Download citation
Download citation
link to html
The title compound, C19H16N6, crystallizes with Z' = 2 in the space group P21/n. The two mol­ecules in the selected asym­metric unit are approximate mirror images of one another; most corresponding pairs of atoms are related by an approximate half-cell translation along [100]. Each mol­ecule contains an intra­molecular N-H...N hydrogen bond and the mol­ecules are linked into complex sheets by a combination of two inter­molecular N-H...N and four C-H...[pi](arene) hydrogen bonds. Comparisons are made with some other 7-amino­pyrazolo[1,5-a]pyrimidines.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110003549/sk3361sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110003549/sk3361Isup2.hkl
Contains datablock I

CCDC reference: 774088

Comment top

Fused pyrazole derivatives are of potential value in a wide range of drug, pesticide and new materials applications (Elguero, 1984, 1996) and, associated with a synthetic study of these systems, we report here the structure of the title compound, (I) (Fig. 1). This compound was prepared rapidly and in high yield by means of a cyclization reaction between 5-amino-3-phenyl-1H-pyrazole and 3-amino-2-phenyldiazenyl-2-butenenitrile (3-amino-3-methyl-2-phenyldiazenylacrylonitrile), mediated by microwave radiation under solvent-free (green) conditions (see Scheme). Compound (I) shows unexpected crystallization behaviour and an interesting supramolecular structure.

Compound (I) crystallizes with Z' = 2 in the space group P21/n; it is convenient to describe the independent molecules containing atoms N11 (Fig. 1a) and N21 (Fig. 1b) as molecules of types 1 and 2, respectively. The presence of two independent molecules necessarily introduces some flexibility into the choice of the asymmetric unit, but for (I) it is possible to specify a compact asymmetric unit in which the two independent molecules are linked by two C—H···π(arene) hydrogen bonds (Table 2, Fig. 2). With the exception of the ortho- and meta-positions of the terminal phenyl rings, the coordinates of corresponding pairs of atoms in the two molecules in the selected asymmetric unit are approximately related by the transformation (1/2 + x, y, z). In each of the two molecules, the skeletons between atoms Cn21 and Cn61, where n = 1 or 2 (Fig. 1), are close to planarity, as indicated by the relevant torsion angles (Table 1). However, while the torsion angles describing the orientations of the phenyl rings have similar magnitudes in the two independent molecules, the corresponding pairs of values have opposite signs, indicating that the two molecules in the selected asymmetric unit are approximate, but not exact, mirror images of one another. The combination of the approximate translational relationship between these molecules and their approximate conformational enantiomerism precludes the possibility of any additional symmetry. The differences in the hydrogen-bonding behaviour of the two molecules, discussed below, further confirms the absence of any additional crystallographic symmetry.

The bond distances within the pyrazolo[1,5-a]pyrimidine unit of compound (I) are very similar in the two independent molecules (Table 1), and they are consistent with a more marked degree of bond fixation with alternating single and double bonds between atoms Nn1 and Nn7 (n = 1 or 2) (see Scheme). This geometry may be contrasted with that found in the simpler analogues, (II) (Portilla, Quiroga, Cobo et al., 2006), (III) and (IV) (Portilla, Quiroga, de la Torre et al., 2006), and (V) (Portilla et al., 2007), which exhibit naphthalene-type delocalization. In addition, the exocyclic C—N bonds Cn7—Nn7 (n = 1 or 2) are very much shorter in compound (I) than in the analogues (II) to (V), where the corresponding distances range from 1.330 (2) Å for one of the molecules in (III) to 1.3705 (19) Å in (V). The short exocyclic C—N distances in (I) may be associated both with the more strongly localized electronic structure of the pyrazolo[1,5-a]pyrimidine unit in (I), and with possible delocalization into the phenyldiazenyl substituent: the distances Nn61—Nn62 (n = 1 or 2) are long for their type [mean value (Allen et al., 1987) 1.222 Å, upper quartile value 1.227 Å], while the bonds Cn6—Nn61 are much shorter than the bonds Nn62—Cn61, suggesting some contribution to the overall electronic structure of (I) from the polarized form (Ia). On this basis, the short intramolecular N—H···N hydrogen bonds (Table 2) can be regarded as charge-assisted hydrogen bonds (Gilli et al., 1994).

The molecules of compound (I) are linked into complex sheets by a combination of two N—H···N hydrogen bonds and four C—H···π(arene) hydrogen bonds (Table 2). The formation of the sheet can readily be analysed in terms of two ladder-like substructures, each of them one-dimensional.

In one of the substructures [then] formation of the ladder-type structure depends upon the combination of the intermolecular N—H···N hydrogen bonds with the two C—H···π(arene) hydrogen bonds within the asymmetric unit. Type 1 molecules which are related by the n-glide plane at y = 0.25 are linked by an N—H···N hydrogen bond to form a C(6) (Bernstein et al., 1995) chain running parallel to the [101] direction, and an entirely similar chain is formed by the type 2 molecules. Within each pair of molecules, one each of types 1 and 2, at any given symmetry position, the molecules are linked by two C—H···π(arene) hydrogen bonds. Hence, the substructure parallel to [101] takes the form of a molecular ladder (Fig. 3), in which the uprights are formed by the C(6) chains of N—H···N hydrogen bonds and the treads are formed by the paired C—H···π(arene) hydrogen bonds.

The second substructure is built solely from the four C—H···π(arene) hydrogen bonds, with the type 2 molecule acting as a fourfold donor of hydrogen bonds and the type 1 molecule as a fourfold acceptor (Table 2). This difference in donor and acceptor behaviour between the two independent molecules, which is evident only for the C—H···π(arene) hydrogen bonds, not for the N—H···N hydrogen bonds, is a further indication of the absence of any additional crystallographic symmetry. Each of the aryl rings in the type 1 molecule acts as a double acceptor, with one donor atom bonding to each face of each ring, with H···Cg···H angles of 173 and 176° at the centroids of the rings (C121–C126) and (C161–C166), respectively. The type 2 molecule at (x, y, z) acts as hydrogen-bond donor, via C226 and C262, to the type 1 molecule at (x, y, z), and via C223 and C265 to the type 1 molecule at (-1 + x, y, z), so forming by translation a molecular ladder running parallel to the [100] direction (Fig. 4): here the uprights of the ladder are provided by the hydrogen bonds, and the treads are provided by the molecules themselves. The combination of the molecular ladders along [100] and [101] generates a sheet of considerable complexity, which lies parallel to (010).

It is of interest briefly to compare the hydrogen bonding, and hence the supramolecular aggregation, in compound (I) with that in the analogous 7-aminopyrazolo[1,5-a]pyrimidines (II)–(V) (see Scheme), none of which contains any phenyl groups. Whereas the intermolecular N—H···N hydrogen bonds in compound (I) generate two independent C(6) chains, in each of compounds (II)–(V), pairs of molecules are linked by pairs of N—H···N hydrogen bonds to form dimeric units containing R22(10) motifs. In compounds (II) (Portilla, Quiroga, Cobo et al., 2006), (IV) (Portilla, Quiroga, de la Torre et al., 2006) and (V) (Portilla et al., 2007) the dimers are formed from pairs of molecules related, respectively, by a twofold rotation in space group C2, by inversion in space group P21/c, and again by a twofold rotation, this time in space group P41212 (or P43212). In compound (III), which crystallizes with Z' = 2 in space group P1 (Portilla, Quiroga, de la Torre et al., 2006), the two molecules in the asymmetric unit are linked by two independent N—H···N hydrogen bonds to form an R22(10) dimer having no crystallographic symmetry. Further hydrogen bonds, of N—H···O and O—H···N types, link the molecular components in compounds (II) and (IV) into three-dimensional framework structures, while N—H···N hydrogen bonds alone suffice to form a three-dimensional framework in compound (V). In compound (III), four independent N—H···N hydrogen bonds link the molecules into a ribbon containing three types of hydrogen-bonded ring, one of R22(1) type and two of R44(14) type. Thus, no two compounds in this rather closely related series (I)–(V) exhibit similar crystallization characteristics, in terms of the combination of Z' value and space group, and no two adopt the same hydrogen-bonded supramolecular structure.

Related literature top

For related literature, see: Allen et al. (1987); Bernstein et al. (1995); Elguero (1984, 1996); Gilli et al. (1994); Portilla et al. (2007); Portilla, Quiroga, Cobo, Low & Glidewell (2006); Portilla, Quiroga, de la Torre, Cobo, Low & Glidewell (2006).

Experimental top

Equimolar quantities (1 mmol of each component) of 5-amino-3-phenyl-1H-pyrazole and 3-amino-2-phenyldiazenyl-2-butenenitrile were intimately mixed, and the mixture was placed in an open Pyrex glass flask, in the absence of solvent and irradiated in a domestic microwave oven for 5.0 min at 800 W. The resulting solid material was extracted with ethanol; after removal of the solvent, the product, (I), was recrystallized from dimethylformamide to give orange crystals suitable for single-crystal X-ray diffraction. Yield 85%, m.p. 501–502 K. NMR (DMSO-d6) δ(H) 2.75 (s, 3H, CH3), 6.90 (s, 1H, 3-H), 7.40 (t, 1H, 64-H), 7.43 (t, 1H, 24-H), 7.48 (t, 2H, 63-H), 7.52 (t, 2H, 23-H), 8.05 (d, 2H, 62-H), 8.07 (d, 2H, 22-H), 8.98, 10.25 (2 s, 2H, NH2); δ(C) 22.2 (CH3), 93.8 (C3), 117.8 (C6), 121.9 (C62), 126.9 (C22), 129.1 (C23), 129.5 (C24), 129.6 (C63), 129.7 (C64), 133.0 (C21) 140.0 (C7), 149.0 (C3a), 153.2 (C61), 157.2 (C2), 161.5 (C5). MS (70 eV) m/z (%) = 328 (100, M+), 313 (23), 77 (19).

Refinement top

All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions, with C—H distances 0.95 Å (aromatic and pyrazole) or 0.98 Å (CH3) and N—H distances 0.88 Å, and with Uiso(H) = kUeq(carrier), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms.

Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The independent molecular components of compound (I) showing the atom-labelling scheme: (a) the type 1 molecule and (b) the type 2 molecule. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The two independent molecules in the selected asymmetric unit of compound (I) showing the two C—H···π(arene) hydrogen bonds within the asymmetric unit. For the sake of clarity, the H atoms not involved in the motif shown have been omitted.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of compound (I) showing the formation of a hydrogen-bonded molecular ladder along [101] built from N—H···N and C—H···π(arene) hydrogen bonds. For the sake of clarity, the H atoms bonded to C atoms not involved in the motifs shown have been omitted.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of compound (I) showing the formation of a hydrogen-bonded molecular ladder along [100] built from C—H···π(arene) hydrogen bonds only. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted.
7-Amino-5-methyl-2-phenyl-6-(phenyldiazenyl)pyrazolo[1,5-a]pyrimidine top
Crystal data top
C19H16N6F(000) = 1376
Mr = 328.38Dx = 1.399 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5790 reflections
a = 9.6342 (13) Åθ = 2.8–25.5°
b = 33.216 (5) ŵ = 0.09 mm1
c = 9.747 (3) ÅT = 120 K
β = 90.237 (18)°Block, orange
V = 3119.1 (11) Å30.42 × 0.35 × 0.27 mm
Z = 8
Data collection top
Bruker Nonius KappaCCD
diffractometer
5790 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode3135 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
Detector resolution: 9.091 pixels mm-1θmax = 25.5°, θmin = 2.8°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 4040
Tmin = 0.963, Tmax = 0.976l = 1111
35111 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0796P)2 + 0.6417P]
where P = (Fo2 + 2Fc2)/3
5790 reflections(Δ/σ)max = 0.001
453 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C19H16N6V = 3119.1 (11) Å3
Mr = 328.38Z = 8
Monoclinic, P21/nMo Kα radiation
a = 9.6342 (13) ŵ = 0.09 mm1
b = 33.216 (5) ÅT = 120 K
c = 9.747 (3) Å0.42 × 0.35 × 0.27 mm
β = 90.237 (18)°
Data collection top
Bruker Nonius KappaCCD
diffractometer
5790 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3135 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.976Rint = 0.083
35111 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
5790 reflectionsΔρmin = 0.31 e Å3
453 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.9643 (2)0.19922 (7)0.3597 (2)0.0276 (6)
C121.0217 (3)0.17050 (8)0.4384 (3)0.0255 (7)
C131.1054 (3)0.18643 (8)0.5425 (3)0.0289 (7)
H131.15570.17180.60990.035*
C13A1.1004 (3)0.22703 (8)0.5280 (3)0.0271 (7)
N141.1599 (2)0.25773 (7)0.5994 (2)0.0293 (6)
C151.1279 (3)0.29420 (8)0.5599 (3)0.0262 (7)
C161.0351 (3)0.30280 (8)0.4488 (3)0.0236 (7)
C170.9756 (3)0.27132 (8)0.3752 (3)0.0253 (7)
N17A1.0132 (2)0.23391 (6)0.4168 (2)0.0247 (6)
C1210.9933 (3)0.12820 (8)0.4096 (3)0.0251 (7)
C1220.9534 (3)0.11519 (8)0.2798 (3)0.0301 (7)
H1220.94500.13420.20750.036*
C1230.9258 (3)0.07523 (9)0.2542 (3)0.0329 (8)
H1230.89790.06680.16510.039*
C1240.9389 (3)0.04737 (9)0.3587 (3)0.0322 (8)
H1240.92050.01970.34160.039*
C1250.9785 (3)0.05970 (9)0.4873 (3)0.0331 (8)
H1250.98690.04060.55950.040*
C1261.0061 (3)0.09980 (8)0.5121 (3)0.0306 (7)
H1261.03430.10800.60130.037*
C1511.1909 (3)0.32832 (8)0.6368 (3)0.0320 (7)
H15A1.25290.31780.70820.048*
H15B1.11730.34440.67930.048*
H15C1.24390.34530.57360.048*
N1611.0050 (2)0.34280 (7)0.4329 (2)0.0277 (6)
N1620.9216 (2)0.35349 (7)0.3375 (2)0.0283 (6)
C1610.8929 (3)0.39540 (8)0.3421 (3)0.0262 (7)
C1620.9128 (3)0.41864 (8)0.4602 (3)0.0322 (8)
H1620.94670.40660.54210.039*
C1630.8829 (3)0.45889 (8)0.4567 (3)0.0342 (8)
H1630.89530.47470.53700.041*
C1640.8351 (3)0.47670 (9)0.3382 (3)0.0353 (8)
H1640.81640.50480.33600.042*
C1650.8147 (3)0.45357 (9)0.2232 (3)0.0354 (8)
H1650.78110.46570.14120.043*
C1660.8424 (3)0.41321 (9)0.2256 (3)0.0320 (8)
H1660.82640.39740.14590.038*
N170.8868 (2)0.27531 (7)0.2735 (2)0.0301 (6)
H17A0.85230.25380.23300.036*
H17B0.86170.29950.24580.036*
N210.4633 (2)0.19800 (6)0.3930 (2)0.0262 (6)
C220.5395 (3)0.16958 (8)0.4525 (3)0.0258 (7)
C230.6456 (3)0.18547 (8)0.5346 (3)0.0271 (7)
H230.71270.17080.58610.032*
C23A0.6330 (3)0.22632 (8)0.5256 (3)0.0256 (7)
N240.7018 (2)0.25744 (7)0.5854 (2)0.0255 (6)
C250.6599 (3)0.29393 (8)0.5543 (3)0.0243 (7)
C260.5487 (3)0.30206 (8)0.4629 (3)0.0224 (7)
C270.4770 (3)0.27018 (8)0.4010 (3)0.0235 (7)
N27A0.5217 (2)0.23275 (6)0.4381 (2)0.0244 (6)
C2210.5081 (3)0.12718 (8)0.4265 (3)0.0240 (7)
C2220.3780 (3)0.11625 (8)0.3779 (3)0.0297 (7)
H2220.30960.13640.36270.036*
C2230.3467 (3)0.07638 (8)0.3512 (3)0.0320 (7)
H2230.25730.06920.31760.038*
C2240.4450 (3)0.04725 (9)0.3735 (3)0.0353 (8)
H2240.42420.01980.35470.042*
C2250.5741 (3)0.05784 (9)0.4231 (3)0.0364 (8)
H2250.64180.03760.43950.044*
C2260.6056 (3)0.09733 (8)0.4489 (3)0.0306 (7)
H2260.69520.10430.48260.037*
C2510.7317 (3)0.32750 (8)0.6253 (3)0.0277 (7)
H25A0.81910.31770.66490.041*
H25B0.67240.33790.69860.041*
H25C0.75120.34900.55950.041*
N2610.5194 (2)0.34228 (6)0.4425 (2)0.0251 (6)
N2620.4167 (2)0.35093 (6)0.3658 (2)0.0269 (6)
C2610.3950 (3)0.39322 (8)0.3541 (3)0.0259 (7)
C2620.4950 (3)0.42174 (8)0.3849 (3)0.0289 (7)
H2620.58440.41380.41620.035*
C2630.4630 (3)0.46190 (9)0.3695 (3)0.0323 (8)
H2630.53160.48170.38900.039*
C2640.3337 (3)0.47375 (9)0.3265 (3)0.0344 (8)
H2640.31230.50160.31850.041*
C2650.2353 (3)0.44540 (8)0.2950 (3)0.0370 (8)
H2650.14600.45350.26400.044*
C2660.2659 (3)0.40522 (8)0.3082 (3)0.0301 (7)
H2660.19780.38560.28570.036*
N270.3737 (2)0.27343 (7)0.3138 (2)0.0285 (6)
H27A0.33420.25170.28010.034*
H27B0.34380.29740.28890.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0293 (15)0.0249 (14)0.0287 (14)0.0010 (11)0.0006 (11)0.0020 (11)
C120.0238 (17)0.0247 (16)0.0281 (17)0.0023 (13)0.0042 (13)0.0015 (13)
C130.0307 (18)0.0288 (17)0.0272 (17)0.0008 (14)0.0057 (14)0.0023 (13)
C13A0.0261 (17)0.0287 (17)0.0264 (17)0.0033 (14)0.0020 (14)0.0012 (14)
N140.0300 (15)0.0265 (14)0.0313 (15)0.0006 (11)0.0035 (12)0.0017 (11)
C150.0266 (17)0.0274 (17)0.0246 (17)0.0019 (13)0.0008 (13)0.0006 (13)
C160.0260 (17)0.0217 (16)0.0230 (16)0.0023 (13)0.0000 (13)0.0031 (12)
C170.0264 (17)0.0222 (16)0.0272 (17)0.0015 (13)0.0023 (14)0.0025 (13)
N17A0.0260 (14)0.0230 (14)0.0251 (14)0.0002 (11)0.0010 (11)0.0020 (11)
C1210.0220 (17)0.0257 (16)0.0277 (17)0.0023 (13)0.0002 (13)0.0003 (13)
C1220.0265 (18)0.0282 (18)0.0356 (19)0.0046 (14)0.0036 (14)0.0068 (14)
C1230.0311 (19)0.0366 (19)0.0309 (18)0.0005 (15)0.0014 (14)0.0060 (15)
C1240.0290 (18)0.0245 (17)0.043 (2)0.0027 (13)0.0022 (15)0.0026 (15)
C1250.0340 (19)0.0323 (18)0.0330 (19)0.0026 (15)0.0002 (15)0.0071 (15)
C1260.0287 (18)0.0318 (18)0.0311 (18)0.0013 (14)0.0001 (14)0.0010 (14)
C1510.0351 (19)0.0291 (17)0.0317 (18)0.0012 (14)0.0037 (14)0.0008 (14)
N1610.0258 (15)0.0291 (14)0.0284 (15)0.0005 (11)0.0012 (12)0.0021 (11)
N1620.0287 (15)0.0261 (14)0.0300 (15)0.0031 (11)0.0030 (12)0.0003 (11)
C1610.0264 (17)0.0210 (16)0.0311 (18)0.0006 (13)0.0004 (14)0.0005 (13)
C1620.0330 (19)0.0306 (18)0.0329 (18)0.0004 (14)0.0021 (14)0.0002 (15)
C1630.0310 (19)0.0284 (18)0.043 (2)0.0011 (14)0.0014 (15)0.0074 (15)
C1640.0320 (19)0.0248 (17)0.049 (2)0.0012 (14)0.0012 (16)0.0012 (15)
C1650.036 (2)0.0353 (19)0.0353 (19)0.0049 (15)0.0005 (15)0.0045 (15)
C1660.0334 (19)0.0352 (19)0.0274 (18)0.0014 (14)0.0011 (14)0.0017 (14)
N170.0362 (16)0.0217 (13)0.0323 (15)0.0014 (11)0.0136 (12)0.0007 (11)
N210.0281 (14)0.0217 (14)0.0289 (14)0.0015 (11)0.0016 (11)0.0023 (11)
C220.0238 (17)0.0261 (16)0.0273 (17)0.0023 (13)0.0016 (13)0.0015 (13)
C230.0273 (18)0.0248 (17)0.0291 (17)0.0052 (13)0.0046 (14)0.0014 (13)
C23A0.0246 (17)0.0293 (17)0.0228 (16)0.0010 (13)0.0018 (13)0.0014 (13)
N240.0262 (14)0.0248 (14)0.0255 (14)0.0014 (11)0.0041 (11)0.0013 (10)
C250.0260 (17)0.0251 (16)0.0217 (16)0.0036 (13)0.0009 (13)0.0010 (13)
C260.0241 (17)0.0216 (16)0.0215 (16)0.0020 (13)0.0008 (13)0.0020 (12)
C270.0235 (17)0.0226 (16)0.0244 (16)0.0034 (13)0.0018 (13)0.0001 (13)
N27A0.0256 (14)0.0226 (14)0.0249 (13)0.0014 (11)0.0029 (11)0.0015 (11)
C2210.0257 (17)0.0219 (16)0.0245 (16)0.0001 (13)0.0006 (13)0.0015 (12)
C2220.0335 (19)0.0310 (18)0.0244 (17)0.0018 (14)0.0023 (14)0.0037 (13)
C2230.034 (2)0.0298 (18)0.0320 (18)0.0061 (15)0.0030 (14)0.0003 (14)
C2240.044 (2)0.0248 (17)0.0368 (19)0.0024 (15)0.0038 (16)0.0033 (14)
C2250.032 (2)0.0273 (18)0.050 (2)0.0047 (15)0.0005 (16)0.0010 (15)
C2260.0292 (18)0.0277 (17)0.0350 (18)0.0008 (14)0.0021 (14)0.0025 (14)
C2510.0280 (17)0.0271 (16)0.0278 (17)0.0002 (13)0.0033 (13)0.0026 (13)
N2610.0269 (15)0.0248 (14)0.0236 (14)0.0042 (11)0.0016 (11)0.0009 (10)
N2620.0266 (15)0.0253 (14)0.0288 (14)0.0030 (11)0.0001 (12)0.0008 (11)
C2610.0313 (18)0.0230 (16)0.0232 (16)0.0018 (13)0.0012 (13)0.0027 (13)
C2620.0322 (19)0.0292 (17)0.0253 (17)0.0003 (14)0.0015 (14)0.0002 (13)
C2630.037 (2)0.0260 (17)0.0335 (19)0.0028 (14)0.0004 (15)0.0013 (14)
C2640.037 (2)0.0247 (17)0.041 (2)0.0039 (15)0.0038 (16)0.0024 (14)
C2650.032 (2)0.0315 (18)0.048 (2)0.0077 (15)0.0026 (16)0.0077 (15)
C2660.0277 (18)0.0282 (17)0.0344 (18)0.0007 (14)0.0013 (14)0.0049 (14)
N270.0277 (15)0.0222 (13)0.0354 (15)0.0027 (11)0.0119 (12)0.0005 (11)
Geometric parameters (Å, º) top
N11—C121.342 (3)N21—C221.328 (3)
C12—C131.398 (4)C22—C231.399 (4)
C13—C13A1.357 (4)C23—C23A1.365 (4)
C13A—N141.359 (3)C23A—N241.358 (3)
N14—C151.308 (3)N24—C251.313 (3)
C15—C161.430 (4)C25—C261.417 (4)
C16—C171.390 (4)C26—C271.399 (4)
C17—N17A1.356 (3)C27—N27A1.364 (3)
N17A—N111.363 (3)N27A—N211.357 (3)
C13A—N17A1.388 (3)C23A—N27A1.384 (3)
C17—N171.314 (3)C27—N271.311 (3)
C16—N1611.369 (3)C26—N2611.380 (3)
N161—N1621.277 (3)N261—N2621.270 (3)
N162—C1611.420 (3)N262—C2611.425 (3)
C12—C1211.458 (4)C22—C2211.462 (4)
C13—H130.9500C23—H230.9500
C15—C1511.487 (4)C25—C2511.483 (4)
C121—C1261.379 (4)C221—C2261.382 (4)
C121—C1221.390 (4)C221—C2221.387 (4)
C122—C1231.376 (4)C222—C2231.383 (4)
C122—H1220.9500C222—H2220.9500
C123—C1241.382 (4)C223—C2241.371 (4)
C123—H1230.9500C223—H2230.9500
C124—C1251.371 (4)C224—C2251.379 (4)
C124—H1240.9500C224—H2240.9500
C125—C1261.379 (4)C225—C2261.370 (4)
C125—H1250.9500C225—H2250.9500
C126—H1260.9500C226—H2260.9500
C151—H15A0.9800C251—H25A0.9800
C151—H15B0.9800C251—H25B0.9800
C151—H15C0.9800C251—H25C0.9800
C161—C1661.368 (4)C261—C2661.379 (4)
C161—C1621.398 (4)C261—C2621.383 (4)
C162—C1631.368 (4)C262—C2631.377 (4)
C162—H1620.9500C262—H2620.9500
C163—C1641.375 (4)C263—C2641.371 (4)
C163—H1630.9500C263—H2630.9500
C164—C1651.373 (4)C264—C2651.370 (4)
C164—H1640.9500C264—H2640.9500
C165—C1661.367 (4)C265—C2661.373 (4)
C165—H1650.9500C265—H2650.9500
C166—H1660.9500C266—H2660.9500
N17—H17A0.8800N27—H27A0.8800
N17—H17B0.8800N27—H27B0.8800
C12—N11—N17A103.1 (2)C22—N21—N27A103.6 (2)
N11—C12—C13112.4 (2)N21—C22—C23112.5 (2)
N11—C12—C121119.9 (3)N21—C22—C221119.7 (3)
C13—C12—C121127.7 (3)C23—C22—C221127.8 (3)
C13A—C13—C12106.3 (3)C23A—C23—C22105.9 (2)
C13A—C13—H13126.8C23A—C23—H23127.1
C12—C13—H13126.8C22—C23—H23127.1
C13—C13A—N14132.7 (3)N24—C23A—C23133.3 (3)
C13—C13A—N17A105.4 (2)N24—C23A—N27A121.5 (2)
N14—C13A—N17A121.9 (2)C23—C23A—N27A105.2 (2)
C15—N14—C13A116.5 (2)C25—N24—C23A117.0 (2)
N14—C15—C16123.6 (3)N24—C25—C26123.6 (2)
N14—C15—C151117.5 (2)N24—C25—C251116.4 (2)
C16—C15—C151118.8 (2)C26—C25—C251120.0 (2)
N161—C16—C17125.8 (3)N261—C26—C27124.8 (3)
N161—C16—C15114.3 (2)N261—C26—C25115.4 (2)
C17—C16—C15119.7 (2)C27—C26—C25119.8 (2)
N17—C17—N17A119.3 (2)N27—C27—N27A119.0 (2)
N17—C17—C16125.4 (3)N27—C27—C26126.1 (3)
N17A—C17—C16115.2 (2)N27A—C27—C26114.9 (2)
C17—N17A—N11124.2 (2)N21—N27A—C27124.0 (2)
C17—N17A—C13A123.0 (2)N21—N27A—C23A112.8 (2)
N11—N17A—C13A112.8 (2)C27—N27A—C23A123.2 (2)
C126—C121—C122118.1 (3)C226—C221—C222118.6 (3)
C126—C121—C12120.3 (3)C226—C221—C22121.6 (3)
C122—C121—C12121.7 (3)C222—C221—C22119.8 (3)
C123—C122—C121121.2 (3)C223—C222—C221120.7 (3)
C123—C122—H122119.4C223—C222—H222119.6
C121—C122—H122119.4C221—C222—H222119.6
C122—C123—C124119.7 (3)C224—C223—C222119.7 (3)
C122—C123—H123120.2C224—C223—H223120.1
C124—C123—H123120.2C222—C223—H223120.1
C125—C124—C123119.9 (3)C223—C224—C225119.8 (3)
C125—C124—H124120.1C223—C224—H224120.1
C123—C124—H124120.1C225—C224—H224120.1
C124—C125—C126120.1 (3)C226—C225—C224120.5 (3)
C124—C125—H125120.0C226—C225—H225119.7
C126—C125—H125120.0C224—C225—H225119.7
C121—C126—C125121.2 (3)C225—C226—C221120.5 (3)
C121—C126—H126119.4C225—C226—H226119.7
C125—C126—H126119.4C221—C226—H226119.7
C15—C151—H15A109.5C25—C251—H25A109.5
C15—C151—H15B109.5C25—C251—H25B109.5
H15A—C151—H15B109.5H25A—C251—H25B109.5
C15—C151—H15C109.5C25—C251—H25C109.5
H15A—C151—H15C109.5H25A—C251—H25C109.5
H15B—C151—H15C109.5H25B—C251—H25C109.5
N162—N161—C16119.0 (2)N262—N261—C26117.5 (2)
N161—N162—C161111.8 (2)N261—N262—C261112.5 (2)
C166—C161—C162119.4 (3)C266—C261—C262119.9 (3)
C166—C161—N162117.8 (3)C266—C261—N262116.3 (2)
C162—C161—N162122.8 (3)C262—C261—N262123.8 (3)
C163—C162—C161119.4 (3)C263—C262—C261119.0 (3)
C163—C162—H162120.3C263—C262—H262120.5
C161—C162—H162120.3C261—C262—H262120.5
C162—C163—C164120.7 (3)C264—C263—C262120.9 (3)
C162—C163—H163119.6C264—C263—H263119.5
C164—C163—H163119.6C262—C263—H263119.5
C165—C164—C163119.4 (3)C265—C264—C263119.9 (3)
C165—C164—H164120.3C265—C264—H264120.1
C163—C164—H164120.3C263—C264—H264120.1
C166—C165—C164120.5 (3)C264—C265—C266120.0 (3)
C166—C165—H165119.8C264—C265—H265120.0
C164—C165—H165119.8C266—C265—H265120.0
C165—C166—C161120.5 (3)C265—C266—C261120.3 (3)
C165—C166—H166119.8C265—C266—H266119.9
C161—C166—H166119.8C261—C266—H266119.9
C17—N17—H17A120.0C27—N27—H27A120.0
C17—N17—H17B120.0C27—N27—H27B120.0
H17A—N17—H17B120.0H27A—N27—H27B120.0
N17A—N11—C12—C130.2 (3)N27A—N21—C22—C230.1 (3)
N17A—N11—C12—C121179.9 (2)N27A—N21—C22—C221179.3 (2)
N11—C12—C13—C13A0.2 (3)N21—C22—C23—C23A0.4 (3)
C121—C12—C13—C13A179.8 (3)C221—C22—C23—C23A179.6 (3)
C12—C13—C13A—N14179.6 (3)C22—C23—C23A—N24177.2 (3)
C12—C13—C13A—N17A0.5 (3)C22—C23—C23A—N27A0.6 (3)
C13—C13A—N14—C15177.3 (3)C23—C23A—N24—C25178.9 (3)
N17A—C13A—N14—C151.7 (4)N27A—C23A—N24—C251.4 (4)
C13A—N14—C15—C160.4 (4)C23A—N24—C25—C260.2 (4)
C13A—N14—C15—C151179.6 (2)C23A—N24—C25—C251177.3 (2)
N14—C15—C16—N161173.8 (3)N24—C25—C26—N261180.0 (2)
C151—C15—C16—N1615.4 (4)C251—C25—C26—N2612.7 (4)
N14—C15—C16—C171.0 (4)N24—C25—C26—C270.3 (4)
C151—C15—C16—C17179.7 (3)C251—C25—C26—C27177.0 (2)
N161—C16—C17—N174.1 (5)N261—C26—C27—N271.0 (5)
C15—C16—C17—N17178.4 (3)C25—C26—C27—N27179.2 (3)
N161—C16—C17—N17A174.7 (2)N261—C26—C27—N27A178.7 (2)
C15—C16—C17—N17A0.4 (4)C25—C26—C27—N27A1.1 (4)
N17—C17—N17A—N110.2 (4)C22—N21—N27A—C27179.2 (2)
C16—C17—N17A—N11178.7 (2)C22—N21—N27A—C23A0.3 (3)
N17—C17—N17A—C13A176.4 (3)N27—C27—N27A—N211.8 (4)
C16—C17—N17A—C13A2.5 (4)C26—C27—N27A—N21177.9 (2)
C12—N11—N17A—C17176.0 (2)N27—C27—N27A—C23A177.6 (3)
C12—N11—N17A—C13A0.5 (3)C26—C27—N27A—C23A2.7 (4)
C13—C13A—N17A—C17175.9 (2)N24—C23A—N27A—N21177.6 (2)
N14—C13A—N17A—C173.3 (4)C23—C23A—N27A—N210.6 (3)
C13—C13A—N17A—N110.6 (3)N24—C23A—N27A—C272.9 (4)
N14—C13A—N17A—N11179.9 (2)C23—C23A—N27A—C27178.9 (2)
N11—C12—C121—C126156.0 (3)N21—C22—C221—C226159.6 (3)
C13—C12—C121—C12624.0 (4)C23—C22—C221—C22619.5 (4)
N11—C12—C121—C12224.1 (4)N21—C22—C221—C22220.3 (4)
C13—C12—C121—C122155.8 (3)C23—C22—C221—C222160.6 (3)
C126—C121—C122—C1230.7 (4)C226—C221—C222—C2230.6 (4)
C12—C121—C122—C123179.5 (3)C22—C221—C222—C223179.3 (3)
C121—C122—C123—C1240.5 (4)C221—C222—C223—C2240.2 (4)
C122—C123—C124—C1250.4 (4)C222—C223—C224—C2250.4 (4)
C123—C124—C125—C1260.4 (4)C223—C224—C225—C2260.8 (5)
C122—C121—C126—C1250.8 (4)C224—C225—C226—C2210.4 (4)
C12—C121—C126—C125179.4 (3)C222—C221—C226—C2250.2 (4)
C124—C125—C126—C1210.6 (4)C22—C221—C226—C225179.6 (3)
C17—C16—N161—N1624.6 (4)C27—C26—N261—N2622.6 (4)
C15—C16—N161—N162179.1 (2)C25—C26—N261—N262177.1 (2)
C16—N161—N162—C161175.2 (2)C26—N261—N262—C261179.0 (2)
N161—N162—C161—C166160.1 (3)N261—N262—C261—C266161.5 (2)
N161—N162—C161—C16220.6 (4)N261—N262—C261—C26218.9 (4)
C166—C161—C162—C1630.8 (4)C266—C261—C262—C2630.3 (4)
N162—C161—C162—C163179.9 (3)N262—C261—C262—C263179.8 (2)
C161—C162—C163—C1640.7 (4)C261—C262—C263—C2641.0 (4)
C162—C163—C164—C1651.3 (5)C262—C263—C264—C2651.6 (4)
C163—C164—C165—C1660.5 (5)C263—C264—C265—C2660.8 (4)
C164—C165—C166—C1611.0 (5)C264—C265—C266—C2610.5 (4)
C162—C161—C166—C1651.7 (4)C262—C261—C266—C2651.0 (4)
N162—C161—C166—C165179.0 (3)N262—C261—C266—C265179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17A···N14i0.882.292.972 (3)134
N17—H17B···N1620.882.082.691 (3)125
N27—H27A···N24i0.882.302.953 (3)131
N27—H27B···N2620.882.052.656 (3)125
C223—H223···Cg1ii0.952.953.701 (3)137
C226—H226···Cg10.952.843.537 (3)132
C262—H262···Cg20.952.893.609 (3)134
C265—H265···Cg2ii0.952.893.625 (3)136
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H16N6
Mr328.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)9.6342 (13), 33.216 (5), 9.747 (3)
β (°) 90.237 (18)
V3)3119.1 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.42 × 0.35 × 0.27
Data collection
DiffractometerBruker Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.963, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
35111, 5790, 3135
Rint0.083
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.169, 1.04
No. of reflections5790
No. of parameters453
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.31

Computer programs: COLLECT (Hooft, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
N11—C121.342 (3)N21—C221.328 (3)
C12—C131.398 (4)C22—C231.399 (4)
C13—C13A1.357 (4)C23—C23A1.365 (4)
C13A—N141.359 (3)C23A—N241.358 (3)
N14—C151.308 (3)N24—C251.313 (3)
C15—C161.430 (4)C25—C261.417 (4)
C16—C171.390 (4)C26—C271.399 (4)
C17—N17A1.356 (3)C27—N27A1.364 (3)
N17A—N111.363 (3)N27A—N211.357 (3)
C13A—N17A1.388 (3)C23A—N27A1.384 (3)
C17—N171.314 (3)C27—N271.311 (3)
C16—N1611.369 (3)C26—N2611.380 (3)
N161—N1621.277 (3)N261—N2621.270 (3)
N162—C1611.420 (3)N262—C2611.425 (3)
N11—C12—C121—C12224.1 (4)N21—C22—C221—C22220.3 (4)
C15—C16—N161—N162179.1 (2)C25—C26—N261—N262177.1 (2)
C16—N161—N162—C161175.2 (2)C26—N261—N262—C261179.0 (2)
N161—N162—C161—C16220.6 (4)N261—N262—C261—C26218.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17A···N14i0.882.292.972 (3)134
N17—H17B···N1620.882.082.691 (3)125
N27—H27A···N24i0.882.302.953 (3)131
N27—H27B···N2620.882.052.656 (3)125
C223—H223···Cg1ii0.952.953.701 (3)137
C226—H226···Cg10.952.843.537 (3)132
C262—H262···Cg20.952.893.609 (3)134
C265—H265···Cg2ii0.952.893.625 (3)136
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds