Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S010827011101972X/sk3409sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S010827011101972X/sk3409Isup2.hkl |
CCDC reference: 838127
To a solution of CpCuCNtBu (0.21 g, 1.0 mmol) in tetrahydrofuran (10 ml), p-FPhNC (0.27 g, 2.20 mmol) was added. The reaction mixture was stirred for 16 h and the volatiles were then removed under reduced pressure. The resultant solid was extracted with warm hexane (3 × 20 ml) and filtered. Further concentration and storage at 245 K resulted in the formation of (I) as dark-yellow crystals suitable for a crystallographic investigation (yield 0.25 g, 47%). Analysis, calculated for C29H31CuF2N4: C 64.85, H 5.82, N 10.43%; found: C 65.01, H 5.84, N 10.35%. Spectroscopic analysis: 1H NMR (300 MHz, 296 K, CDCl3, δ, p.p.m.): 1.26 (singlet, 18H, tBu), 6.19 (triplet, J = 3.60 Hz, 1H, CHCHCH), 6.78 (doublet, J = 3.54 Hz, 2H, CHCHCH), 6.86–7.20 (complex multiplet, 8H, Ph—F), 8.08 (singlet, 2H, ArNCH).
Methyl H atoms were located in circular difference Fourier syntheses and thereafter refined as part of a rigid rotating group, with C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C). The aromatic H atoms were placed geometrically and refined with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).
Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).
Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. The double-dashed line indicates the intramolecular C—H···Cu anagostic interaction. |
[Cu(C19H13F2N2)(C5H9N)2] | F(000) = 1120 |
Mr = 537.12 | Dx = 1.29 Mg m−3 |
Monoclinic, P21/n | Synchrotron radiation, λ = 0.6939 Å |
Hall symbol: -P 2yn | Cell parameters from 31260 reflections |
a = 13.943 (4) Å | θ = 1.9–31.6° |
b = 9.240 (2) Å | µ = 0.79 mm−1 |
c = 21.642 (5) Å | T = 150 K |
β = 97.462 (5)° | Needle, yellow |
V = 2764.6 (12) Å3 | 0.08 × 0.03 × 0.02 mm |
Z = 4 |
Bruker APEXII diffractometer | 5331 reflections with I > 2σ(I) |
ω scans | Rint = 0.083 |
Absorption correction: multi-scan (Blessing, 1995) | θmax = 28.0°, θmin = 1.9° |
Tmin = 0.937, Tmax = 0.985 | h = −18→18 |
27368 measured reflections | k = −12→12 |
7148 independent reflections | l = −29→29 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.058 | w = 1/[σ2(Fo2) + (0.P)2 + 0.6015P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.165 | (Δ/σ)max = 0.002 |
S = 1.13 | Δρmax = 0.47 e Å−3 |
7148 reflections | Δρmin = −0.70 e Å−3 |
331 parameters |
[Cu(C19H13F2N2)(C5H9N)2] | V = 2764.6 (12) Å3 |
Mr = 537.12 | Z = 4 |
Monoclinic, P21/n | Synchrotron radiation, λ = 0.6939 Å |
a = 13.943 (4) Å | µ = 0.79 mm−1 |
b = 9.240 (2) Å | T = 150 K |
c = 21.642 (5) Å | 0.08 × 0.03 × 0.02 mm |
β = 97.462 (5)° |
Bruker APEXII diffractometer | 7148 independent reflections |
Absorption correction: multi-scan (Blessing, 1995) | 5331 reflections with I > 2σ(I) |
Tmin = 0.937, Tmax = 0.985 | Rint = 0.083 |
27368 measured reflections |
R[F2 > 2σ(F2)] = 0.058 | 0 restraints |
wR(F2) = 0.165 | H-atom parameters constrained |
S = 1.13 | Δρmax = 0.47 e Å−3 |
7148 reflections | Δρmin = −0.70 e Å−3 |
331 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.33358 (2) | 0.06340 (3) | 0.615672 (15) | 0.02938 (13) | |
N1 | 0.32502 (17) | −0.2651 (3) | 0.59309 (11) | 0.0340 (5) | |
N2 | 0.27499 (17) | 0.1278 (2) | 0.69276 (11) | 0.0309 (5) | |
N3 | 0.24473 (16) | 0.1421 (2) | 0.53987 (11) | 0.0310 (5) | |
N4 | 0.53299 (18) | 0.2028 (3) | 0.65100 (11) | 0.0362 (5) | |
F1 | 0.51405 (14) | 0.1533 (2) | 0.91771 (9) | 0.0534 (5) | |
F2 | 0.41146 (16) | 0.2517 (2) | 0.32463 (9) | 0.0614 (6) | |
C1 | 0.3296 (2) | −0.1435 (3) | 0.60434 (13) | 0.0342 (6) | |
C2 | 0.3143 (2) | −0.4177 (3) | 0.57546 (15) | 0.0374 (7) | |
C3 | 0.3080 (3) | −0.5068 (4) | 0.63403 (17) | 0.0520 (9) | |
H3A | 0.3660 | −0.4901 | 0.6640 | 0.078* | |
H3B | 0.3035 | −0.6097 | 0.6232 | 0.078* | |
H3C | 0.2505 | −0.4778 | 0.6527 | 0.078* | |
C4 | 0.4034 (3) | −0.4599 (3) | 0.54540 (18) | 0.0487 (8) | |
H4A | 0.4081 | −0.3977 | 0.5092 | 0.073* | |
H4B | 0.3978 | −0.5611 | 0.5319 | 0.073* | |
H4C | 0.4615 | −0.4480 | 0.5757 | 0.073* | |
C5 | 0.2220 (3) | −0.4296 (4) | 0.53027 (19) | 0.0562 (10) | |
H5A | 0.1675 | −0.3935 | 0.5502 | 0.084* | |
H5B | 0.2106 | −0.5312 | 0.5184 | 0.084* | |
H5C | 0.2282 | −0.3720 | 0.4930 | 0.084* | |
C6 | 0.1844 (2) | 0.1535 (3) | 0.69761 (14) | 0.0319 (6) | |
H6 | 0.1709 | 0.1793 | 0.7381 | 0.038* | |
C7 | 0.1034 (2) | 0.1483 (3) | 0.65107 (15) | 0.0359 (6) | |
C8 | 0.0097 (2) | 0.1472 (3) | 0.67007 (16) | 0.0407 (7) | |
H8 | −0.0035 | 0.1532 | 0.7120 | 0.049* | |
C9 | −0.0599 (2) | 0.1361 (4) | 0.61805 (17) | 0.0471 (8) | |
H9 | −0.1279 | 0.1314 | 0.6183 | 0.057* | |
C10 | −0.0124 (2) | 0.1330 (4) | 0.56595 (17) | 0.0458 (8) | |
H10 | −0.0432 | 0.1281 | 0.5242 | 0.055* | |
C11 | 0.0894 (2) | 0.1382 (3) | 0.58380 (14) | 0.0354 (6) | |
C12 | 0.1501 (2) | 0.1428 (3) | 0.53613 (14) | 0.0333 (6) | |
H12 | 0.1170 | 0.1471 | 0.4949 | 0.040* | |
C13 | 0.3399 (2) | 0.1400 (3) | 0.74892 (13) | 0.0311 (6) | |
C14 | 0.4021 (2) | 0.0253 (3) | 0.76791 (14) | 0.0349 (6) | |
H14 | 0.4041 | −0.0566 | 0.7415 | 0.042* | |
C15 | 0.4606 (2) | 0.0292 (3) | 0.82437 (15) | 0.0391 (7) | |
H15 | 0.5010 | −0.0505 | 0.8380 | 0.047* | |
C16 | 0.4591 (2) | 0.1518 (4) | 0.86056 (14) | 0.0395 (7) | |
C17 | 0.4027 (2) | 0.2704 (3) | 0.84252 (14) | 0.0391 (7) | |
H17 | 0.4048 | 0.3545 | 0.8679 | 0.047* | |
C18 | 0.3431 (2) | 0.2638 (3) | 0.78656 (14) | 0.0353 (6) | |
H18 | 0.3036 | 0.3445 | 0.7733 | 0.042* | |
C19 | 0.2841 (2) | 0.1669 (3) | 0.48297 (12) | 0.0299 (6) | |
C20 | 0.2373 (2) | 0.2516 (3) | 0.43439 (14) | 0.0385 (7) | |
H20 | 0.1753 | 0.2907 | 0.4381 | 0.046* | |
C21 | 0.2794 (2) | 0.2794 (4) | 0.38117 (14) | 0.0430 (7) | |
H21 | 0.2469 | 0.3365 | 0.3484 | 0.052* | |
C22 | 0.3689 (2) | 0.2230 (4) | 0.37666 (14) | 0.0426 (7) | |
C23 | 0.4184 (2) | 0.1402 (3) | 0.42303 (14) | 0.0411 (7) | |
H23 | 0.4809 | 0.1034 | 0.4191 | 0.049* | |
C24 | 0.3746 (2) | 0.1117 (3) | 0.47591 (14) | 0.0354 (6) | |
H24 | 0.4074 | 0.0529 | 0.5080 | 0.042* | |
C25 | 0.4588 (2) | 0.1541 (3) | 0.63213 (13) | 0.0347 (6) | |
C26 | 0.6265 (2) | 0.2550 (3) | 0.68062 (14) | 0.0395 (7) | |
C27 | 0.6071 (3) | 0.3603 (4) | 0.73152 (19) | 0.0609 (10) | |
H27A | 0.5720 | 0.4446 | 0.7127 | 0.091* | |
H27B | 0.6687 | 0.3918 | 0.7546 | 0.091* | |
H27C | 0.5681 | 0.3124 | 0.7601 | 0.091* | |
C28 | 0.6846 (3) | 0.1236 (4) | 0.70834 (18) | 0.0524 (9) | |
H28A | 0.6486 | 0.0745 | 0.7382 | 0.079* | |
H28B | 0.7473 | 0.1561 | 0.7296 | 0.079* | |
H28C | 0.6951 | 0.0563 | 0.6748 | 0.079* | |
C29 | 0.6779 (3) | 0.3242 (5) | 0.63055 (19) | 0.0613 (10) | |
H29A | 0.6809 | 0.2551 | 0.5965 | 0.092* | |
H29B | 0.7436 | 0.3516 | 0.6483 | 0.092* | |
H29C | 0.6423 | 0.4106 | 0.6145 | 0.092* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0285 (2) | 0.02564 (19) | 0.0345 (2) | 0.00214 (12) | 0.00608 (14) | −0.00189 (13) |
N1 | 0.0385 (13) | 0.0275 (12) | 0.0376 (13) | 0.0028 (10) | 0.0110 (10) | −0.0023 (10) |
N2 | 0.0316 (12) | 0.0258 (11) | 0.0359 (12) | 0.0000 (9) | 0.0069 (10) | 0.0001 (9) |
N3 | 0.0286 (12) | 0.0293 (12) | 0.0357 (12) | 0.0021 (9) | 0.0068 (9) | −0.0024 (9) |
N4 | 0.0320 (13) | 0.0390 (14) | 0.0375 (13) | −0.0033 (10) | 0.0045 (10) | −0.0022 (11) |
F1 | 0.0462 (11) | 0.0677 (14) | 0.0434 (11) | −0.0123 (9) | −0.0045 (8) | −0.0039 (9) |
F2 | 0.0739 (15) | 0.0712 (14) | 0.0441 (11) | 0.0071 (11) | 0.0268 (10) | 0.0127 (10) |
C1 | 0.0357 (15) | 0.0330 (15) | 0.0356 (15) | 0.0014 (11) | 0.0113 (12) | 0.0000 (11) |
C2 | 0.0439 (17) | 0.0261 (14) | 0.0446 (17) | 0.0018 (12) | 0.0143 (13) | −0.0081 (12) |
C3 | 0.070 (2) | 0.0310 (16) | 0.061 (2) | 0.0061 (16) | 0.0317 (19) | 0.0058 (15) |
C4 | 0.055 (2) | 0.0339 (16) | 0.062 (2) | 0.0045 (14) | 0.0265 (17) | −0.0084 (15) |
C5 | 0.054 (2) | 0.055 (2) | 0.061 (2) | −0.0077 (17) | 0.0142 (18) | −0.0219 (17) |
C6 | 0.0329 (14) | 0.0241 (13) | 0.0402 (15) | 0.0024 (10) | 0.0111 (12) | 0.0008 (11) |
C7 | 0.0336 (15) | 0.0281 (14) | 0.0481 (17) | 0.0007 (11) | 0.0140 (13) | 0.0016 (12) |
C8 | 0.0325 (15) | 0.0377 (16) | 0.0542 (19) | 0.0054 (12) | 0.0145 (14) | 0.0028 (14) |
C9 | 0.0275 (15) | 0.0497 (19) | 0.066 (2) | −0.0028 (13) | 0.0111 (14) | −0.0015 (16) |
C10 | 0.0312 (15) | 0.0492 (19) | 0.057 (2) | −0.0030 (14) | 0.0072 (14) | −0.0016 (16) |
C11 | 0.0313 (14) | 0.0314 (14) | 0.0438 (16) | 0.0003 (11) | 0.0062 (12) | 0.0017 (12) |
C12 | 0.0316 (14) | 0.0292 (14) | 0.0383 (15) | −0.0004 (11) | 0.0019 (11) | −0.0026 (11) |
C13 | 0.0338 (14) | 0.0277 (13) | 0.0334 (14) | −0.0029 (11) | 0.0095 (11) | 0.0002 (11) |
C14 | 0.0360 (15) | 0.0301 (14) | 0.0393 (16) | 0.0014 (12) | 0.0082 (12) | −0.0027 (12) |
C15 | 0.0349 (15) | 0.0376 (16) | 0.0447 (17) | 0.0002 (12) | 0.0046 (13) | 0.0019 (13) |
C16 | 0.0352 (15) | 0.0483 (18) | 0.0349 (15) | −0.0116 (13) | 0.0041 (12) | −0.0038 (13) |
C17 | 0.0461 (17) | 0.0346 (16) | 0.0389 (16) | −0.0099 (13) | 0.0142 (13) | −0.0075 (12) |
C18 | 0.0428 (16) | 0.0266 (14) | 0.0389 (15) | −0.0017 (12) | 0.0140 (12) | −0.0019 (11) |
C19 | 0.0308 (14) | 0.0282 (13) | 0.0310 (13) | −0.0015 (10) | 0.0044 (11) | −0.0046 (10) |
C20 | 0.0391 (16) | 0.0375 (16) | 0.0388 (16) | 0.0047 (13) | 0.0040 (13) | 0.0007 (13) |
C21 | 0.0530 (19) | 0.0423 (17) | 0.0332 (15) | 0.0045 (14) | 0.0031 (14) | 0.0028 (13) |
C22 | 0.0508 (19) | 0.0440 (18) | 0.0343 (15) | −0.0022 (14) | 0.0107 (14) | −0.0003 (13) |
C23 | 0.0389 (16) | 0.0446 (18) | 0.0423 (17) | 0.0085 (13) | 0.0144 (13) | 0.0024 (14) |
C24 | 0.0372 (15) | 0.0350 (15) | 0.0346 (15) | 0.0056 (12) | 0.0074 (12) | 0.0030 (12) |
C25 | 0.0370 (16) | 0.0316 (15) | 0.0361 (15) | 0.0030 (12) | 0.0070 (12) | −0.0012 (11) |
C26 | 0.0330 (15) | 0.0433 (17) | 0.0416 (16) | −0.0047 (13) | 0.0024 (12) | −0.0026 (13) |
C27 | 0.053 (2) | 0.061 (2) | 0.067 (2) | −0.0072 (18) | 0.0002 (18) | −0.026 (2) |
C28 | 0.048 (2) | 0.047 (2) | 0.058 (2) | −0.0005 (16) | −0.0055 (17) | 0.0024 (16) |
C29 | 0.0386 (19) | 0.070 (3) | 0.076 (3) | −0.0130 (17) | 0.0099 (18) | 0.015 (2) |
Cu1—C1 | 1.927 (3) | C10—H10 | 0.9500 |
Cu1—C25 | 1.928 (3) | C11—C12 | 1.418 (4) |
Cu1—N2 | 2.039 (2) | C12—H12 | 0.9500 |
Cu1—N3 | 2.056 (2) | C13—C14 | 1.398 (4) |
Cu1—H24 | 2.6692 | C13—C18 | 1.401 (4) |
N1—C1 | 1.150 (4) | C14—C15 | 1.379 (4) |
N1—C2 | 1.463 (4) | C14—H14 | 0.9500 |
N2—C6 | 1.303 (3) | C15—C16 | 1.379 (4) |
N2—C13 | 1.422 (4) | C15—H15 | 0.9500 |
N3—C12 | 1.311 (4) | C16—C17 | 1.375 (5) |
N3—C19 | 1.431 (3) | C17—C18 | 1.378 (4) |
N4—C25 | 1.153 (4) | C17—H17 | 0.9500 |
N4—C26 | 1.458 (4) | C18—H18 | 0.9500 |
F1—C16 | 1.368 (3) | C19—C24 | 1.387 (4) |
F2—C22 | 1.365 (3) | C19—C20 | 1.402 (4) |
C2—C5 | 1.516 (5) | C20—C21 | 1.384 (4) |
C2—C3 | 1.523 (4) | C20—H20 | 0.9500 |
C2—C4 | 1.525 (4) | C21—C22 | 1.367 (5) |
C3—H3A | 0.9800 | C21—H21 | 0.9500 |
C3—H3B | 0.9800 | C22—C23 | 1.374 (4) |
C3—H3C | 0.9800 | C23—C24 | 1.391 (4) |
C4—H4A | 0.9800 | C23—H23 | 0.9500 |
C4—H4B | 0.9800 | C24—H24 | 0.9500 |
C4—H4C | 0.9800 | C26—C29 | 1.516 (5) |
C5—H5A | 0.9800 | C26—C27 | 1.520 (5) |
C5—H5B | 0.9800 | C26—C28 | 1.538 (5) |
C5—H5C | 0.9800 | C27—H27A | 0.9800 |
C6—C7 | 1.413 (4) | C27—H27B | 0.9800 |
C6—H6 | 0.9500 | C27—H27C | 0.9800 |
C7—C8 | 1.420 (4) | C28—H28A | 0.9800 |
C7—C11 | 1.447 (4) | C28—H28B | 0.9800 |
C8—C9 | 1.391 (5) | C28—H28C | 0.9800 |
C8—H8 | 0.9500 | C29—H29A | 0.9800 |
C9—C10 | 1.380 (5) | C29—H29B | 0.9800 |
C9—H9 | 0.9500 | C29—H29C | 0.9800 |
C10—C11 | 1.422 (4) | ||
C1—Cu1—C25 | 117.70 (12) | C14—C13—N2 | 119.5 (2) |
C1—Cu1—N2 | 112.67 (10) | C18—C13—N2 | 122.1 (3) |
C25—Cu1—N2 | 99.89 (11) | C15—C14—C13 | 120.9 (3) |
C1—Cu1—N3 | 104.18 (11) | C15—C14—H14 | 119.5 |
C25—Cu1—N3 | 115.54 (11) | C13—C14—H14 | 119.5 |
N2—Cu1—N3 | 106.60 (9) | C16—C15—C14 | 118.3 (3) |
C1—N1—C2 | 176.3 (3) | C16—C15—H15 | 120.9 |
C6—N2—C13 | 115.6 (2) | C14—C15—H15 | 120.9 |
C6—N2—Cu1 | 127.9 (2) | F1—C16—C17 | 118.8 (3) |
C13—N2—Cu1 | 116.40 (17) | F1—C16—C15 | 118.2 (3) |
C12—N3—C19 | 116.2 (2) | C17—C16—C15 | 123.0 (3) |
C12—N3—Cu1 | 123.2 (2) | C16—C17—C18 | 118.1 (3) |
C19—N3—Cu1 | 118.97 (17) | C16—C17—H17 | 120.9 |
C25—N4—C26 | 174.0 (3) | C18—C17—H17 | 120.9 |
N1—C1—Cu1 | 175.0 (3) | C17—C18—C13 | 121.2 (3) |
N1—C2—C5 | 106.7 (3) | C17—C18—H18 | 119.4 |
N1—C2—C3 | 108.6 (3) | C13—C18—H18 | 119.4 |
C5—C2—C3 | 111.2 (3) | C24—C19—C20 | 117.7 (3) |
N1—C2—C4 | 107.2 (2) | C24—C19—N3 | 119.5 (2) |
C5—C2—C4 | 112.1 (3) | C20—C19—N3 | 122.7 (2) |
C3—C2—C4 | 110.8 (3) | C21—C20—C19 | 121.4 (3) |
C2—C3—H3A | 109.5 | C21—C20—H20 | 119.3 |
C2—C3—H3B | 109.5 | C19—C20—H20 | 119.3 |
H3A—C3—H3B | 109.5 | C22—C21—C20 | 118.6 (3) |
C2—C3—H3C | 109.5 | C22—C21—H21 | 120.7 |
H3A—C3—H3C | 109.5 | C20—C21—H21 | 120.7 |
H3B—C3—H3C | 109.5 | F2—C22—C21 | 118.9 (3) |
C2—C4—H4A | 109.5 | F2—C22—C23 | 118.7 (3) |
C2—C4—H4B | 109.5 | C21—C22—C23 | 122.4 (3) |
H4A—C4—H4B | 109.5 | C22—C23—C24 | 118.3 (3) |
C2—C4—H4C | 109.5 | C22—C23—H23 | 120.9 |
H4A—C4—H4C | 109.5 | C24—C23—H23 | 120.9 |
H4B—C4—H4C | 109.5 | C19—C24—C23 | 121.6 (3) |
C2—C5—H5A | 109.5 | C19—C24—H24 | 119.2 |
C2—C5—H5B | 109.5 | C23—C24—H24 | 119.2 |
H5A—C5—H5B | 109.5 | N4—C25—Cu1 | 169.9 (3) |
C2—C5—H5C | 109.5 | N4—C26—C29 | 107.7 (3) |
H5A—C5—H5C | 109.5 | N4—C26—C27 | 107.3 (3) |
H5B—C5—H5C | 109.5 | C29—C26—C27 | 113.2 (3) |
N2—C6—C7 | 129.0 (3) | N4—C26—C28 | 107.9 (3) |
N2—C6—H6 | 115.5 | C29—C26—C28 | 109.8 (3) |
C7—C6—H6 | 115.5 | C27—C26—C28 | 110.9 (3) |
C6—C7—C8 | 118.3 (3) | C26—C27—H27A | 109.5 |
C6—C7—C11 | 135.3 (3) | C26—C27—H27B | 109.5 |
C8—C7—C11 | 106.4 (3) | H27A—C27—H27B | 109.5 |
C9—C8—C7 | 109.7 (3) | C26—C27—H27C | 109.5 |
C9—C8—H8 | 125.1 | H27A—C27—H27C | 109.5 |
C7—C8—H8 | 125.1 | H27B—C27—H27C | 109.5 |
C10—C9—C8 | 107.7 (3) | C26—C28—H28A | 109.5 |
C10—C9—H9 | 126.1 | C26—C28—H28B | 109.5 |
C8—C9—H9 | 126.1 | H28A—C28—H28B | 109.5 |
C9—C10—C11 | 110.2 (3) | C26—C28—H28C | 109.5 |
C9—C10—H10 | 124.9 | H28A—C28—H28C | 109.5 |
C11—C10—H10 | 124.9 | H28B—C28—H28C | 109.5 |
C12—C11—C10 | 118.2 (3) | C26—C29—H29A | 109.5 |
C12—C11—C7 | 135.6 (3) | C26—C29—H29B | 109.5 |
C10—C11—C7 | 106.0 (3) | H29A—C29—H29B | 109.5 |
N3—C12—C11 | 130.3 (3) | C26—C29—H29C | 109.5 |
N3—C12—H12 | 114.9 | H29A—C29—H29C | 109.5 |
C11—C12—H12 | 114.9 | H29B—C29—H29C | 109.5 |
C14—C13—C18 | 118.4 (3) | ||
C1—Cu1—N2—C6 | −85.4 (3) | C19—N3—C12—C11 | −172.1 (3) |
C25—Cu1—N2—C6 | 148.8 (2) | Cu1—N3—C12—C11 | 22.3 (4) |
N3—Cu1—N2—C6 | 28.2 (3) | C10—C11—C12—N3 | −176.9 (3) |
C1—Cu1—N2—C13 | 91.5 (2) | C6—N2—C13—C14 | 127.1 (3) |
C25—Cu1—N2—C13 | −34.3 (2) | Cu1—N2—C13—C14 | −50.2 (3) |
N3—Cu1—N2—C13 | −154.86 (18) | C6—N2—C13—C18 | −52.4 (3) |
C1—Cu1—N3—C12 | 79.4 (2) | Cu1—N2—C13—C18 | 130.3 (2) |
C25—Cu1—N3—C12 | −149.9 (2) | N2—C13—C14—C15 | −175.1 (3) |
N2—Cu1—N3—C12 | −40.0 (2) | C14—C15—C16—F1 | 177.3 (3) |
H24—Cu1—N3—C12 | 153.3 | C14—C15—C16—C17 | −0.7 (5) |
C1—Cu1—N3—C19 | −85.8 (2) | F1—C16—C17—C18 | −176.0 (3) |
C25—Cu1—N3—C19 | 44.9 (2) | N2—C13—C18—C17 | 176.4 (3) |
N2—Cu1—N3—C19 | 154.84 (18) | C12—N3—C19—C24 | −153.6 (3) |
C13—N2—C6—C7 | −179.1 (3) | Cu1—N3—C19—C24 | 12.6 (3) |
Cu1—N2—C6—C7 | −2.2 (4) | C12—N3—C19—C20 | 29.7 (4) |
N2—C6—C7—C8 | 165.4 (3) | Cu1—N3—C19—C20 | −164.0 (2) |
N2—C6—C7—C11 | −11.9 (5) | N3—C19—C20—C21 | 176.8 (3) |
C6—C7—C8—C9 | −177.6 (3) | C20—C21—C22—F2 | −179.1 (3) |
C8—C7—C11—C12 | 175.2 (3) | F2—C22—C23—C24 | 179.9 (3) |
C6—C7—C11—C10 | 178.1 (3) | N3—C19—C24—C23 | −176.1 (3) |
C8—C7—C11—C10 | 0.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C20—H20···F1i | 0.95 | 2.29 | 3.209 (4) | 162 |
Symmetry code: (i) x−1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C19H13F2N2)(C5H9N)2] |
Mr | 537.12 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 150 |
a, b, c (Å) | 13.943 (4), 9.240 (2), 21.642 (5) |
β (°) | 97.462 (5) |
V (Å3) | 2764.6 (12) |
Z | 4 |
Radiation type | Synchrotron, λ = 0.6939 Å |
µ (mm−1) | 0.79 |
Crystal size (mm) | 0.08 × 0.03 × 0.02 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | Multi-scan (Blessing, 1995) |
Tmin, Tmax | 0.937, 0.985 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27368, 7148, 5331 |
Rint | 0.083 |
(sin θ/λ)max (Å−1) | 0.677 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.058, 0.165, 1.13 |
No. of reflections | 7148 |
No. of parameters | 331 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.47, −0.70 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).
Cu1—C1 | 1.927 (3) | N2—C6 | 1.303 (3) |
Cu1—C25 | 1.928 (3) | N2—C13 | 1.422 (4) |
Cu1—N2 | 2.039 (2) | N3—C12 | 1.311 (4) |
Cu1—N3 | 2.056 (2) | N3—C19 | 1.431 (3) |
Cu1—H24 | 2.6692 | N4—C25 | 1.153 (4) |
N1—C1 | 1.150 (4) | N4—C26 | 1.458 (4) |
N1—C2 | 1.463 (4) | ||
C1—Cu1—C25 | 117.70 (12) | C1—Cu1—N3 | 104.18 (11) |
C1—Cu1—N2 | 112.67 (10) | C25—Cu1—N3 | 115.54 (11) |
C25—Cu1—N2 | 99.89 (11) | N2—Cu1—N3 | 106.60 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
C20—H20···F1i | 0.95 | 2.29 | 3.209 (4) | 162 |
Symmetry code: (i) x−1/2, −y+1/2, z−1/2. |
The diimine-substituted cyclopentadienyl 6-aminofulvene-2-aldimines (AFAs) have recently attracted attention as ligands for a variety of metals because of both their similarity to well established ligand systems such as β-diketiminate, aminotroponiminate or anilidoiminate ligands (Willcocks et al., 2011; Bailey et al., 2003, 2007, 2010) and their ability to bind to metal centres via the diimine donor groups or via the cyclopentadienyl unit (Bailey et al., 2003, 2007).
As part of a wider study into the coordination chemistry of CuI complexes, we have recently reported the double migratory insertion of phenyl isocyanide (Ph—NC) into two vicinal sp2 C—H bonds of the η5-coordinated cyclopentadienyl group in the complex [(η5-C5H5)Cu(CNPh)], resulting in the formation and isolation of the AFA complexes [(Ph2–AFA)Cu(CNPh)] and [(Ph2-AFA)Cu(CNPh)2}] (Johnson et al., 2009).
In an attempt to elucidate the mechanism by which the AFA complexes are formed and, more specifically, to better understand the effect that the isocyanide substituent has on the insertion reaction, we investigated a series of reactions between the complex [(η5-C5H5)Cu(CNtBu)] and varying amounts of alkyl and aryl isocyanides. The reaction of both [(η5-C5H5)Cu(CNtBu)] and [(η5-C5H5)Cu(CNPh)] with an excess of the alkyl isocyanide, CNtBu (ca 4 equivalents) was studied, but 1H NMR spectroscopic studies failed to establish any evidence of reaction. However, the analogous reaction of [(η5-C5H5)Cu(CNtBu)] (Kruck et al., 1993) with an excess (4 equivalents) of CNPh has been shown to produce the AFA complex, [(Ph2–AFA)Cu(CNPh)2], as evidenced by the appearance of indicative resonances for the ligand system in the 1H NMR spectra, and provides an alternative route for the synthesis of the complex (Johnson et al., 2009). We previously noted that the reaction of [(η5-C5H5)Cu(CNtBu)] with the electron-withdrawing isocyanides CN(p-C6H4F) and CN(p-C6H4NO2) shows a much more rapid production of AFA complexes (<< 12 h), indicating that the electronic nature of the isocyanide is a significant factor in the migratory insertion of isocyanides into C—H bonds of the Cu—C5H5 systems (Johnson et al., 2009).
The title complex, (I), was formed by the reaction of 4-fluorophenyl isocyanide with [(η5-C5H5)Cu(CNtBu)] in tetrahydrofuran in a copper-mediated insertion of two equivalents of CN(4-C6H4F) into two vicinal C—H bonds of the cyclopentadienyl moiety of the complex [(η5-C5H5)Cu(CNtBu)].
Complex (I) crystallizes in the monoclinic space group P21/n (Fig. 1) and an examination of the crystal packing shows no abnormally short intermolecular contacts. The shortest intermolecular interaction is 2.29 Å between atoms F1 and H20(x + 1/2, -y + 1/2, z + 1/2).
The molecular structure of (I) (Fig. 1) shows the CuI centre to be coordinated by the two N atoms of the AFA ligand and the two divalent C atoms of the isocyanide ligands (Table 1), which are comparable with the CuI–AFA and CuI–isocyanide interactions in related complexes (Willcocks et al., 2011), resulting in a coordination environment about the CuI centre that is best described as approximately tetrahedral. The cyclopentadienyl and imine portions of the AFA ligand are approximately coplanar. The dihedral angle between the C7–C11 and N2/C6/C7/C11/C12/N3 planes is 5.00 (3)°. The CuI atom is located 0.6460 (3) Å above the imine portion of the AFA ligand (N2/C6/C7/C11/C12/N3). As with related (AFA)Cu(CNR)2 complexes (Willcocks et al., 2011), the bite angle of the AFA ligand in (I) [N2—Cu1—N3 = 106.60 (9)°] is compressed, as a result of pyramidalization at the metal centre.
An interesting feature of this structure is the presence of an intramolecular C—H···Cu anagostic interaction in the solid state. The distance between the H atom and the CuI ion (Cu1···H24 = 2.67 Å and Cu1···H24—C24 = 114°) is shorter than the sum of their van der Waals radii (Nag et al., 2007). Similar interactions do not only represent a structural curiosity, but these largely electrostatic interactions are believed to have considerable relevance to many catalytic processes (Brookhart et al., 2007). The weak interaction between the ortho-CH group of one of the AFA imine substituents and the metal centre is facilitated by a concomitant re-orientation of the fluorophenyl imine substituent, such that the angle subtended between the phenyl ring and the plane defined by the backbone atoms of the AFA ligand, [C5(CN)2], is considerably closer to coplanarity [37.69 (4)°] than the aryl substituent, which does not engage in an additional interaction with the CuI centre [67.36 (4)°].
Both isocyanide ligands are distorted away from linearity, such that the isocyanide ligand C1 is oriented, or bent, towards the imine substituent on N2, and similarly the isocyanide ligand C25 is oriented towards the imine substituent on N3. Density functional theory calculations on related systems have suggested there is considerable flexibility in the coordination geometry about the copper centres in these systems, with only small energy differences between potential geometric isomers (Willcocks et al., 2011).