 + 2Fc2)/3
S = 1.23(Δ/σ)max = 0.001
3511 reflectionsΔρmax = 0.80 e Å3
427 parametersΔρmin = 0.67 e Å3
147 restraintsAbsolute structure: Flack (1983), 780 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.41 (3)
Crystal data top
[Cu(C12H8N2)2(C5H10N2Se)](ClO4)2V = 3120.5 (18) Å3
Mr = 799.96Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.606 (6) ŵ = 2.10 mm1
b = 12.155 (2) ÅT = 150 K
c = 22.120 (4) Å0.51 × 0.14 × 0.10 mm
Data collection top
Stoe Stadi-4 four-circle
diffractometer
2621 reflections with I > 2σ(I)
Absorption correction: numerical
(X-RED; Stoe & Cie, 1996)
Rint = 0.052
Tmin = 0.700, Tmax = 0.8303 standard reflections every 60 min
3878 measured reflections intensity decay: random variation +5%
3511 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.074H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + 24.56P]
where P = (Fo2 + 2Fc2)/3
S = 1.23Δρmax = 0.80 e Å3
3511 reflectionsΔρmin = 0.67 e Å3
427 parametersAbsolute structure: Flack (1983), 780 Friedel pairs
147 restraintsAbsolute structure parameter: 0.41 (3)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.14068 (15)0.67758 (13)0.00636 (7)0.0239 (4)
Se10.06144 (13)0.65302 (13)0.04170 (7)0.0338 (4)
N10.1010 (11)0.4356 (10)0.0812 (6)0.039 (3)
N20.0145 (12)0.5357 (11)0.1509 (6)0.043 (4)
N1A0.1896 (9)0.5310 (8)0.0357 (5)0.019 (2)
N1B0.0983 (10)0.8274 (8)0.0236 (4)0.025 (3)
N8A0.2523 (10)0.7291 (9)0.0764 (5)0.024 (3)
N8B0.2065 (9)0.6641 (9)0.0808 (4)0.024 (3)
C10.0563 (14)0.5337 (12)0.0956 (6)0.029 (3)
C2A0.1556 (13)0.4345 (10)0.0128 (6)0.031 (3)
H2AA0.11150.43260.02340.037*
C2B0.0425 (13)0.9058 (10)0.0051 (6)0.030 (3)
H2BA0.01580.89040.04480.035*
C20.0890 (17)0.3599 (14)0.1331 (9)0.069 (6)
H2A0.04380.29400.12190.083*
H2B0.16540.33640.14830.083*
C3A0.1854 (12)0.3347 (11)0.0425 (6)0.031 (3)
H3AA0.16180.26630.02580.038*
C3B0.0203 (13)1.0089 (11)0.0183 (6)0.032 (3)
H3BA0.01951.06280.00480.038*
C30.0273 (16)0.4270 (13)0.1788 (8)0.052 (5)
H3A0.07250.43190.21670.062*
H3B0.04900.39460.18810.062*
C4A0.2466 (12)0.3363 (13)0.0941 (6)0.029 (3)
H4AA0.26640.26930.11360.035*
C4B0.0572 (13)1.0311 (11)0.0758 (6)0.027 (3)
H4BA0.04361.10130.09320.033*
C40.1544 (16)0.4001 (15)0.0252 (8)0.068 (6)
H4A0.14260.45640.00590.102*
H4B0.23710.38920.03160.102*
H4C0.11940.33080.01190.102*
C5A0.2815 (13)0.4375 (11)0.1193 (6)0.027 (3)
C5B0.1151 (12)0.9501 (11)0.1089 (5)0.023 (3)
C50.0314 (13)0.6300 (15)0.1827 (7)0.051 (5)
H5A0.02570.69530.15690.077*
H5B0.11240.61660.19290.077*
H5C0.01280.64200.21990.077*
C6A0.2527 (12)0.5344 (11)0.0863 (6)0.020 (3)
C6B0.1324 (12)0.8472 (11)0.0803 (5)0.024 (3)
C7A0.2863 (12)0.6382 (11)0.1097 (6)0.023 (3)
C7B0.1887 (12)0.7625 (10)0.1113 (6)0.021 (3)
C9A0.2835 (12)0.8261 (12)0.0970 (6)0.031 (3)
H9A0.25840.88960.07570.037*
C9B0.2600 (13)0.5841 (13)0.1080 (6)0.030 (4)
H9B0.27120.51690.08680.036*
C10A0.3509 (13)0.8409 (12)0.1480 (6)0.030 (3)
H10A0.37400.91260.16010.037*
C10B0.3021 (13)0.5930 (12)0.1679 (6)0.032 (4)
H10B0.34280.53350.18580.039*
C11A0.3838 (14)0.7505 (12)0.1809 (6)0.033 (3)
H11A0.42990.75990.21610.040*
C11B0.2840 (13)0.6880 (12)0.1999 (6)0.030 (3)
H11B0.30960.69410.24060.036*
C12A0.3506 (12)0.6459 (11)0.1635 (6)0.029 (3)
C12B0.2278 (12)0.7749 (11)0.1721 (6)0.024 (3)
C13A0.3763 (13)0.5465 (12)0.1953 (6)0.033 (3)
H13A0.41640.55040.23270.039*
C13B0.2076 (12)0.8823 (11)0.1986 (6)0.025 (3)
H13B0.23210.89520.23900.031*
C14A0.3449 (12)0.4476 (12)0.1735 (6)0.028 (3)
H14A0.36590.38300.19500.034*
C14B0.1566 (13)0.9629 (12)0.1689 (6)0.031 (3)
H14B0.14741.03200.18830.037*
Cl10.0915 (3)1.0784 (3)0.14224 (15)0.0303 (9)
O10.1762 (8)1.0799 (8)0.0951 (4)0.036 (3)
O20.0995 (11)0.9775 (7)0.1751 (5)0.063 (4)
O30.0213 (7)1.0883 (9)0.1163 (5)0.044 (3)
O40.1106 (9)1.1699 (7)0.1823 (4)0.042 (3)
Cl20.5385 (3)0.1680 (3)0.14352 (16)0.0367 (9)
O50.4999 (10)0.2082 (8)0.0860 (4)0.048 (3)
O60.5548 (12)0.0535 (7)0.1415 (6)0.075 (4)
O70.4506 (11)0.1907 (12)0.1875 (4)0.090 (6)
O80.6399 (12)0.2210 (12)0.1618 (6)0.116 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0288 (9)0.0211 (8)0.0217 (8)0.0049 (9)0.0008 (8)0.0019 (7)
Se10.0278 (8)0.0404 (9)0.0331 (7)0.0089 (8)0.0055 (8)0.0105 (7)
N10.026 (8)0.041 (8)0.050 (8)0.002 (7)0.006 (7)0.002 (7)
N20.036 (8)0.057 (9)0.035 (7)0.004 (8)0.003 (7)0.011 (7)
N1A0.016 (6)0.021 (6)0.020 (5)0.007 (5)0.003 (5)0.001 (5)
N1B0.036 (7)0.008 (5)0.030 (6)0.006 (6)0.002 (5)0.007 (5)
N8A0.028 (7)0.022 (6)0.024 (6)0.005 (6)0.006 (6)0.006 (5)
N8B0.023 (6)0.026 (6)0.022 (5)0.001 (6)0.001 (5)0.002 (6)
C10.025 (8)0.037 (8)0.024 (7)0.012 (8)0.005 (7)0.010 (7)
C2A0.032 (9)0.028 (7)0.032 (7)0.005 (7)0.000 (7)0.004 (6)
C2B0.035 (9)0.026 (6)0.027 (7)0.016 (7)0.006 (7)0.003 (5)
C20.058 (14)0.032 (10)0.117 (16)0.001 (10)0.010 (12)0.014 (10)
C3A0.037 (8)0.025 (6)0.038 (6)0.017 (7)0.012 (6)0.011 (6)
C3B0.040 (10)0.028 (6)0.027 (6)0.008 (7)0.013 (6)0.003 (5)
C30.050 (12)0.051 (11)0.055 (11)0.019 (9)0.018 (8)0.030 (8)
C4A0.022 (8)0.029 (5)0.036 (6)0.010 (7)0.016 (5)0.005 (5)
C4B0.023 (8)0.023 (6)0.035 (6)0.001 (6)0.013 (6)0.003 (5)
C40.047 (12)0.061 (12)0.096 (16)0.013 (11)0.006 (12)0.034 (11)
C5A0.028 (8)0.029 (5)0.025 (6)0.023 (6)0.005 (5)0.000 (5)
C5B0.023 (8)0.025 (5)0.020 (5)0.002 (6)0.011 (5)0.009 (4)
C50.017 (9)0.104 (15)0.032 (8)0.002 (10)0.000 (7)0.016 (10)
C6A0.023 (8)0.024 (5)0.013 (6)0.008 (6)0.013 (5)0.001 (4)
C6B0.024 (7)0.027 (6)0.020 (5)0.003 (7)0.003 (5)0.006 (4)
C7A0.022 (8)0.029 (5)0.019 (6)0.009 (6)0.008 (5)0.007 (5)
C7B0.024 (8)0.018 (5)0.022 (5)0.015 (5)0.000 (6)0.002 (4)
C9A0.029 (8)0.026 (8)0.037 (7)0.007 (8)0.001 (6)0.001 (7)
C9B0.035 (9)0.034 (9)0.022 (6)0.002 (8)0.003 (7)0.000 (6)
C10A0.035 (8)0.027 (5)0.030 (6)0.007 (8)0.007 (6)0.002 (6)
C10B0.040 (10)0.029 (6)0.027 (6)0.004 (7)0.015 (7)0.008 (5)
C11A0.035 (10)0.039 (5)0.026 (7)0.006 (7)0.001 (6)0.002 (5)
C11B0.032 (9)0.037 (6)0.022 (6)0.000 (7)0.003 (6)0.002 (5)
C12A0.020 (7)0.032 (4)0.035 (7)0.006 (7)0.007 (6)0.003 (5)
C12B0.019 (8)0.031 (5)0.021 (5)0.003 (6)0.003 (6)0.001 (5)
C13A0.024 (9)0.042 (5)0.031 (7)0.001 (7)0.002 (6)0.014 (5)
C13B0.013 (7)0.038 (6)0.026 (6)0.008 (6)0.003 (6)0.010 (5)
C14A0.018 (8)0.039 (5)0.029 (6)0.001 (7)0.005 (5)0.018 (5)
C14B0.032 (9)0.031 (6)0.029 (6)0.003 (7)0.006 (6)0.016 (5)
Cl10.036 (2)0.0304 (19)0.0246 (17)0.0007 (18)0.0027 (17)0.0046 (16)
O10.049 (7)0.027 (5)0.030 (5)0.009 (5)0.019 (5)0.001 (5)
O20.086 (11)0.037 (6)0.066 (8)0.012 (7)0.012 (8)0.028 (6)
O30.024 (6)0.056 (7)0.052 (7)0.003 (6)0.008 (5)0.017 (6)
O40.052 (7)0.046 (6)0.027 (5)0.011 (7)0.003 (5)0.013 (5)
Cl20.050 (2)0.0249 (18)0.0354 (19)0.002 (2)0.0018 (18)0.0006 (17)
O50.076 (9)0.050 (7)0.017 (5)0.003 (7)0.011 (6)0.009 (5)
O60.098 (11)0.028 (6)0.099 (10)0.027 (8)0.001 (10)0.013 (7)
O70.084 (11)0.141 (14)0.045 (7)0.073 (12)0.011 (8)0.003 (9)
O80.115 (15)0.152 (15)0.083 (10)0.086 (14)0.027 (11)0.031 (10)
Geometric parameters (Å, º) top
Cu1—N1A1.980 (10)C5A—C14A1.411 (19)
Cu1—N1B1.999 (10)C5A—C6A1.425 (18)
Cu1—N8B2.080 (10)C5B—C6B1.416 (17)
Cu1—N8A2.114 (11)C5B—C14B1.420 (18)
Cu1—Se12.491 (3)C5—H5A0.9800
Se1—C11.878 (14)C5—H5B0.9800
N1—C11.340 (18)C5—H5C0.9800
N1—C41.451 (19)C6A—C7A1.418 (18)
N1—C21.48 (2)C6B—C7B1.398 (18)
N2—C11.317 (17)C7A—C12A1.409 (18)
N2—C51.447 (19)C7B—C12B1.428 (17)
N2—C31.467 (18)C9A—C10A1.385 (18)
N1A—C6A1.337 (16)C9A—H9A0.9500
N1A—C2A1.338 (15)C9B—C10B1.417 (18)
N1B—C2B1.316 (15)C9B—H9B0.9500
N1B—C6B1.336 (14)C10A—C11A1.371 (19)
N8A—C9A1.316 (17)C10A—H10A0.9500
N8A—C7A1.385 (16)C10B—C11B1.370 (18)
N8B—C9B1.301 (17)C10B—H10B0.9500
N8B—C7B1.389 (16)C11A—C12A1.384 (19)
C2A—C3A1.423 (18)C11A—H11A0.9500
C2A—H2AA0.9500C11B—C12B1.386 (19)
C2B—C3B1.380 (17)C11B—H11B0.9500
C2B—H2BA0.9500C12A—C13A1.429 (18)
C2—C31.48 (2)C12B—C13B1.451 (18)
C2—H2A0.9900C13A—C14A1.346 (19)
C2—H2B0.9900C13A—H13A0.9500
C3A—C4A1.344 (19)C13B—C14B1.320 (19)
C3A—H3AA0.9500C13B—H13B0.9500
C3B—C4B1.370 (18)C14A—H14A0.9500
C3B—H3BA0.9500C14B—H14B0.9500
C3—H3A0.9900Cl1—O21.429 (8)
C3—H3B0.9900Cl1—O31.434 (8)
C4A—C5A1.41 (2)Cl1—O11.434 (8)
C4A—H4AA0.9500Cl1—O41.439 (8)
C4B—C5B1.399 (18)Cl2—O81.401 (10)
C4B—H4BA0.9500Cl2—O61.406 (8)
C4—H4A0.9800Cl2—O51.434 (8)
C4—H4B0.9800Cl2—O71.437 (9)
C4—H4C0.9800
N1A—Cu1—N1B177.6 (5)C14A—C5A—C6A119.0 (13)
N1A—Cu1—N8B97.4 (4)C4B—C5B—C6B117.1 (12)
N1B—Cu1—N8B81.6 (4)C4B—C5B—C14B125.1 (12)
N1A—Cu1—N8A81.4 (4)C6B—C5B—C14B117.8 (13)
N1B—Cu1—N8A97.1 (4)N2—C5—H5A109.5
N8B—Cu1—N8A118.5 (4)N2—C5—H5B109.5
N1A—Cu1—Se193.4 (3)H5A—C5—H5B109.5
N1B—Cu1—Se188.9 (3)N2—C5—H5C109.5
N8B—Cu1—Se1128.8 (3)H5A—C5—H5C109.5
N8A—Cu1—Se1112.5 (3)H5B—C5—H5C109.5
C1—Se1—Cu1105.2 (5)N1A—C6A—C7A118.9 (12)
C1—N1—C4129.3 (13)N1A—C6A—C5A122.1 (12)
C1—N1—C2109.5 (13)C7A—C6A—C5A118.9 (12)
C4—N1—C2121.3 (14)N1B—C6B—C7B117.7 (12)
C1—N2—C5127.0 (14)N1B—C6B—C5B122.5 (12)
C1—N2—C3109.7 (14)C7B—C6B—C5B119.8 (11)
C5—N2—C3123.1 (13)N8A—C7A—C12A123.2 (12)
C6A—N1A—C2A120.4 (11)N8A—C7A—C6A115.9 (11)
C6A—N1A—Cu1113.8 (8)C12A—C7A—C6A120.9 (12)
C2A—N1A—Cu1125.5 (9)N8B—C7B—C6B117.8 (11)
C2B—N1B—C6B117.9 (11)N8B—C7B—C12B120.0 (12)
C2B—N1B—Cu1128.4 (9)C6B—C7B—C12B122.2 (12)
C6B—N1B—Cu1113.7 (9)N8A—C9A—C10A123.7 (14)
C9A—N8A—C7A116.9 (11)N8A—C9A—H9A118.2
C9A—N8A—Cu1133.5 (10)C10A—C9A—H9A118.2
C7A—N8A—Cu1109.1 (8)N8B—C9B—C10B122.7 (14)
C9B—N8B—C7B119.4 (11)N8B—C9B—H9B118.6
C9B—N8B—Cu1131.5 (9)C10B—C9B—H9B118.6
C7B—N8B—Cu1109.1 (8)C11A—C10A—C9A119.1 (14)
N2—C1—N1112.3 (13)C11A—C10A—H10A120.5
N2—C1—Se1126.0 (12)C9A—C10A—H10A120.5
N1—C1—Se1121.6 (10)C11B—C10B—C9B119.7 (14)
N1A—C2A—C3A120.0 (13)C11B—C10B—H10B120.2
N1A—C2A—H2AA120.0C9B—C10B—H10B120.2
C3A—C2A—H2AA120.0C10A—C11A—C12A120.7 (13)
N1B—C2B—C3B124.7 (13)C10A—C11A—H11A119.7
N1B—C2B—H2BA117.7C12A—C11A—H11A119.7
C3B—C2B—H2BA117.7C10B—C11B—C12B119.0 (13)
N1—C2—C3103.5 (13)C10B—C11B—H11B120.5
N1—C2—H2A111.1C12B—C11B—H11B120.5
C3—C2—H2A111.1C11A—C12A—C7A116.4 (12)
N1—C2—H2B111.1C11A—C12A—C13A125.6 (12)
C3—C2—H2B111.1C7A—C12A—C13A118.1 (13)
H2A—C2—H2B109.0C11B—C12B—C7B119.2 (13)
C4A—C3A—C2A120.5 (14)C11B—C12B—C13B125.7 (13)
C4A—C3A—H3AA119.7C7B—C12B—C13B115.1 (13)
C2A—C3A—H3AA119.7C14A—C13A—C12A121.4 (13)
C4B—C3B—C2B117.9 (14)C14A—C13A—H13A119.3
C4B—C3B—H3BA121.0C12A—C13A—H13A119.3
C2B—C3B—H3BA121.0C14B—C13B—C12B122.6 (13)
N2—C3—C2104.9 (14)C14B—C13B—H13B118.7
N2—C3—H3A110.8C12B—C13B—H13B118.7
C2—C3—H3A110.8C13A—C14A—C5A121.6 (13)
N2—C3—H3B110.8C13A—C14A—H14A119.2
C2—C3—H3B110.8C5A—C14A—H14A119.2
H3A—C3—H3B108.9C13B—C14B—C5B122.4 (13)
C3A—C4A—C5A120.0 (14)C13B—C14B—H14B118.8
C3A—C4A—H4AA120.0C5B—C14B—H14B118.8
C5A—C4A—H4AA120.0O2—Cl1—O3109.6 (7)
C3B—C4B—C5B119.9 (13)O2—Cl1—O1109.6 (6)
C3B—C4B—H4BA120.0O3—Cl1—O1109.5 (6)
C5B—C4B—H4BA120.0O2—Cl1—O4109.9 (6)
N1—C4—H4A109.5O3—Cl1—O4108.9 (6)
N1—C4—H4B109.5O1—Cl1—O4109.4 (6)
H4A—C4—H4B109.5O8—Cl2—O6110.6 (9)
N1—C4—H4C109.5O8—Cl2—O5111.2 (7)
H4A—C4—H4C109.5O6—Cl2—O5110.5 (7)
H4B—C4—H4C109.5O8—Cl2—O7108.2 (8)
C4A—C5A—C14A124.1 (13)O6—Cl2—O7107.9 (8)
C4A—C5A—C6A116.8 (12)O5—Cl2—O7108.3 (7)
C5—N2—C1—N1174.7 (14)C5A—C6A—C7A—N8A177.9 (13)
C3—N2—C1—N11.8 (18)N1A—C6A—C7A—C12A178.5 (13)
C5—N2—C1—Se13 (2)C5A—C6A—C7A—C12A2 (2)
C3—N2—C1—Se1179.3 (12)C9B—N8B—C7B—C6B179.1 (12)
C4—N1—C1—N2179.7 (15)C9B—N8B—C7B—C12B1 (2)
C2—N1—C1—N20.1 (18)N1B—C6B—C7B—N8B0.7 (19)
C4—N1—C1—Se13 (2)C5B—C6B—C7B—N8B178.3 (12)
C2—N1—C1—Se1177.5 (11)N1B—C6B—C7B—C12B179.5 (12)
C6A—N1A—C2A—C3A1 (2)C5B—C6B—C7B—C12B1 (2)
C6B—N1B—C2B—C3B2 (2)C7A—N8A—C9A—C10A2 (2)
C1—N1—C2—C31.9 (18)C7B—N8B—C9B—C10B0 (2)
C4—N1—C2—C3177.9 (14)N8A—C9A—C10A—C11A3 (2)
N1A—C2A—C3A—C4A1 (2)N8B—C9B—C10B—C11B2 (2)
N1B—C2B—C3B—C4B1 (2)C9A—C10A—C11A—C12A0 (2)
C1—N2—C3—C22.9 (19)C9B—C10B—C11B—C12B2 (2)
C5—N2—C3—C2173.7 (14)C10A—C11A—C12A—C7A2 (2)
N1—C2—C3—N22.8 (18)C10A—C11A—C12A—C13A177.7 (15)
C2A—C3A—C4A—C5A0 (2)N8A—C7A—C12A—C11A3 (2)
C2B—C3B—C4B—C5B0 (2)C6A—C7A—C12A—C11A177.0 (14)
C3A—C4A—C5A—C14A179.4 (13)N8A—C7A—C12A—C13A177.3 (13)
C3A—C4A—C5A—C6A2 (2)C6A—C7A—C12A—C13A3 (2)
C3B—C4B—C5B—C6B0 (2)C10B—C11B—C12B—C7B1 (2)
C3B—C4B—C5B—C14B179.5 (14)C10B—C11B—C12B—C13B176.5 (14)
C2A—N1A—C6A—C7A179.4 (13)N8B—C7B—C12B—C11B0 (2)
C2A—N1A—C6A—C5A3 (2)C6B—C7B—C12B—C11B179.4 (13)
C4A—C5A—C6A—N1A4 (2)N8B—C7B—C12B—C13B178.2 (12)
C14A—C5A—C6A—N1A177.7 (12)C6B—C7B—C12B—C13B1.6 (19)
C4A—C5A—C6A—C7A179.8 (13)C11A—C12A—C13A—C14A176.9 (16)
C14A—C5A—C6A—C7A2 (2)C7A—C12A—C13A—C14A3 (2)
C2B—N1B—C6B—C7B178.2 (13)C11B—C12B—C13B—C14B177.8 (15)
C2B—N1B—C6B—C5B3 (2)C7B—C12B—C13B—C14B0 (2)
C4B—C5B—C6B—N1B2 (2)C12A—C13A—C14A—C5A2 (2)
C14B—C5B—C6B—N1B178.9 (13)C4A—C5A—C14A—C13A179.7 (14)
C4B—C5B—C6B—C7B179.4 (12)C6A—C5A—C14A—C13A2 (2)
C14B—C5B—C6B—C7B0 (2)C12B—C13B—C14B—C5B1 (2)
C9A—N8A—C7A—C12A0 (2)C4B—C5B—C14B—C13B177.9 (14)
C9A—N8A—C7A—C6A179.4 (13)C6B—C5B—C14B—C13B2 (2)
N1A—C6A—C7A—N8A1.6 (18)
(II) bis(2,2'-bipyridyl-κ2N,N')(imidazolidine-2-thione- κS)copper(II) bis(perchlorate) top
Crystal data top
[Cu(C10H8N2)2(C3H6N2S)](ClO4)2F(000) = 1380
Mr = 676.97Dx = 1.636 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 58 reflections
a = 11.493 (7) Åθ = 12.5–14.5°
b = 11.861 (9) ŵ = 1.12 mm1
c = 20.166 (10) ÅT = 150 K
V = 2749 (3) Å3Ingot, green
Z = 40.54 × 0.27 × 0.18 mm
Data collection top
Stoe Stadi-4 four-circle
diffractometer
3420 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 25.1°, θmin = 2.7°
ω/θ scansh = 613
Absorption correction: numerical
(X-RED; Stoe & Cie, 1996)
k = 014
Tmin = 0.747, Tmax = 0.840l = 023
4959 measured reflections3 standard reflections every 60 min
3932 independent reflections intensity decay: random variation +/6%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: included in calculated positions; except for N-H (found in delta-F)
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.084P)2 + 11.27P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.004
3932 reflectionsΔρmax = 1.18 e Å3
377 parametersΔρmin = 0.56 e Å3
2 restraintsAbsolute structure: Flack (1983), 1186 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (3)
Crystal data top
[Cu(C10H8N2)2(C3H6N2S)](ClO4)2V = 2749 (3) Å3
Mr = 676.97Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.493 (7) ŵ = 1.12 mm1
b = 11.861 (9) ÅT = 150 K
c = 20.166 (10) Å0.54 × 0.27 × 0.18 mm
Data collection top
Stoe Stadi-4 four-circle
diffractometer
3420 reflections with I > 2σ(I)
Absorption correction: numerical
(X-RED; Stoe & Cie, 1996)
Rint = 0.024
Tmin = 0.747, Tmax = 0.8403 standard reflections every 60 min
4959 measured reflections intensity decay: random variation +/6%
3932 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.084P)2 + 11.27P]
where P = (Fo2 + 2Fc2)/3
S = 1.01Δρmax = 1.18 e Å3
3932 reflectionsΔρmin = 0.56 e Å3
377 parametersAbsolute structure: Flack (1983), 1186 Friedel pairs
2 restraintsAbsolute structure parameter: 0.00 (3)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.96775 (8)0.91289 (8)0.24280 (4)0.0358 (3)
S10.9224 (2)0.72098 (16)0.22395 (10)0.0407 (6)
N10.7710 (7)0.6768 (6)0.1268 (3)0.042 (2)
N1A0.8532 (6)1.0305 (5)0.2796 (3)0.0323 (17)
N1B1.0403 (6)0.8705 (5)0.3285 (3)0.0353 (19)
N20.6996 (7)0.7828 (6)0.2041 (3)0.041 (2)
N8A0.8936 (6)0.9646 (5)0.1587 (3)0.0343 (19)
N8B1.1380 (6)0.9586 (5)0.2231 (3)0.036 (2)
C10.7915 (8)0.7291 (7)0.1835 (4)0.036 (3)
C20.6538 (10)0.7063 (8)0.1005 (4)0.054 (3)
C2A0.8478 (8)1.0708 (7)0.3423 (4)0.039 (3)
C2B0.9823 (9)0.8208 (7)0.3791 (4)0.047 (3)
C30.5977 (9)0.7619 (8)0.1612 (5)0.052 (3)
C3A0.7747 (8)1.1572 (7)0.3604 (4)0.038 (3)
C3B1.0354 (9)0.7944 (7)0.4378 (4)0.047 (3)
C4A0.7084 (8)1.2078 (7)0.3130 (4)0.044 (3)
C4B1.1526 (10)0.8186 (8)0.4450 (5)0.056 (3)
C5A0.7131 (7)1.1672 (6)0.2484 (4)0.037 (2)
C5B1.2121 (8)0.8678 (7)0.3934 (4)0.042 (3)
C6A0.7867 (6)1.0798 (6)0.2331 (3)0.031 (2)
C6B1.1541 (7)0.8941 (6)0.3355 (4)0.035 (2)
C7A0.8058 (7)1.0353 (6)0.1650 (4)0.033 (2)
C7B1.2099 (8)0.9447 (6)0.2759 (4)0.037 (3)
C9A0.9182 (8)0.9202 (7)0.0986 (4)0.042 (3)
C9B1.1809 (9)1.0071 (7)0.1683 (4)0.044 (3)
C10A0.8531 (9)0.9482 (7)0.0432 (4)0.046 (3)
C10B1.2963 (8)1.0428 (8)0.1638 (5)0.047 (3)
C11A0.7601 (9)1.0201 (7)0.0495 (4)0.048 (3)
C11B1.3678 (9)1.0253 (8)0.2169 (5)0.054 (3)
C12A0.7347 (8)1.0636 (6)0.1114 (4)0.040 (3)
C12B1.3261 (8)0.9759 (7)0.2738 (4)0.043 (3)
H10.840 (4)0.654 (7)0.111 (4)0.0500*
H5AA0.665601.199800.214900.0450*
H20.699 (8)0.807 (7)0.2465 (17)0.0490*
H4AA0.659701.269800.323900.0520*
H2B0.610400.638300.086500.0650*
H2C0.659200.759500.062800.0650*
H3AA0.770401.181200.405200.0460*
H3A0.558100.833200.149200.0620*
H3B0.541200.710800.182900.0620*
H2AA0.896501.038100.375200.0470*
H9AA0.981300.869000.094300.0500*
H5BA1.292800.883600.397600.0510*
H4BA1.191500.801300.485200.0680*
H3BA0.992900.760200.472800.0570*
H2BA0.902100.803800.373600.0570*
H9BA1.131101.017500.131200.0520*
H10A0.872700.917800.001000.0550*
H10B1.324501.078400.124700.0560*
H11A0.714101.039600.012100.0580*
H11B1.447101.047400.214500.0650*
H12A0.669701.112000.117400.0480*
H12B1.375700.963400.310800.0520*
Cl10.92029 (19)0.60874 (17)0.01995 (8)0.0404 (6)
O10.9866 (6)0.5334 (5)0.0602 (3)0.053 (2)
O20.9693 (7)0.6148 (8)0.0446 (3)0.084 (3)
O30.8035 (7)0.5678 (8)0.0143 (4)0.079 (3)
O40.9191 (7)0.7161 (6)0.0490 (4)0.071 (3)
Cl20.57729 (18)0.85245 (17)0.37624 (9)0.0366 (6)
O50.6038 (7)0.9054 (7)0.3145 (3)0.076 (3)
O60.5155 (7)0.9312 (7)0.4150 (3)0.081 (3)
O70.5067 (7)0.7602 (7)0.3633 (5)0.088 (4)
O80.6832 (6)0.8203 (7)0.4081 (4)0.070 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0329 (5)0.0419 (5)0.0327 (4)0.0017 (5)0.0028 (4)0.0067 (4)
S10.0391 (11)0.0356 (9)0.0474 (11)0.0044 (10)0.0002 (10)0.0068 (8)
N10.049 (5)0.044 (4)0.032 (3)0.004 (4)0.003 (3)0.000 (3)
N1A0.024 (3)0.040 (3)0.033 (3)0.001 (3)0.001 (3)0.005 (3)
N1B0.039 (4)0.031 (3)0.036 (3)0.000 (3)0.004 (3)0.001 (3)
N20.035 (4)0.052 (4)0.036 (3)0.001 (4)0.003 (3)0.003 (3)
N8A0.040 (4)0.031 (3)0.032 (3)0.000 (3)0.004 (3)0.006 (3)
N8B0.035 (4)0.031 (3)0.042 (4)0.001 (3)0.007 (3)0.007 (3)
C10.038 (5)0.037 (4)0.034 (4)0.001 (4)0.005 (4)0.009 (3)
C20.064 (7)0.058 (5)0.041 (5)0.003 (5)0.009 (5)0.001 (4)
C2A0.038 (5)0.049 (5)0.030 (4)0.003 (4)0.005 (4)0.000 (3)
C2B0.047 (6)0.050 (5)0.045 (5)0.006 (5)0.003 (5)0.011 (4)
C30.049 (6)0.055 (5)0.051 (5)0.005 (5)0.001 (5)0.009 (4)
C3A0.033 (5)0.046 (5)0.036 (4)0.008 (4)0.004 (4)0.001 (3)
C3B0.050 (6)0.056 (5)0.035 (4)0.008 (5)0.007 (4)0.017 (4)
C4A0.041 (5)0.038 (4)0.052 (5)0.001 (4)0.015 (4)0.000 (4)
C4B0.063 (7)0.057 (6)0.049 (5)0.012 (6)0.004 (5)0.007 (4)
C5A0.031 (4)0.041 (4)0.039 (4)0.002 (4)0.002 (4)0.017 (4)
C5B0.037 (5)0.051 (5)0.039 (4)0.008 (4)0.001 (4)0.002 (4)
C6A0.028 (4)0.034 (4)0.031 (3)0.011 (4)0.004 (3)0.006 (3)
C6B0.035 (4)0.035 (4)0.035 (4)0.011 (4)0.002 (3)0.004 (3)
C7A0.035 (5)0.022 (3)0.042 (4)0.006 (4)0.007 (4)0.011 (3)
C7B0.036 (5)0.030 (4)0.044 (4)0.002 (4)0.002 (4)0.001 (3)
C9A0.047 (5)0.041 (4)0.038 (4)0.010 (5)0.010 (4)0.000 (3)
C9B0.049 (6)0.043 (4)0.039 (4)0.003 (4)0.008 (4)0.006 (4)
C10A0.059 (6)0.041 (4)0.037 (4)0.012 (5)0.012 (4)0.004 (3)
C10B0.043 (5)0.051 (5)0.047 (5)0.011 (5)0.020 (5)0.004 (4)
C11A0.055 (6)0.047 (5)0.043 (5)0.018 (5)0.005 (4)0.008 (4)
C11B0.043 (5)0.052 (5)0.066 (6)0.006 (5)0.017 (5)0.025 (5)
C12A0.042 (5)0.036 (4)0.042 (4)0.007 (4)0.005 (4)0.011 (3)
C12B0.039 (5)0.039 (4)0.051 (5)0.003 (4)0.002 (4)0.006 (4)
Cl10.0430 (11)0.0530 (11)0.0251 (8)0.0040 (10)0.0003 (8)0.0021 (8)
O10.050 (4)0.060 (4)0.049 (3)0.000 (4)0.003 (3)0.011 (3)
O20.075 (5)0.149 (7)0.029 (3)0.040 (6)0.019 (3)0.016 (4)
O30.058 (5)0.113 (6)0.066 (4)0.017 (5)0.016 (4)0.018 (4)
O40.071 (5)0.074 (4)0.068 (4)0.023 (4)0.019 (4)0.024 (4)
Cl20.0304 (10)0.0500 (11)0.0293 (8)0.0011 (10)0.0002 (8)0.0026 (8)
O50.078 (5)0.097 (5)0.053 (4)0.014 (5)0.021 (4)0.022 (4)
O60.068 (5)0.109 (6)0.066 (4)0.031 (5)0.010 (4)0.052 (4)
O70.044 (5)0.069 (5)0.151 (8)0.009 (4)0.003 (5)0.007 (5)
O80.046 (4)0.099 (6)0.064 (4)0.014 (4)0.013 (4)0.008 (4)
Geometric parameters (Å, º) top
Cu1—S12.366 (3)C4B—C5B1.375 (13)
Cu1—N1A2.057 (7)C5A—C6A1.373 (10)
Cu1—N1B1.984 (6)C5B—C6B1.380 (12)
Cu1—N8A1.995 (6)C6A—C7A1.488 (10)
Cu1—N8B2.069 (7)C6B—C7B1.489 (11)
Cl1—O11.428 (7)C7A—C12A1.396 (12)
Cl1—O21.420 (7)C7B—C12B1.387 (13)
Cl1—O31.432 (9)C9A—C10A1.385 (12)
Cl1—O41.402 (7)C9B—C10B1.395 (14)
Cl2—O51.427 (7)C10A—C11A1.373 (14)
Cl2—O61.410 (8)C10B—C11B1.366 (14)
Cl2—O71.387 (9)C11A—C12A1.382 (12)
Cl2—O81.428 (8)C11B—C12B1.375 (13)
S1—C11.714 (9)C2—H2B0.9900
N1—C21.489 (14)C2—H2C0.9900
N1—C11.322 (10)C2A—H2AA0.9500
N1A—C2A1.353 (10)C2B—H2BA0.9500
N1A—C6A1.344 (9)C3—H3A0.9900
N1B—C6B1.345 (11)C3—H3B0.9900
N1B—C2B1.354 (11)C3A—H3AA0.9500
N2—C11.302 (12)C3B—H3BA0.9500
N2—C31.477 (13)C4A—H4AA0.9500
N8A—C7A1.318 (10)C4B—H4BA0.9500
N8A—C9A1.351 (10)C5A—H5AA0.9500
N8B—C7B1.358 (11)C5B—H5BA0.9500
N8B—C9B1.340 (11)C9A—H9AA0.9500
N1—H10.90 (5)C9B—H9BA0.9500
N2—H20.90 (4)C10A—H10A0.9500
C2—C31.533 (14)C10B—H10B0.9500
C2A—C3A1.375 (12)C11A—H11A0.9500
C2B—C3B1.368 (12)C11B—H11B0.9500
C3A—C4A1.362 (12)C12A—H12A0.9500
C3B—C4B1.385 (15)C12B—H12B0.9500
C4A—C5A1.390 (11)
S1—Cu1—N1A124.72 (19)C5B—C6B—C7B124.5 (8)
S1—Cu1—N1B89.35 (18)N1B—C6B—C5B120.8 (7)
S1—Cu1—N8A93.73 (18)C6A—C7A—C12A122.9 (7)
S1—Cu1—N8B115.44 (18)N8A—C7A—C12A121.8 (7)
N1A—Cu1—N1B97.3 (3)N8A—C7A—C6A115.3 (7)
N1A—Cu1—N8A79.9 (3)N8B—C7B—C6B114.8 (7)
N1A—Cu1—N8B119.8 (2)C6B—C7B—C12B123.2 (7)
N1B—Cu1—N8A176.7 (2)N8B—C7B—C12B122.0 (7)
N1B—Cu1—N8B80.6 (3)N8A—C9A—C10A121.1 (8)
N8A—Cu1—N8B99.2 (3)N8B—C9B—C10B122.3 (8)
O1—Cl1—O2109.9 (5)C9A—C10A—C11A119.7 (8)
O1—Cl1—O3109.5 (5)C9B—C10B—C11B118.4 (9)
O1—Cl1—O4109.7 (4)C10A—C11A—C12A118.7 (8)
O2—Cl1—O3108.4 (5)C10B—C11B—C12B120.6 (9)
O2—Cl1—O4109.9 (5)C7A—C12A—C11A119.1 (8)
O3—Cl1—O4109.4 (5)C7B—C12B—C11B118.4 (8)
O5—Cl2—O6107.4 (5)N1—C2—H2C112.00
O5—Cl2—O7107.9 (5)C3—C2—H2B112.00
O5—Cl2—O8109.1 (5)N1—C2—H2B111.00
O6—Cl2—O7109.4 (5)C3—C2—H2C111.00
O6—Cl2—O8110.9 (5)H2B—C2—H2C109.00
O7—Cl2—O8111.9 (5)N1A—C2A—H2AA119.00
Cu1—S1—C1102.5 (3)C3A—C2A—H2AA119.00
C1—N1—C2111.0 (7)N1B—C2B—H2BA119.00
Cu1—N1A—C6A114.1 (5)C3B—C2B—H2BA119.00
Cu1—N1A—C2A127.3 (6)N2—C3—H3B111.00
C2A—N1A—C6A118.2 (7)N2—C3—H3A111.00
Cu1—N1B—C2B124.1 (6)H3A—C3—H3B109.00
Cu1—N1B—C6B116.6 (5)C2—C3—H3A111.00
C2B—N1B—C6B119.4 (7)C2—C3—H3B111.00
C1—N2—C3112.0 (7)C2A—C3A—H3AA121.00
C7A—N8A—C9A119.6 (7)C4A—C3A—H3AA120.00
Cu1—N8A—C7A116.2 (5)C2B—C3B—H3BA121.00
Cu1—N8A—C9A123.6 (5)C4B—C3B—H3BA121.00
C7B—N8B—C9B118.4 (7)C3A—C4A—H4AA121.00
Cu1—N8B—C9B128.2 (6)C5A—C4A—H4AA121.00
Cu1—N8B—C7B113.2 (5)C5B—C4B—H4BA120.00
C1—N1—H1107 (5)C3B—C4B—H4BA120.00
C2—N1—H1138 (5)C4A—C5A—H5AA120.00
C3—N2—H2127 (6)C6A—C5A—H5AA120.00
C1—N2—H2118 (6)C6B—C5B—H5BA120.00
S1—C1—N1122.8 (7)C4B—C5B—H5BA120.00
N1—C1—N2111.2 (8)N8A—C9A—H9AA119.00
S1—C1—N2126.0 (6)C10A—C9A—H9AA119.00
N1—C2—C3101.4 (7)N8B—C9B—H9BA119.00
N1A—C2A—C3A122.7 (8)C10B—C9B—H9BA119.00
N1B—C2B—C3B122.2 (9)C11A—C10A—H10A120.00
N2—C3—C2101.9 (8)C9A—C10A—H10A120.00
C2A—C3A—C4A119.0 (8)C9B—C10B—H10B121.00
C2B—C3B—C4B118.5 (9)C11B—C10B—H10B121.00
C3A—C4A—C5A118.9 (8)C10A—C11A—H11A121.00
C3B—C4B—C5B119.5 (9)C12A—C11A—H11A121.00
C4A—C5A—C6A119.7 (7)C10B—C11B—H11B120.00
C4B—C5B—C6B119.7 (9)C12B—C11B—H11B120.00
N1A—C6A—C7A114.0 (6)C7A—C12A—H12A120.00
C5A—C6A—C7A124.5 (6)C11A—C12A—H12A120.00
N1A—C6A—C5A121.5 (6)C11B—C12B—H12B121.00
N1B—C6B—C7B114.7 (7)C7B—C12B—H12B121.00
C2—N1—C1—S1175.4 (6)C3B—C4B—C5B—C6B1.0 (13)
C2—N1—C1—N26.4 (10)C4A—C5A—C6A—C7A175.1 (7)
C1—N1—C2—C313.8 (9)C4A—C5A—C6A—N1A1.4 (11)
C6A—N1A—C2A—C3A2.1 (12)C4B—C5B—C6B—N1B1.1 (12)
C2A—N1A—C6A—C5A1.3 (11)C4B—C5B—C6B—C7B178.4 (8)
C2A—N1A—C6A—C7A175.5 (7)N1A—C6A—C7A—C12A170.8 (7)
C6B—N1B—C2B—C3B0.6 (12)N1A—C6A—C7A—N8A7.7 (10)
C2B—N1B—C6B—C5B0.3 (11)C5A—C6A—C7A—C12A12.5 (12)
C2B—N1B—C6B—C7B177.8 (7)C5A—C6A—C7A—N8A169.0 (7)
C3—N2—C1—S1173.4 (7)N1B—C6B—C7B—N8B0.6 (9)
C3—N2—C1—N14.7 (10)C5B—C6B—C7B—C12B3.3 (12)
C1—N2—C3—C213.0 (9)N1B—C6B—C7B—C12B179.3 (7)
C9A—N8A—C7A—C6A179.6 (7)C5B—C6B—C7B—N8B176.9 (7)
C9A—N8A—C7A—C12A1.9 (11)N8A—C7A—C12A—C11A2.8 (12)
C7A—N8A—C9A—C10A0.4 (12)C6A—C7A—C12A—C11A178.8 (7)
C9B—N8B—C7B—C6B177.8 (7)N8B—C7B—C12B—C11B1.9 (12)
C9B—N8B—C7B—C12B2.0 (11)C6B—C7B—C12B—C11B177.9 (8)
C7B—N8B—C9B—C10B0.4 (12)N8A—C9A—C10A—C11A1.6 (13)
N1—C2—C3—N214.9 (8)N8B—C9B—C10B—C11B1.3 (14)
N1A—C2A—C3A—C4A2.9 (13)C9A—C10A—C11A—C12A0.6 (13)
N1B—C2B—C3B—C4B0.7 (13)C9B—C10B—C11B—C12B1.4 (14)
C2A—C3A—C4A—C5A2.8 (13)C10A—C11A—C12A—C7A1.5 (13)
C2B—C3B—C4B—C5B0.2 (13)C10B—C11B—C12B—C7B0.2 (13)
C3A—C4A—C5A—C6A2.1 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.90 (5)2.05 (7)2.913 (11)160 (7)
N2—H2···O50.90 (4)2.11 (7)2.878 (10)143 (7)

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu(C12H8N2)2(C5H10N2Se)](ClO4)2[Cu(C10H8N2)2(C3H6N2S)](ClO4)2
Mr799.96676.97
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121
Temperature (K)150150
a, b, c (Å)11.606 (6), 12.155 (2), 22.120 (4)11.493 (7), 11.861 (9), 20.166 (10)
V3)3120.5 (18)2749 (3)
Z44
Radiation typeMo KαMo Kα
µ (mm1)2.101.12
Crystal size (mm)0.51 × 0.14 × 0.100.54 × 0.27 × 0.18
Data collection
DiffractometerStoe Stadi-4 four-circle
diffractometer
Stoe Stadi-4 four-circle
diffractometer
Absorption correctionNumerical
(X-RED; Stoe & Cie, 1996)
Numerical
(X-RED; Stoe & Cie, 1996)
Tmin, Tmax0.700, 0.8300.747, 0.840
No. of measured, independent and
observed [I > 2σ(I)] reflections
3878, 3511, 2621 4959, 3932, 3420
Rint0.0520.024
(sin θ/λ)max1)0.5960.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.144, 1.23 0.061, 0.164, 1.01
No. of reflections35113932
No. of parameters427377
No. of restraints1472
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + 24.56P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.084P)2 + 11.27P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.80, 0.671.18, 0.56
Absolute structureFlack (1983), 780 Friedel pairsFlack (1983), 1186 Friedel pairs
Absolute structure parameter0.41 (3)0.00 (3)

Computer programs: STADI4 (Stoe & Cie, 1996), STADI4, X-RED (Stoe & Cie, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), Mercury (Macrae et al., 2006), enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2007).

Selected geometric parameters (Å, º) for (I) top
Cu1—N1A1.980 (10)Cu1—N8A2.114 (11)
Cu1—N1B1.999 (10)Cu1—Se12.491 (3)
Cu1—N8B2.080 (10)
N1A—Cu1—N1B177.6 (5)N8B—Cu1—N8A118.5 (4)
N1A—Cu1—N8B97.4 (4)N1A—Cu1—Se193.4 (3)
N1B—Cu1—N8B81.6 (4)N1B—Cu1—Se188.9 (3)
N1A—Cu1—N8A81.4 (4)N8B—Cu1—Se1128.8 (3)
N1B—Cu1—N8A97.1 (4)N8A—Cu1—Se1112.5 (3)
Selected geometric parameters (Å, º) for (II) top
Cu1—S12.366 (3)Cu1—N8A1.995 (6)
Cu1—N1A2.057 (7)Cu1—N8B2.069 (7)
Cu1—N1B1.984 (6)
S1—Cu1—N1A124.72 (19)N1A—Cu1—N8A79.9 (3)
S1—Cu1—N1B89.35 (18)N1A—Cu1—N8B119.8 (2)
S1—Cu1—N8A93.73 (18)N1B—Cu1—N8A176.7 (2)
S1—Cu1—N8B115.44 (18)N1B—Cu1—N8B80.6 (3)
N1A—Cu1—N1B97.3 (3)N8A—Cu1—N8B99.2 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.90 (5)2.05 (7)2.913 (11)160 (7)
N2—H2···O50.90 (4)2.11 (7)2.878 (10)143 (7)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds