Download citation
Download citation
link to html
In the two title complexes, (C24H20P)[Au(C3S5)2]·C3H6O, (I), and (C20H20P)[Au(C3S5)2], (II), the AuIII atoms exhibit square-planar coordinations involving four S atoms from two 2-thioxo-1,3-dithiole-4,5-dithiol­ate (dmit) ligands. The Au-S bond lengths, ranging from 2.3057 (8) to 2.3233 (7) Å in (I) and from 2.3119 (8) to 2.3291 (10) Å in (II), are slightly smaller than the sum of the single-bond covalent radii. In (I), there are two halves of independent Ph4P+ cations, in which the two P atoms lie on twofold rotation axis sites. The Ph4P+ cations and [Au(C3S5)2]- anions are inter­spersed as columns in the packing. Layers composed of Ph4P+ and [Au(C3S5)2]- are separated by layers of acetone molecules. In (II), the [Au(C3S5)2]- anions and EtPh3P+ counter-cations form a layered arrangement, and the [Au(C3S5)2]- anions form discrete pairs with a long inter­molecular Au...S inter­action for each Au atom in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010706074X/sk3168sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010706074X/sk3168Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010706074X/sk3168IIsup3.hkl
Contains datablock II

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S010827010706074X/sk3168sup4.pdf
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S010827010706074X/sk3168sup5.pdf
Supplementary material

CCDC references: 652827; 652828

Comment top

The third-order nonlinear optical (TONLO) response is very important in all-optical switching, signal processing and ultrafast optical communications (Sutherland, 1996). For the realisation of all-optical switching devices, the material requirements which have to be met are W >> 1 and T << 1. These two figures of merit are defined as W = n2I/(αλ) and T = βλ/n2, where n2 is the nonlinear refractive index, α is the linear absorption coefficient, β is the nonlinear absorption coefficient, λ is the wavelength and I is the light irradiance. Furthermore, ultrafast response times are required for the nonlinear processes involved. Therefore, to be practically useful for all-optical switching, materials should have a large n2 at the operating wavelength, small α and β and an ultrafast response time, together with good physicochemical properties, such as environmental stability and processability (Kuang et al., 2003).

For nearly three decades, the synthesis and characterization of 2-thioxo-1,3-dithiole-4,5-dithiolate (dmit) complexes and related analogues have been paid great attention (Steimeck & Kirmse, 1979). As special π-electron conjugated systems, dmit and related ligands have been used as building units for electrical conductors and superconductors (Svenstrup & Becher, 1995; Cassoux, 1999; Pullen & Olk, 1999; Robertson & Cronin, 2002). The π-electron delocalization in conjugated systems can also contribute to an ultrafast optical response capability and large TONLO effects (Coe, 2004). Recently, many dmit complexes have been reported as possessing good TONLO properties (Wang et al., 1999; Liu et al., 2002). In our previous studies, the TONLO properties of a series of such complexes were reported. The results showed that they possess large TONLO properties with sub-picosecond response times (Yang et al., 2005; Sun et al., 2006). Along with this research, Au–dmit complexes (Li et al., 2005, 2006) have been found to possess large n2 and nearly zero absorption with good figures of merit, W and T, for all-optical switching applications at 1064 nm. Therefore, they are potential candidates for all-optical switching device applications. To continue this work, the preparation and structural characterization of the two title compounds, (C24H20P)[Au(C3S5)2]·C3H6O, (I), and (C20H20P)[Au(C3S5)2], (II), are reported here.

The two structures show similarities with and differences from each other and the previously reported crystal structures of 18 related Au–dmit complexes in the Cambridge Structural Database (CSD; Version 5.38 of May 2007; Allen, 2002). The similarities are that in all these crystal structures, dmit exhibits its typical behaviour as a bidentate ligand and the Au3+ ion is coordinated by four S atoms from two dmit molecules in an almost square-planar geometry. The four S atoms are planar, with a slight deviation of the Au atom therefrom, and all of them have a slight Td distortion. The anion is generally planar. [Original text was not clear - please check rephrasing] Like the previously reported complexes, the Au—S bond lengths [2.3057 (8)–2.3233 (7) Å for (I), and 2.3119 (8)–2.3291 (10) Å for (II)] are slightly smaller than the sum of the single-bond covalent radii (1.36 Å; Pauling, 1960). The S—Au—S bite angles [87.20 (3)–91.76 (3)° for (I) and 86.97 (3)–91.49 (3)° for (II)] are almost nominal right angles and the trans S—Au—S angles [176.97 (3) and 177.20 (3)° for (I), and 178.22 (3) and 178.40 (3)° for (II)] are very close to 180°. The CS double bond is much longer than the typical CS bond length (1.599 Å; Allen et al., 1987). The other C—S bonds [1.723 (4)–1.747 (3) Å for (I) and 1.728 (3)–1.751 (3) for (II)] are shorter than the typical C—S single bond (1.819 Å; Allen et al., 1987) and are essentially single bonds with some double-bond character. The two CC bond lengths of the dmit ion [1.345 (4) and 1.340 (4) Å for (I), and 1.336 (5) and 1.340 (5) Å for (II)] are very close to the corresponding double-bond value of 1.34 Å (Allen et al., 1987 ?).

An obvious difference between these 20 compounds lies in the [Au(C3S5)2]- anion. There is one type of [Au(C3S5)2]- anion in some of these complexes, with large counter-cations (Miura et al., 2004; Li et al., 2006), and compounds (I) and (II) belong to this class. On the other hand, there are two kinds of crystallographically independent [Au(C3S5)2]- anions in another type of [Au(C3S5)2]- anion (Matsubayashi & Yokozawa, 1990; Li et al., 2005), with small counter-cations. The counter-cations and their orientations with respect to the [Au(C3S5)2]- anions are different in these crystal structures. In (I), there are two halves of independent (C24H20P)+ cations, in which the two P atoms lie on twofold rotation axis sites. The (C24H20P)+ cations and [Au(C3S5)2]- anions are interspersed as columns in the packing. Layers composed of (C24H20P)+ and [Au(C3S5)2]- are separated by layers of acetone. In (II), there are layers of (C21H22P)+ cations and of [Au(C3S5)2]- anions, and the [Au(C3S5)2]- anions form discrete pairs with a long intermolecular Au···S interaction for each Au atom in the crystal structure.

All the data show that the two [Au(C3S5)2]- ring systems in the title compounds have a high degree of electron delocalization. The most striking physical characteristic of these two crystal structures is the extended electronically delocalized core, comprising the central Au3+ ion, four S atoms and the adjacent CC units in the quasi-square plane. It has been shown that when Au3+ takes the place of group 12 metal ions (Zn2+, Cd2+ and Hg2+), electron delocalization is enhanced (Li et al., 2003). This is due to the unfilled d electron shell of Au3+, which allows the possibility of low-energy charge-transfer transitions and is an important contribution to optical nonlinearity. In particular, the 3p orbitals of S and 3d orbitals of Au3+ can overlap to form a highly delocalized system. This delocalization will greatly enhance hyperpolarizability and nonlinear susceptibility, and lead to large TONLO properties. The TONLO properties of these two compounds were measured by the Z-scan technique (Sheik-Bahae et al., 1989, 1990), in mM solutions of both acetone and acetonitrile at 1064 nm. These revealed that their nonlinear refractive indices were superior to that of CS2 [Quantify this statement?].

Related literature top

For related literature, see: Allen (2002); Allen et al. (1987); Cassoux (1999); Coe (2004); Kuang et al. (2003); Li et al. (2003, 2005, 2006); Liu et al. (2002); Matsubayashi & Yokozawa (1990); Miura et al. (2004); Pauling (1960); Pullen & Olk (1999); Robertson & Cronin (2002); Sheik-Bahae, Said & Van Stryland (1989); Sheik-Bahae, Said, Wei, Hagan & Van Stryland (1990); Steimeck & Kirmse (1979); Sun et al. (2006); Sutherland (1996); Svenstrup & Becher (1995); Wang et al. (1999, 2005); Yang et al. (2005).

Experimental top

For the preparation of (I), 4,5-bis(furoylsulfanyl)-1,3-dithiole-2-thione (1.211 g) (Wang et al., 2005) was suspended in methanol (15 ml). Under a nitrogen atmosphere, a sodium methoxide solution obtained from Na (0.145 g) in methanol (15 ml) was added to the above-mentioned mixture at room temperature to give a dark-red solution. To this solution, separate solutions of NaAuCl4·2H2O (0.597 g) dissolved in methanol (5 ml), and C24H20PBr (0.659 g) in methanol (5 ml), were added consecutively with stirring at room temperature. The reaction mixture was stirred for about 30 min. The product was collected by filtration and washed with methanol to afford a dark-brown precipitate of (C24H20P)[Au(C3S5)2]. An acetone solution of the product was left standing at room temperature, and brown crystals of the solvate, (I), suitable for structure determination were obtained. Electronic absorption (Hitachi model U-3500 recording spectrophotometer; nm):339 and 347 (ππ* transition of the dmit ligand), 466 (AuS charge-transfer transition).

For the preparation of (II), 4,5-bis(furoylsulfanyl)-1,3-dithiole-2-thione (1.211 g) was suspended in methanol (15 ml). Under a nitrogen atmosphere, a sodium methoxide solution obtained from Na (0.145 g) in methanol (15 ml) was added to the above-mentioned mixture at room temperature to give a dark-red solution. To this solution, separate solutions of NaAuCl4·2H2O (0.597 g) dissolved in methanol (5 ml), and C24H20PBr (0.584 g) in methanol (5 ml), were added consecutively with stirring at room temperature. The reaction mixture was stirred for about 30 min. The product was collected by filtration and washed with methanol to afford a dark-brown precipitate of (II). An acetone solution of (II) was left standing at room temperature, and brown crystals of (II) suitable for structure determination were obtained. Electronic absorption (Hitachi model U-3500 recording spectrophotometer; nm): 316 and 367 (ππ* transition of the dmit ligand), 446 (AuS charge-transfer transition).

Refinement top

For compound (I), all H atoms were placed in geometrically calculated positions and refined using a riding model, with C—H = 0.93 Å (for CH groups) or 0.96 Å (for CH3 groups), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for CH3 groups. Although atoms S1 and S10 had large anisotropic parameters, no suitable disorder model could be found. Their Uij components were restrained to isotropic behaviour. The three atoms of the acetone molecule were also disordered and no treatment could be applied. The C32—C33 and C31—C32 distances were restrained to reasonable values. Since the reflections 100 and 302 were obscured by the beam stop, Fo2 is much less than Fc2 in these reflections. They were omitted in the final refinement.

For compound (II), all H atoms were placed in geometrically calculated positions and refined using a riding model, with C—H = 0.93 Å (for CH groups) or 0.96 Å (for CH3 groups), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for CH3 groups.

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1]
[Figure 2]
Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. There are two halves of independent (C24H20P)+ cations where the two P atoms lie on twofold rotation axis sites.

Fig. 2. The crystal packing in (I), viewed along the b axis. H atoms have been omitted.

Fig. 3. The molecular structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Fig. 4. The crystal packing in (II), viewed along the b axis. H atoms have been omitted.
(I) Tetraphenylphosphonium bis(2-thioxo-1,3-dithiole-4,5-dithiolato)aurate(III) acetone solvate top
Crystal data top
(C24H20P)[Au(C3S5)2]·C3H6OF(000) = 1944
Mr = 987.07Dx = 1.727 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 6858 reflections
a = 24.4198 (7) Åθ = 2.5–27.5°
b = 7.4511 (2) ŵ = 4.50 mm1
c = 23.1654 (6) ÅT = 296 K
β = 115.772 (1)°Prism, brown
V = 3795.78 (18) Å30.24 × 0.23 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8724 independent reflections
Radiation source: fine-focus sealed tube7545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 27.5°, θmin = 0.9°
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
h = 3127
Tmin = 0.379, Tmax = 0.508k = 98
33785 measured reflectionsl = 3030
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0246P)2 + 1.8915P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.004
8724 reflectionsΔρmax = 0.62 e Å3
419 parametersΔρmin = 0.44 e Å3
14 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00015 (3)
Crystal data top
(C24H20P)[Au(C3S5)2]·C3H6OV = 3795.78 (18) Å3
Mr = 987.07Z = 4
Monoclinic, P2/cMo Kα radiation
a = 24.4198 (7) ŵ = 4.50 mm1
b = 7.4511 (2) ÅT = 296 K
c = 23.1654 (6) Å0.24 × 0.23 × 0.15 mm
β = 115.772 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8724 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
7545 reflections with I > 2σ(I)
Tmin = 0.379, Tmax = 0.508Rint = 0.024
33785 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02314 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.03Δρmax = 0.62 e Å3
8724 reflectionsΔρmin = 0.44 e Å3
419 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.743045 (4)0.072091 (14)0.744125 (4)0.03323 (4)
C10.61106 (18)0.5443 (5)0.54607 (16)0.0647 (10)
C20.67440 (12)0.3955 (4)0.65743 (13)0.0381 (6)
C30.67318 (12)0.2724 (4)0.61440 (12)0.0408 (6)
C40.81844 (13)0.1314 (4)0.87232 (13)0.0436 (7)
C50.81351 (13)0.2546 (4)0.82822 (13)0.0420 (7)
C60.8809 (2)0.4073 (5)0.93658 (17)0.0773 (13)
C70.50051 (12)0.1656 (4)0.68865 (12)0.0371 (6)
C80.45587 (15)0.0332 (4)0.66528 (15)0.0501 (8)
H80.42620.02640.68020.060*
C90.45560 (16)0.0872 (4)0.62025 (15)0.0557 (8)
H90.42560.17490.60460.067*
C100.49958 (16)0.0784 (4)0.59830 (15)0.0531 (8)
H100.49910.15970.56760.064*
C110.54409 (15)0.0500 (5)0.62151 (16)0.0545 (8)
H110.57400.05450.60680.065*
C120.54496 (13)0.1734 (4)0.66678 (14)0.0453 (7)
H120.57520.26060.68230.054*
C130.56529 (12)0.4570 (4)0.78121 (13)0.0377 (6)
C140.60901 (14)0.4460 (4)0.84412 (14)0.0519 (8)
H140.60690.35660.87110.062*
C150.65604 (16)0.5705 (5)0.86636 (17)0.0647 (10)
H150.68530.56490.90870.078*
C160.65990 (15)0.7007 (5)0.82693 (17)0.0580 (9)
H160.69210.78180.84230.070*
C170.61632 (14)0.7126 (4)0.76451 (16)0.0513 (8)
H170.61900.80200.73780.062*
C180.56901 (14)0.5928 (4)0.74156 (14)0.0457 (7)
H180.53940.60200.69950.055*
C190.93779 (12)0.5504 (4)0.70427 (13)0.0393 (6)
C200.88291 (14)0.5617 (5)0.70767 (17)0.0561 (9)
H200.87650.65140.73200.067*
C210.83756 (17)0.4391 (6)0.6748 (2)0.0745 (12)
H210.80060.44610.67720.089*
C220.84676 (17)0.3076 (5)0.63892 (18)0.0700 (11)
H220.81600.22540.61710.084*
C230.90077 (16)0.2956 (5)0.63477 (16)0.0587 (9)
H230.90650.20670.60970.070*
C240.94674 (15)0.4154 (4)0.66771 (15)0.0510 (8)
H240.98380.40620.66560.061*
C250.98150 (12)0.8390 (4)0.80145 (12)0.0384 (6)
C260.93880 (14)0.9737 (4)0.77422 (15)0.0513 (8)
H260.91980.98760.72990.062*
C270.92444 (16)1.0866 (5)0.81239 (18)0.0595 (9)
H270.89551.17620.79380.071*
C280.95230 (19)1.0684 (5)0.87763 (19)0.0657 (10)
H280.94211.14480.90320.079*
C290.9952 (2)0.9371 (6)0.90531 (18)0.0738 (12)
H291.01450.92560.94970.089*
C301.00990 (16)0.8216 (5)0.86709 (15)0.0572 (9)
H301.03890.73250.88590.069*
P10.50000.31188 (14)0.75000.0353 (2)
P21.00000.69624 (14)0.75000.0360 (2)
S10.56884 (7)0.6801 (2)0.48764 (5)0.1163 (6)
S20.63706 (4)0.59766 (11)0.62603 (4)0.0564 (2)
S30.63422 (4)0.33387 (14)0.53405 (4)0.0623 (2)
S40.70838 (4)0.36335 (10)0.74012 (3)0.04252 (17)
S50.70504 (4)0.05928 (10)0.63341 (3)0.04545 (17)
S60.78624 (4)0.08266 (10)0.85538 (3)0.04876 (19)
S70.77268 (4)0.22242 (10)0.74579 (3)0.04580 (17)
S80.86143 (5)0.19546 (14)0.95187 (4)0.0709 (3)
S90.84996 (5)0.45844 (12)0.85599 (4)0.0633 (3)
S100.92384 (9)0.5475 (2)0.99244 (6)0.1455 (8)
O10.8261 (3)0.0873 (8)1.0601 (4)0.218 (3)
C310.7672 (6)0.3303 (12)1.0190 (5)0.369 (11)
H31A0.77060.37401.05940.553*
H31B0.72710.35490.98620.553*
H31C0.79680.38921.00860.553*
C320.7782 (4)0.1340 (11)1.0232 (3)0.160 (4)
C330.7244 (4)0.0304 (16)0.9827 (4)0.274 (8)
H33A0.73350.09540.98920.410*
H33B0.71260.05990.93850.410*
H33C0.69170.05860.99360.410*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.03741 (6)0.02613 (6)0.03684 (6)0.00169 (4)0.01677 (4)0.00220 (4)
C10.074 (2)0.077 (3)0.0472 (17)0.028 (2)0.0295 (17)0.0220 (17)
C20.0420 (15)0.0327 (16)0.0403 (14)0.0040 (12)0.0186 (12)0.0066 (11)
C30.0425 (15)0.0407 (17)0.0374 (13)0.0031 (13)0.0156 (12)0.0071 (12)
C40.0494 (17)0.0389 (17)0.0409 (14)0.0064 (13)0.0181 (13)0.0067 (12)
C50.0484 (16)0.0319 (17)0.0433 (14)0.0063 (13)0.0177 (13)0.0086 (12)
C60.104 (3)0.075 (3)0.0485 (19)0.039 (2)0.030 (2)0.0207 (18)
C70.0418 (15)0.0349 (16)0.0345 (13)0.0017 (12)0.0164 (12)0.0009 (11)
C80.0565 (19)0.050 (2)0.0531 (17)0.0114 (15)0.0326 (15)0.0079 (14)
C90.067 (2)0.047 (2)0.0545 (18)0.0144 (16)0.0279 (16)0.0118 (15)
C100.063 (2)0.050 (2)0.0439 (16)0.0076 (16)0.0211 (15)0.0080 (14)
C110.0509 (18)0.065 (2)0.0552 (18)0.0056 (16)0.0297 (15)0.0057 (16)
C120.0417 (15)0.048 (2)0.0474 (15)0.0020 (13)0.0204 (13)0.0036 (14)
C130.0395 (14)0.0336 (17)0.0416 (14)0.0000 (12)0.0192 (12)0.0034 (11)
C140.0506 (18)0.054 (2)0.0446 (16)0.0060 (15)0.0148 (14)0.0038 (14)
C150.053 (2)0.074 (3)0.0533 (19)0.0146 (19)0.0099 (16)0.0058 (18)
C160.0466 (18)0.052 (2)0.079 (2)0.0125 (15)0.0312 (17)0.0189 (18)
C170.0555 (18)0.0386 (18)0.069 (2)0.0047 (15)0.0355 (17)0.0022 (15)
C180.0485 (17)0.0410 (19)0.0476 (15)0.0016 (14)0.0208 (14)0.0028 (13)
C190.0399 (14)0.0374 (17)0.0411 (14)0.0014 (12)0.0179 (12)0.0014 (12)
C200.0453 (17)0.060 (2)0.068 (2)0.0080 (16)0.0291 (16)0.0178 (17)
C210.051 (2)0.082 (3)0.099 (3)0.021 (2)0.040 (2)0.028 (2)
C220.063 (2)0.066 (3)0.079 (2)0.0253 (19)0.029 (2)0.022 (2)
C230.066 (2)0.048 (2)0.062 (2)0.0096 (17)0.0284 (17)0.0155 (16)
C240.0500 (17)0.049 (2)0.0573 (18)0.0023 (15)0.0269 (15)0.0079 (15)
C250.0411 (15)0.0371 (17)0.0388 (13)0.0010 (12)0.0189 (12)0.0012 (12)
C260.0535 (18)0.051 (2)0.0485 (16)0.0083 (15)0.0212 (15)0.0012 (14)
C270.061 (2)0.045 (2)0.077 (2)0.0090 (16)0.0341 (19)0.0015 (17)
C280.081 (3)0.057 (2)0.074 (2)0.000 (2)0.048 (2)0.0170 (19)
C290.094 (3)0.080 (3)0.0492 (19)0.016 (2)0.033 (2)0.0071 (19)
C300.067 (2)0.057 (2)0.0456 (16)0.0149 (17)0.0230 (16)0.0016 (15)
P10.0373 (5)0.0340 (6)0.0344 (5)0.0000.0154 (4)0.000
P20.0363 (5)0.0360 (6)0.0371 (5)0.0000.0171 (4)0.000
S10.1541 (12)0.1358 (12)0.0627 (6)0.0918 (10)0.0506 (7)0.0565 (7)
S20.0747 (6)0.0461 (5)0.0492 (4)0.0232 (4)0.0275 (4)0.0160 (4)
S30.0767 (6)0.0712 (7)0.0354 (4)0.0186 (5)0.0210 (4)0.0086 (4)
S40.0572 (4)0.0295 (4)0.0365 (3)0.0088 (3)0.0163 (3)0.0014 (3)
S50.0601 (5)0.0366 (4)0.0393 (3)0.0054 (3)0.0212 (3)0.0013 (3)
S60.0680 (5)0.0368 (4)0.0391 (3)0.0103 (4)0.0211 (3)0.0006 (3)
S70.0591 (4)0.0314 (4)0.0410 (4)0.0104 (3)0.0163 (3)0.0003 (3)
S80.0957 (7)0.0706 (7)0.0383 (4)0.0295 (6)0.0215 (4)0.0105 (4)
S90.0852 (6)0.0460 (5)0.0523 (4)0.0276 (5)0.0239 (4)0.0124 (4)
S100.2187 (18)0.1316 (13)0.0624 (7)0.1149 (13)0.0389 (9)0.0432 (8)
O10.155 (5)0.187 (6)0.270 (8)0.030 (4)0.053 (5)0.076 (5)
C310.50 (2)0.166 (10)0.273 (14)0.123 (13)0.014 (14)0.009 (10)
C320.223 (9)0.174 (7)0.122 (5)0.117 (7)0.111 (6)0.070 (5)
C330.268 (11)0.463 (19)0.148 (7)0.239 (13)0.145 (8)0.135 (10)
Geometric parameters (Å, º) top
Au1—S72.3057 (8)C17—C181.371 (4)
Au1—S42.3166 (7)C17—H170.9300
Au1—S52.3191 (7)C18—H180.9300
Au1—S62.3233 (7)C19—C201.379 (4)
C1—S11.645 (3)C19—C241.392 (4)
C1—S21.723 (4)C19—P21.792 (3)
C1—S31.730 (4)C20—C211.381 (5)
C2—C31.345 (4)C20—H200.9300
C2—S41.742 (3)C21—C221.366 (5)
C2—S21.747 (3)C21—H210.9300
C3—S51.739 (3)C22—C231.366 (5)
C3—S31.743 (3)C22—H220.9300
C4—C51.340 (4)C23—C241.376 (4)
C4—S81.745 (3)C23—H230.9300
C4—S61.746 (3)C24—H240.9300
C5—S91.736 (3)C25—C301.376 (4)
C5—S71.744 (3)C25—C261.386 (4)
C6—S101.639 (4)C25—P21.796 (3)
C6—S91.725 (4)C26—C271.372 (4)
C6—S81.729 (4)C26—H260.9300
C7—C121.384 (4)C27—C281.368 (5)
C7—C81.393 (4)C27—H270.9300
C7—P11.795 (3)C28—C291.372 (5)
C8—C91.374 (4)C28—H280.9300
C8—H80.9300C29—C301.389 (5)
C9—C101.375 (5)C29—H290.9300
C9—H90.9300C30—H300.9300
C10—C111.370 (5)P1—C7i1.795 (3)
C10—H100.9300P1—C13i1.797 (3)
C11—C121.388 (4)P2—C19ii1.792 (3)
C11—H110.9300P2—C25ii1.796 (3)
C12—H120.9300O1—C321.162 (8)
C13—C141.385 (4)C31—C321.483 (8)
C13—C181.396 (4)C31—H31A0.9600
C13—P11.797 (3)C31—H31B0.9600
C14—C151.389 (4)C31—H31C0.9600
C14—H140.9300C32—C331.460 (8)
C15—C161.364 (5)C33—H33A0.9600
C15—H150.9300C33—H33B0.9600
C16—C171.376 (5)C33—H33C0.9600
C16—H160.9300
S7—Au1—S4177.20 (3)C22—C21—C20120.3 (3)
S7—Au1—S587.20 (3)C22—C21—H21119.8
S4—Au1—S591.76 (3)C20—C21—H21119.8
S7—Au1—S691.48 (3)C21—C22—C23120.6 (3)
S4—Au1—S689.68 (3)C21—C22—H22119.7
S5—Au1—S6176.97 (3)C23—C22—H22119.7
S1—C1—S2123.3 (2)C22—C23—C24119.9 (3)
S1—C1—S3123.8 (2)C22—C23—H23120.1
S2—C1—S3112.88 (18)C24—C23—H23120.1
C3—C2—S4124.6 (2)C23—C24—C19120.0 (3)
C3—C2—S2116.1 (2)C23—C24—H24120.0
S4—C2—S2119.30 (16)C19—C24—H24120.0
C2—C3—S5124.9 (2)C30—C25—C26119.3 (3)
C2—C3—S3116.0 (2)C30—C25—P2121.8 (2)
S5—C3—S3119.13 (17)C26—C25—P2118.9 (2)
C5—C4—S8115.5 (2)C27—C26—C25120.2 (3)
C5—C4—S6124.9 (2)C27—C26—H26119.9
S8—C4—S6119.53 (18)C25—C26—H26119.9
C4—C5—S9117.1 (2)C28—C27—C26120.5 (3)
C4—C5—S7124.0 (2)C28—C27—H27119.8
S9—C5—S7118.88 (17)C26—C27—H27119.8
S10—C6—S9122.9 (2)C27—C28—C29119.9 (3)
S10—C6—S8124.0 (2)C27—C28—H28120.0
S9—C6—S8113.16 (19)C29—C28—H28120.0
C12—C7—C8119.5 (3)C28—C29—C30120.0 (3)
C12—C7—P1122.7 (2)C28—C29—H29120.0
C8—C7—P1117.6 (2)C30—C29—H29120.0
C9—C8—C7120.1 (3)C25—C30—C29120.0 (3)
C9—C8—H8119.9C25—C30—H30120.0
C7—C8—H8119.9C29—C30—H30120.0
C8—C9—C10120.2 (3)C7—P1—C7i105.24 (18)
C8—C9—H9119.9C7—P1—C13111.92 (12)
C10—C9—H9119.9C7i—P1—C13110.91 (12)
C11—C10—C9120.1 (3)C7—P1—C13i110.91 (12)
C11—C10—H10119.9C7i—P1—C13i111.92 (12)
C9—C10—H10119.9C13—P1—C13i106.06 (18)
C10—C11—C12120.5 (3)C19—P2—C19ii105.36 (19)
C10—C11—H11119.7C19—P2—C25110.98 (13)
C12—C11—H11119.7C19ii—P2—C25111.10 (12)
C7—C12—C11119.5 (3)C19—P2—C25ii111.10 (12)
C7—C12—H12120.3C19ii—P2—C25ii110.98 (13)
C11—C12—H12120.3C25—P2—C25ii107.36 (19)
C14—C13—C18119.6 (3)C1—S2—C297.48 (15)
C14—C13—P1122.1 (2)C1—S3—C397.53 (15)
C18—C13—P1118.1 (2)C2—S4—Au199.44 (10)
C13—C14—C15119.1 (3)C3—S5—Au199.35 (9)
C13—C14—H14120.5C4—S6—Au199.27 (10)
C15—C14—H14120.5C5—S7—Au1100.09 (10)
C16—C15—C14120.9 (3)C6—S8—C497.25 (16)
C16—C15—H15119.6C6—S9—C596.93 (16)
C14—C15—H15119.6C32—C31—H31A109.5
C15—C16—C17120.2 (3)C32—C31—H31B109.5
C15—C16—H16119.9H31A—C31—H31B109.5
C17—C16—H16119.9C32—C31—H31C109.5
C18—C17—C16120.1 (3)H31A—C31—H31C109.5
C18—C17—H17119.9H31B—C31—H31C109.5
C16—C17—H17119.9O1—C32—C33130.7 (9)
C17—C18—C13120.1 (3)O1—C32—C31116.1 (10)
C17—C18—H18119.9C33—C32—C31113.1 (9)
C13—C18—H18119.9C32—C33—H33A109.5
C20—C19—C24119.5 (3)C32—C33—H33B109.5
C20—C19—P2121.6 (2)H33A—C33—H33B109.5
C24—C19—P2118.7 (2)C32—C33—H33C109.5
C19—C20—C21119.7 (3)H33A—C33—H33C109.5
C19—C20—H20120.2H33B—C33—H33C109.5
C21—C20—H20120.2
S4—C2—C3—S50.2 (4)C14—C13—P1—C7i2.3 (3)
S2—C2—C3—S5178.12 (17)C18—C13—P1—C7i172.9 (2)
S4—C2—C3—S3178.02 (16)C14—C13—P1—C13i124.0 (3)
S2—C2—C3—S30.3 (3)C18—C13—P1—C13i51.2 (2)
S8—C4—C5—S90.1 (4)C20—C19—P2—C19ii124.0 (3)
S6—C4—C5—S9179.40 (18)C24—C19—P2—C19ii51.8 (2)
S8—C4—C5—S7179.68 (17)C20—C19—P2—C253.7 (3)
S6—C4—C5—S71.0 (4)C24—C19—P2—C25172.2 (2)
C12—C7—C8—C90.8 (5)C20—C19—P2—C25ii115.7 (3)
P1—C7—C8—C9177.3 (3)C24—C19—P2—C25ii68.5 (3)
C7—C8—C9—C100.4 (5)C30—C25—P2—C19112.1 (3)
C8—C9—C10—C110.4 (5)C26—C25—P2—C1970.0 (3)
C9—C10—C11—C120.7 (5)C30—C25—P2—C19ii4.8 (3)
C8—C7—C12—C110.5 (4)C26—C25—P2—C19ii173.1 (2)
P1—C7—C12—C11176.8 (2)C30—C25—P2—C25ii126.3 (3)
C10—C11—C12—C70.2 (5)C26—C25—P2—C25ii51.6 (2)
C18—C13—C14—C150.4 (5)S1—C1—S2—C2178.1 (3)
P1—C13—C14—C15175.5 (3)S3—C1—S2—C22.0 (3)
C13—C14—C15—C160.8 (5)C3—C2—S2—C11.4 (3)
C14—C15—C16—C171.2 (5)S4—C2—S2—C1177.0 (2)
C15—C16—C17—C180.4 (5)S1—C1—S3—C3178.2 (3)
C16—C17—C18—C130.8 (5)S2—C1—S3—C31.9 (3)
C14—C13—C18—C171.2 (4)C2—C3—S3—C11.0 (3)
P1—C13—C18—C17176.5 (2)S5—C3—S3—C1177.0 (2)
C24—C19—C20—C210.0 (5)C3—C2—S4—Au10.6 (3)
P2—C19—C20—C21175.8 (3)S2—C2—S4—Au1177.61 (15)
C19—C20—C21—C220.3 (6)S5—Au1—S4—C20.63 (10)
C20—C21—C22—C230.2 (7)S6—Au1—S4—C2177.97 (10)
C21—C22—C23—C240.9 (6)C2—C3—S5—Au10.4 (3)
C22—C23—C24—C191.1 (5)S3—C3—S5—Au1177.39 (15)
C20—C19—C24—C230.7 (5)S7—Au1—S5—C3176.82 (10)
P2—C19—C24—C23176.6 (3)S4—Au1—S5—C30.58 (10)
C30—C25—C26—C271.0 (5)C5—C4—S6—Au12.3 (3)
P2—C25—C26—C27179.0 (3)S8—C4—S6—Au1176.91 (16)
C25—C26—C27—C280.4 (5)S7—Au1—S6—C43.42 (11)
C26—C27—C28—C290.4 (6)S4—Au1—S6—C4179.13 (11)
C27—C28—C29—C300.7 (6)C4—C5—S7—Au13.8 (3)
C26—C25—C30—C290.7 (5)S9—C5—S7—Au1176.69 (15)
P2—C25—C30—C29178.6 (3)S5—Au1—S7—C5173.48 (11)
C28—C29—C30—C250.2 (6)S6—Au1—S7—C53.80 (11)
C12—C7—P1—C7i123.6 (3)S10—C6—S8—C4179.1 (3)
C8—C7—P1—C7i52.7 (2)S9—C6—S8—C41.5 (3)
C12—C7—P1—C133.1 (3)C5—C4—S8—C60.8 (3)
C8—C7—P1—C13173.3 (2)S6—C4—S8—C6178.5 (2)
C12—C7—P1—C13i115.2 (2)S10—C6—S9—C5179.1 (3)
C8—C7—P1—C13i68.5 (3)S8—C6—S9—C51.5 (3)
C14—C13—P1—C7115.0 (3)C4—C5—S9—C61.0 (3)
C18—C13—P1—C769.9 (3)S7—C5—S9—C6179.4 (2)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+2, y, z+3/2.
(II) ethyltriphenylphosphonium bis(2-thioxo-1,3-dithiole-4,5-dithiolato)aurate(III) top
Crystal data top
(C20H20P)[Au(C3S5)2]F(000) = 1720
Mr = 880.96Dx = 1.840 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7323 reflections
a = 17.3058 (2) Åθ = 2.2–25.1°
b = 9.9306 (1) ŵ = 5.35 mm1
c = 19.0668 (2) ÅT = 296 K
β = 103.959 (1)°Prism, brown
V = 3179.99 (6) Å30.24 × 0.17 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7292 independent reflections
Radiation source: fine-focus sealed tube5381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.5°, θmin = 1.4°
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
h = 2222
Tmin = 0.361, Tmax = 0.536k = 1212
22548 measured reflectionsl = 2420
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0231P)2 + 0.4583P]
where P = (Fo2 + 2Fc2)/3
7292 reflections(Δ/σ)max = 0.004
344 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
(C20H20P)[Au(C3S5)2]V = 3179.99 (6) Å3
Mr = 880.96Z = 4
Monoclinic, P21/nMo Kα radiation
a = 17.3058 (2) ŵ = 5.35 mm1
b = 9.9306 (1) ÅT = 296 K
c = 19.0668 (2) Å0.24 × 0.17 × 0.13 mm
β = 103.959 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7292 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
5381 reflections with I > 2σ(I)
Tmin = 0.361, Tmax = 0.536Rint = 0.027
22548 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.01Δρmax = 0.80 e Å3
7292 reflectionsΔρmin = 0.27 e Å3
344 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.516859 (7)0.169589 (14)0.569909 (7)0.05201 (5)
C10.23676 (19)0.3873 (4)0.61700 (18)0.0583 (9)
C20.35561 (18)0.2309 (4)0.60940 (18)0.0547 (8)
C30.36701 (18)0.3427 (3)0.57426 (18)0.0515 (8)
C40.66656 (18)0.0074 (4)0.57120 (18)0.0569 (8)
C50.68057 (18)0.1036 (4)0.53625 (17)0.0541 (8)
C60.80389 (19)0.0540 (4)0.54034 (18)0.0613 (9)
C70.4048 (2)0.5503 (4)0.8277 (2)0.0688 (10)
H70.39370.63750.84010.083*
C80.3622 (3)0.4440 (5)0.8459 (2)0.0871 (13)
H80.32210.45990.86970.104*
C90.3786 (3)0.3175 (5)0.8290 (3)0.0901 (14)
H90.35020.24610.84210.108*
C100.4361 (3)0.2923 (4)0.7932 (3)0.0865 (13)
H100.44660.20410.78190.104*
C110.4796 (2)0.3982 (4)0.7733 (2)0.0733 (11)
H110.51850.38130.74830.088*
C120.46378 (18)0.5292 (3)0.79147 (17)0.0516 (8)
C130.6044 (2)0.5624 (5)0.6776 (2)0.0933 (15)
H130.55690.53770.64570.112*
C140.6763 (3)0.5319 (5)0.6614 (3)0.1048 (16)
H140.67670.48530.61920.126*
C150.7455 (3)0.5691 (5)0.7062 (3)0.0973 (16)
H150.79340.54660.69530.117*
C160.7458 (2)0.6404 (5)0.7686 (2)0.0889 (14)
H160.79370.66870.79860.107*
C170.6746 (2)0.6695 (4)0.7859 (2)0.0690 (11)
H170.67450.71630.82810.083*
C180.60295 (19)0.6286 (4)0.74024 (19)0.0594 (9)
C190.54222 (19)0.9288 (4)0.8148 (2)0.0635 (10)
H190.53400.95460.76670.076*
C200.5651 (2)1.0231 (4)0.8687 (3)0.0740 (11)
H200.57311.11210.85710.089*
C210.5759 (2)0.9858 (5)0.9391 (3)0.0785 (12)
H210.59101.05000.97530.094*
C220.5650 (2)0.8558 (5)0.9574 (2)0.0789 (12)
H220.57210.83171.00570.095*
C230.5431 (2)0.7593 (4)0.9034 (2)0.0638 (9)
H230.53650.67010.91550.077*
C240.53134 (17)0.7957 (3)0.83187 (18)0.0516 (8)
C250.44500 (18)0.7354 (4)0.68109 (17)0.0571 (9)
H25A0.46910.81480.66570.068*
H25B0.44040.66820.64340.068*
C260.36185 (19)0.7719 (4)0.6877 (2)0.0678 (10)
H26A0.33570.69270.69940.102*
H26B0.33190.80820.64260.102*
H26C0.36530.83780.72510.102*
P10.51085 (5)0.67177 (9)0.76198 (5)0.0494 (2)
S10.15650 (6)0.45163 (12)0.63482 (6)0.0814 (3)
S20.27188 (5)0.22832 (10)0.64467 (5)0.0638 (2)
S30.29482 (5)0.46755 (10)0.56763 (5)0.0659 (3)
S40.41871 (5)0.09184 (10)0.62318 (6)0.0659 (3)
S50.44766 (5)0.36954 (10)0.53575 (6)0.0660 (3)
S60.58309 (5)0.03155 (10)0.60555 (5)0.0669 (3)
S70.61831 (5)0.24389 (10)0.51903 (5)0.0610 (2)
S80.73882 (6)0.13432 (11)0.58270 (6)0.0723 (3)
S90.76890 (5)0.10384 (11)0.50763 (5)0.0627 (2)
S100.88848 (6)0.11736 (13)0.53239 (7)0.0858 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.05089 (8)0.05820 (10)0.04816 (8)0.00804 (6)0.01430 (5)0.00256 (7)
C10.0574 (19)0.063 (2)0.053 (2)0.0057 (17)0.0110 (16)0.0054 (19)
C20.0487 (18)0.060 (2)0.056 (2)0.0077 (16)0.0138 (15)0.0003 (19)
C30.0514 (18)0.051 (2)0.053 (2)0.0054 (15)0.0137 (15)0.0002 (17)
C40.0537 (18)0.061 (2)0.053 (2)0.0022 (17)0.0086 (15)0.001 (2)
C50.0512 (18)0.067 (2)0.0437 (19)0.0043 (16)0.0114 (15)0.0050 (18)
C60.061 (2)0.070 (2)0.050 (2)0.0018 (17)0.0081 (16)0.0041 (19)
C70.086 (3)0.051 (2)0.078 (3)0.0000 (19)0.035 (2)0.006 (2)
C80.107 (3)0.069 (3)0.095 (3)0.014 (3)0.045 (3)0.004 (3)
C90.108 (4)0.067 (3)0.091 (3)0.013 (3)0.016 (3)0.011 (3)
C100.100 (3)0.045 (2)0.101 (4)0.003 (2)0.002 (3)0.002 (2)
C110.069 (2)0.071 (3)0.075 (3)0.011 (2)0.007 (2)0.013 (2)
C120.0575 (19)0.048 (2)0.0463 (19)0.0056 (15)0.0058 (15)0.0018 (17)
C130.069 (2)0.134 (4)0.078 (3)0.005 (3)0.021 (2)0.042 (3)
C140.096 (3)0.132 (5)0.097 (4)0.008 (3)0.044 (3)0.043 (3)
C150.078 (3)0.124 (4)0.100 (4)0.035 (3)0.043 (3)0.013 (3)
C160.057 (2)0.132 (4)0.077 (3)0.019 (2)0.015 (2)0.021 (3)
C170.057 (2)0.103 (3)0.048 (2)0.018 (2)0.0134 (16)0.009 (2)
C180.0536 (19)0.069 (2)0.057 (2)0.0065 (17)0.0162 (17)0.001 (2)
C190.059 (2)0.065 (3)0.065 (2)0.0011 (18)0.0129 (18)0.000 (2)
C200.071 (2)0.055 (2)0.095 (3)0.0036 (19)0.016 (2)0.008 (3)
C210.070 (2)0.078 (3)0.081 (3)0.007 (2)0.006 (2)0.030 (3)
C220.084 (3)0.091 (4)0.056 (2)0.014 (2)0.005 (2)0.012 (3)
C230.073 (2)0.059 (2)0.055 (2)0.0109 (18)0.0069 (18)0.003 (2)
C240.0419 (16)0.059 (2)0.052 (2)0.0050 (15)0.0088 (14)0.0045 (18)
C250.059 (2)0.066 (2)0.045 (2)0.0056 (17)0.0094 (15)0.0055 (19)
C260.056 (2)0.084 (3)0.060 (2)0.0087 (19)0.0068 (17)0.008 (2)
P10.0472 (4)0.0557 (5)0.0454 (5)0.0040 (4)0.0110 (4)0.0013 (4)
S10.0747 (6)0.0850 (8)0.0931 (8)0.0171 (5)0.0372 (6)0.0155 (7)
S20.0552 (5)0.0650 (6)0.0764 (6)0.0000 (4)0.0261 (4)0.0161 (5)
S30.0661 (5)0.0566 (6)0.0793 (7)0.0004 (4)0.0258 (5)0.0131 (5)
S40.0664 (5)0.0563 (6)0.0832 (7)0.0015 (5)0.0341 (5)0.0131 (5)
S50.0624 (5)0.0642 (6)0.0783 (7)0.0047 (4)0.0305 (5)0.0157 (5)
S60.0604 (5)0.0659 (6)0.0786 (7)0.0058 (4)0.0248 (5)0.0112 (5)
S70.0589 (5)0.0636 (6)0.0659 (6)0.0007 (4)0.0256 (4)0.0095 (5)
S80.0710 (6)0.0658 (6)0.0814 (7)0.0044 (5)0.0207 (5)0.0068 (6)
S90.0552 (5)0.0774 (7)0.0583 (6)0.0029 (5)0.0189 (4)0.0060 (5)
S100.0679 (6)0.0973 (8)0.0922 (8)0.0212 (6)0.0193 (6)0.0041 (7)
Geometric parameters (Å, º) top
Au1—S42.3119 (8)C13—C181.369 (5)
Au1—S62.3215 (10)C13—C141.386 (5)
Au1—S72.3215 (8)C13—H130.9300
Au1—S52.3291 (10)C14—C151.343 (6)
C1—S11.637 (3)C14—H140.9300
C1—S31.728 (3)C15—C161.383 (6)
C1—S21.728 (4)C15—H150.9300
C2—C31.336 (5)C16—C171.380 (5)
C2—S21.739 (3)C16—H160.9300
C2—S41.740 (4)C17—C181.393 (5)
C3—S31.743 (3)C17—H170.9300
C3—S51.747 (3)C18—P11.793 (3)
C4—C51.340 (5)C19—C201.376 (5)
C4—S61.741 (3)C19—C241.385 (5)
C4—S81.751 (3)C19—H190.9300
C5—S91.743 (3)C20—C211.362 (6)
C5—S71.743 (4)C20—H200.9300
C6—S101.634 (3)C21—C221.362 (6)
C6—S81.731 (4)C21—H210.9300
C6—S91.741 (4)C22—C231.391 (5)
C7—C81.379 (5)C22—H220.9300
C7—C121.379 (4)C23—C241.377 (5)
C7—H70.9300C23—H230.9300
C8—C91.344 (6)C24—P11.785 (3)
C8—H80.9300C25—C261.518 (4)
C9—C101.359 (6)C25—P11.797 (3)
C9—H90.9300C25—H25A0.9700
C10—C111.398 (6)C25—H25B0.9700
C10—H100.9300C26—H26A0.9600
C11—C121.390 (5)C26—H26B0.9600
C11—H110.9300C26—H26C0.9600
C12—P11.791 (3)
S4—Au1—S686.97 (3)C17—C16—H16120.2
S4—Au1—S7178.22 (3)C15—C16—H16120.2
S6—Au1—S791.49 (3)C16—C17—C18120.0 (4)
S4—Au1—S591.43 (3)C16—C17—H17120.0
S6—Au1—S5178.40 (3)C18—C17—H17120.0
S7—Au1—S590.11 (3)C13—C18—C17119.0 (3)
S1—C1—S3124.6 (2)C13—C18—P1121.4 (3)
S1—C1—S2123.1 (2)C17—C18—P1119.5 (3)
S3—C1—S2112.30 (19)C20—C19—C24120.3 (4)
C3—C2—S2116.3 (3)C20—C19—H19119.8
C3—C2—S4124.9 (2)C24—C19—H19119.8
S2—C2—S4118.8 (2)C21—C20—C19119.9 (4)
C2—C3—S3116.0 (2)C21—C20—H20120.1
C2—C3—S5124.5 (3)C19—C20—H20120.1
S3—C3—S5119.51 (19)C22—C21—C20121.1 (4)
C5—C4—S6124.5 (3)C22—C21—H21119.5
C5—C4—S8116.4 (2)C20—C21—H21119.5
S6—C4—S8119.1 (2)C21—C22—C23119.5 (4)
C4—C5—S9115.8 (3)C21—C22—H22120.2
C4—C5—S7125.0 (2)C23—C22—H22120.2
S9—C5—S7119.3 (2)C24—C23—C22120.1 (4)
S10—C6—S8124.3 (2)C24—C23—H23119.9
S10—C6—S9123.8 (2)C22—C23—H23119.9
S8—C6—S9111.89 (19)C23—C24—C19119.1 (3)
C8—C7—C12121.0 (4)C23—C24—P1120.9 (3)
C8—C7—H7119.5C19—C24—P1119.8 (3)
C12—C7—H7119.5C26—C25—P1115.5 (2)
C9—C8—C7119.9 (4)C26—C25—H25A108.4
C9—C8—H8120.0P1—C25—H25A108.4
C7—C8—H8120.0C26—C25—H25B108.4
C8—C9—C10121.0 (4)P1—C25—H25B108.4
C8—C9—H9119.5H25A—C25—H25B107.5
C10—C9—H9119.5C25—C26—H26A109.5
C9—C10—C11120.3 (4)C25—C26—H26B109.5
C9—C10—H10119.8H26A—C26—H26B109.5
C11—C10—H10119.8C25—C26—H26C109.5
C12—C11—C10119.0 (4)H26A—C26—H26C109.5
C12—C11—H11120.5H26B—C26—H26C109.5
C10—C11—H11120.5C24—P1—C12109.53 (16)
C7—C12—C11118.7 (3)C24—P1—C18108.04 (16)
C7—C12—P1119.0 (3)C12—P1—C18112.37 (16)
C11—C12—P1122.0 (3)C24—P1—C25111.65 (17)
C18—C13—C14120.4 (4)C12—P1—C25107.78 (15)
C18—C13—H13119.8C18—P1—C25107.51 (16)
C14—C13—H13119.8C1—S2—C297.65 (17)
C15—C14—C13120.5 (4)C1—S3—C397.67 (17)
C15—C14—H14119.7C2—S4—Au199.75 (11)
C13—C14—H14119.7C3—S5—Au199.30 (12)
C14—C15—C16120.4 (4)C4—S6—Au199.63 (13)
C14—C15—H15119.8C5—S7—Au199.36 (11)
C16—C15—H15119.8C6—S8—C497.78 (17)
C17—C16—C15119.6 (4)C6—S9—C598.17 (17)
S2—C2—C3—S31.3 (4)C11—C12—P1—C2595.4 (3)
S4—C2—C3—S3179.9 (2)C13—C18—P1—C24163.6 (4)
S2—C2—C3—S5178.82 (19)C17—C18—P1—C2412.8 (4)
S4—C2—C3—S50.0 (5)C13—C18—P1—C1275.4 (4)
S6—C4—C5—S9179.55 (19)C17—C18—P1—C12108.1 (3)
S8—C4—C5—S90.0 (4)C13—C18—P1—C2543.0 (4)
S6—C4—C5—S70.2 (5)C17—C18—P1—C25133.4 (3)
S8—C4—C5—S7179.30 (19)C26—C25—P1—C2464.3 (3)
C12—C7—C8—C90.9 (7)C26—C25—P1—C1256.0 (3)
C7—C8—C9—C101.0 (8)C26—C25—P1—C18177.3 (3)
C8—C9—C10—C110.1 (7)S1—C1—S2—C2179.0 (2)
C9—C10—C11—C120.8 (6)S3—C1—S2—C22.1 (2)
C8—C7—C12—C110.1 (6)C3—C2—S2—C10.5 (3)
C8—C7—C12—P1174.3 (3)S4—C2—S2—C1178.4 (2)
C10—C11—C12—C70.9 (5)S1—C1—S3—C3178.4 (2)
C10—C11—C12—P1174.9 (3)S2—C1—S3—C32.7 (2)
C18—C13—C14—C151.3 (8)C2—C3—S3—C12.4 (3)
C13—C14—C15—C161.1 (9)S5—C3—S3—C1177.7 (2)
C14—C15—C16—C172.2 (8)C3—C2—S4—Au12.2 (3)
C15—C16—C17—C180.9 (6)S2—C2—S4—Au1176.63 (17)
C14—C13—C18—C172.5 (7)S6—Au1—S4—C2177.37 (12)
C14—C13—C18—P1179.0 (4)S5—Au1—S4—C22.56 (12)
C16—C17—C18—C131.4 (6)C2—C3—S5—Au12.1 (3)
C16—C17—C18—P1178.0 (3)S3—C3—S5—Au1177.98 (17)
C24—C19—C20—C211.0 (5)S4—Au1—S5—C32.54 (12)
C19—C20—C21—C220.4 (6)S7—Au1—S5—C3176.55 (12)
C20—C21—C22—C230.6 (6)C5—C4—S6—Au11.0 (3)
C21—C22—C23—C241.1 (6)S8—C4—S6—Au1179.47 (17)
C22—C23—C24—C190.6 (5)S4—Au1—S6—C4179.56 (12)
C22—C23—C24—P1175.1 (3)S7—Au1—S6—C41.35 (12)
C20—C19—C24—C230.5 (5)C4—C5—S7—Au11.3 (3)
C20—C19—C24—P1174.1 (3)S9—C5—S7—Au1179.37 (17)
C23—C24—P1—C1227.1 (3)S6—Au1—S7—C51.41 (12)
C19—C24—P1—C12158.4 (2)S5—Au1—S7—C5178.68 (12)
C23—C24—P1—C1895.6 (3)S10—C6—S8—C4179.0 (2)
C19—C24—P1—C1878.9 (3)S9—C6—S8—C40.6 (2)
C23—C24—P1—C25146.4 (3)C5—C4—S8—C60.3 (3)
C19—C24—P1—C2539.1 (3)S6—C4—S8—C6179.2 (2)
C7—C12—P1—C2443.0 (3)S10—C6—S9—C5178.9 (2)
C11—C12—P1—C24143.0 (3)S8—C6—S9—C50.6 (2)
C7—C12—P1—C18163.1 (3)C4—C5—S9—C60.4 (3)
C11—C12—P1—C1822.9 (3)S7—C5—S9—C6179.0 (2)
C7—C12—P1—C2578.7 (3)

Experimental details

(I)(II)
Crystal data
Chemical formula(C24H20P)[Au(C3S5)2]·C3H6O(C20H20P)[Au(C3S5)2]
Mr987.07880.96
Crystal system, space groupMonoclinic, P2/cMonoclinic, P21/n
Temperature (K)296296
a, b, c (Å)24.4198 (7), 7.4511 (2), 23.1654 (6)17.3058 (2), 9.9306 (1), 19.0668 (2)
β (°) 115.772 (1) 103.959 (1)
V3)3795.78 (18)3179.99 (6)
Z44
Radiation typeMo KαMo Kα
µ (mm1)4.505.35
Crystal size (mm)0.24 × 0.23 × 0.150.24 × 0.17 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2005)
Multi-scan
(APEX2; Bruker, 2005)
Tmin, Tmax0.379, 0.5080.361, 0.536
No. of measured, independent and
observed [I > 2σ(I)] reflections
33785, 8724, 7545 22548, 7292, 5381
Rint0.0240.027
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.054, 1.03 0.027, 0.057, 1.01
No. of reflections87247292
No. of parameters419344
No. of restraints140
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.440.80, 0.27

Computer programs: APEX2 (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
Au1—S72.3057 (8)C3—S51.739 (3)
Au1—S42.3166 (7)C3—S31.743 (3)
Au1—S52.3191 (7)C4—C51.340 (4)
Au1—S62.3233 (7)C4—S81.745 (3)
C1—S11.645 (3)C4—S61.746 (3)
C1—S21.723 (4)C5—S91.736 (3)
C1—S31.730 (4)C5—S71.744 (3)
C2—C31.345 (4)C6—S101.639 (4)
C2—S41.742 (3)C6—S91.725 (4)
C2—S21.747 (3)C6—S81.729 (4)
S7—Au1—S4177.20 (3)S7—Au1—S691.48 (3)
S7—Au1—S587.20 (3)S4—Au1—S689.68 (3)
S4—Au1—S591.76 (3)S5—Au1—S6176.97 (3)
Selected geometric parameters (Å, º) for (II) top
Au1—S42.3119 (8)C3—S31.743 (3)
Au1—S62.3215 (10)C3—S51.747 (3)
Au1—S72.3215 (8)C4—C51.340 (5)
Au1—S52.3291 (10)C4—S61.741 (3)
C1—S11.637 (3)C4—S81.751 (3)
C1—S31.728 (3)C5—S91.743 (3)
C1—S21.728 (4)C5—S71.743 (4)
C2—C31.336 (5)C6—S101.634 (3)
C2—S21.739 (3)C6—S81.731 (4)
C2—S41.740 (4)C6—S91.741 (4)
S4—Au1—S686.97 (3)S4—Au1—S591.43 (3)
S4—Au1—S7178.22 (3)S6—Au1—S5178.40 (3)
S6—Au1—S791.49 (3)S7—Au1—S590.11 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds