The novel title Zn
II coordination polymer, poly[bis(
-6-thioxo-1,6-dihydropyridine-3-carboxylato-
2S:
O)zinc(II)], [Zn(C
6H
4NO
2S)
2]
n, consists of two crystallographically independent zinc centers and two 6-mercaptonicotinate (Hmna
-) ligands. Each Zn
II atom is four-coordinated and lies at the center of a distorted tetrahedral ZnS
2O
2 coordination polyhedron, bridged by four Hmna
- ligands to form a two-dimensional (4,4)-network. Each Hmna
- ion acts as a bridging bidentate ligand, coordinating to two Zn
II atoms through the S atom and a carboxyl O atom. The metal centers reside on twofold rotation axes. The coordination mode of the S atoms and N-H
O hydrogen-bonding interactions between the protonated N atoms and the uncoordinated carboxyl O atoms give the extended structure a wavelike form.
Supporting information
CCDC reference: 677207
A mixture of Zn(CH3COO)2·2H2O (0.0658 g), H2mna (0.0466 g), NaOH
(0.012 g) and water (10 ml) was stirred for 20 min in air. The mixture was
then transferred to a 23 ml Teflon reactor and kept at 438 K for 3 d under
autogenous pressure, then cooled to room temperature at a rate of 5 K h-1.
Colorless block-like crystals of (I) were obtained; they were washed with
distilled water and dried at room temperature (yield ca 50% based on
Zn). Elemental analysis found: C 38.64, H 2.10, N 7.62%; calculated: C 38.57,
H 2.16, N 7.50%.
All H atoms were generated geometrically and included as riding atoms, with
C—H = 0.93 Å, N—H = 0.86 Å and Uiso(H)=
1.2Ueq(C,N).
Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: program (reference)?.
poly[bis(µ-6-mercaptonicotinato-
κ2S:
O)zinc(II)]
top
Crystal data top
[Zn(C6H4NO2S)2] | F(000) = 752 |
Mr = 373.69 | Dx = 1.828 Mg m−3 |
Monoclinic, P2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.4079 (8) Å | Cell parameters from 7030 reflections |
b = 6.5765 (4) Å | θ = 1.6–28.3° |
c = 16.0390 (9) Å | µ = 2.13 mm−1 |
β = 106.283 (1)° | T = 293 K |
V = 1357.54 (14) Å3 | Block, colorless |
Z = 4 | 0.23 × 0.19 × 0.14 mm |
Data collection top
Bruker SMART APEXII CCD diffractometer | 3222 independent reflections |
Radiation source: fine-focus sealed tube | 2531 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ϕ and ω scans | θmax = 28.4°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −15→17 |
Tmin = 0.640, Tmax = 0.755 | k = −7→8 |
8024 measured reflections | l = −21→20 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0499P)2] where P = (Fo2 + 2Fc2)/3 |
3222 reflections | (Δ/σ)max = 0.001 |
191 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
Crystal data top
[Zn(C6H4NO2S)2] | V = 1357.54 (14) Å3 |
Mr = 373.69 | Z = 4 |
Monoclinic, P2/c | Mo Kα radiation |
a = 13.4079 (8) Å | µ = 2.13 mm−1 |
b = 6.5765 (4) Å | T = 293 K |
c = 16.0390 (9) Å | 0.23 × 0.19 × 0.14 mm |
β = 106.283 (1)° | |
Data collection top
Bruker SMART APEXII CCD diffractometer | 3222 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2531 reflections with I > 2σ(I) |
Tmin = 0.640, Tmax = 0.755 | Rint = 0.037 |
8024 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.37 e Å−3 |
3222 reflections | Δρmin = −0.42 e Å−3 |
191 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Zn1 | 0.5000 | −0.34394 (6) | 0.7500 | 0.02530 (13) | |
Zn2 | 0.0000 | 0.21258 (6) | 0.2500 | 0.02685 (13) | |
S1 | 0.43938 (6) | −0.52761 (10) | 0.62292 (4) | 0.03456 (19) | |
S2 | 0.96122 (6) | 0.60438 (12) | 0.86184 (5) | 0.0372 (2) | |
O1 | 0.09182 (14) | 0.0180 (3) | 0.32820 (12) | 0.0341 (5) | |
O2 | 0.22106 (16) | 0.2440 (3) | 0.36875 (13) | 0.0369 (5) | |
O3 | 0.62239 (15) | −0.1658 (3) | 0.76481 (13) | 0.0344 (5) | |
O4 | 0.56008 (15) | 0.0335 (3) | 0.64862 (13) | 0.0381 (5) | |
N1 | 0.38953 (17) | −0.1566 (3) | 0.55170 (14) | 0.0265 (5) | |
H1 | 0.4491 | −0.1199 | 0.5847 | 0.032* | |
N2 | 0.79097 (16) | 0.4525 (3) | 0.74755 (14) | 0.0274 (5) | |
H2 | 0.7918 | 0.5632 | 0.7193 | 0.033* | |
C1 | 0.1796 (2) | 0.0782 (4) | 0.37571 (16) | 0.0274 (6) | |
C2 | 0.23661 (19) | −0.0677 (4) | 0.44346 (15) | 0.0236 (5) | |
C3 | 0.1986 (2) | −0.2630 (4) | 0.45163 (18) | 0.0302 (6) | |
H3 | 0.1323 | −0.2988 | 0.4184 | 0.036* | |
C4 | 0.2577 (2) | −0.4014 (4) | 0.50771 (17) | 0.0313 (6) | |
H4 | 0.2314 | −0.5305 | 0.5123 | 0.038* | |
C5 | 0.3580 (2) | −0.3503 (4) | 0.55854 (16) | 0.0264 (6) | |
C6 | 0.3333 (2) | −0.0187 (4) | 0.49645 (15) | 0.0261 (5) | |
H6 | 0.3600 | 0.1110 | 0.4940 | 0.031* | |
C7 | 0.6236 (2) | −0.0083 (4) | 0.71967 (17) | 0.0266 (6) | |
C8 | 0.7101 (2) | 0.1385 (4) | 0.75667 (17) | 0.0243 (5) | |
C9 | 0.7883 (2) | 0.0983 (4) | 0.83314 (17) | 0.0308 (6) | |
H9 | 0.7878 | −0.0236 | 0.8624 | 0.037* | |
C10 | 0.8657 (2) | 0.2366 (4) | 0.86529 (19) | 0.0328 (6) | |
H10 | 0.9173 | 0.2080 | 0.9162 | 0.039* | |
C11 | 0.8679 (2) | 0.4216 (4) | 0.82207 (16) | 0.0269 (6) | |
C12 | 0.7140 (2) | 0.3202 (4) | 0.71574 (17) | 0.0258 (6) | |
H12 | 0.6624 | 0.3518 | 0.6652 | 0.031* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Zn1 | 0.0258 (2) | 0.0236 (2) | 0.0238 (2) | 0.000 | 0.00250 (18) | 0.000 |
Zn2 | 0.0208 (2) | 0.0254 (2) | 0.0292 (2) | 0.000 | −0.00152 (18) | 0.000 |
S1 | 0.0449 (4) | 0.0236 (4) | 0.0269 (3) | 0.0092 (3) | −0.0036 (3) | −0.0022 (3) |
S2 | 0.0365 (4) | 0.0373 (4) | 0.0313 (4) | −0.0139 (3) | −0.0014 (3) | 0.0040 (3) |
O1 | 0.0256 (10) | 0.0308 (10) | 0.0363 (10) | 0.0035 (8) | −0.0072 (8) | 0.0020 (9) |
O2 | 0.0400 (12) | 0.0268 (10) | 0.0350 (11) | −0.0014 (9) | −0.0042 (9) | 0.0072 (9) |
O3 | 0.0322 (11) | 0.0321 (11) | 0.0358 (11) | −0.0077 (8) | 0.0046 (9) | 0.0092 (9) |
O4 | 0.0295 (10) | 0.0336 (11) | 0.0419 (11) | −0.0067 (9) | −0.0054 (9) | 0.0101 (9) |
N1 | 0.0210 (11) | 0.0274 (12) | 0.0258 (11) | −0.0004 (9) | −0.0022 (9) | 0.0013 (9) |
N2 | 0.0283 (12) | 0.0208 (11) | 0.0310 (11) | −0.0008 (9) | 0.0050 (10) | 0.0037 (9) |
C1 | 0.0288 (14) | 0.0272 (14) | 0.0232 (12) | 0.0076 (11) | 0.0025 (11) | −0.0022 (11) |
C2 | 0.0222 (12) | 0.0240 (13) | 0.0218 (12) | 0.0011 (10) | 0.0017 (10) | 0.0001 (10) |
C3 | 0.0239 (14) | 0.0324 (15) | 0.0289 (14) | −0.0054 (11) | −0.0016 (11) | −0.0003 (12) |
C4 | 0.0357 (15) | 0.0233 (13) | 0.0314 (14) | −0.0068 (12) | 0.0037 (12) | 0.0013 (12) |
C5 | 0.0309 (14) | 0.0236 (13) | 0.0209 (12) | 0.0021 (11) | 0.0011 (11) | −0.0010 (10) |
C6 | 0.0293 (13) | 0.0227 (13) | 0.0232 (12) | 0.0000 (11) | 0.0024 (11) | 0.0030 (11) |
C7 | 0.0219 (13) | 0.0261 (14) | 0.0322 (14) | −0.0002 (10) | 0.0079 (11) | −0.0015 (11) |
C8 | 0.0227 (13) | 0.0231 (13) | 0.0276 (13) | 0.0000 (10) | 0.0082 (11) | 0.0013 (11) |
C9 | 0.0309 (15) | 0.0290 (14) | 0.0307 (14) | −0.0004 (11) | 0.0058 (12) | 0.0080 (12) |
C10 | 0.0262 (14) | 0.0359 (16) | 0.0306 (14) | −0.0024 (12) | −0.0012 (12) | 0.0059 (12) |
C11 | 0.0231 (13) | 0.0281 (14) | 0.0274 (13) | −0.0014 (11) | 0.0036 (11) | 0.0011 (11) |
C12 | 0.0221 (13) | 0.0260 (14) | 0.0267 (13) | 0.0005 (10) | 0.0023 (11) | 0.0014 (11) |
Geometric parameters (Å, º) top
Zn1—O3 | 1.9757 (19) | N2—C11 | 1.357 (3) |
Zn1—O3i | 1.9757 (19) | N2—H2 | 0.8600 |
Zn1—S1 | 2.3119 (7) | C1—C2 | 1.490 (3) |
Zn1—S1i | 2.3119 (7) | C2—C6 | 1.374 (3) |
Zn2—O1ii | 1.9648 (18) | C2—C3 | 1.401 (4) |
Zn2—O1 | 1.9648 (18) | C3—C4 | 1.366 (4) |
Zn2—S2iii | 2.3367 (8) | C3—H3 | 0.9300 |
Zn2—S2iv | 2.3367 (8) | C4—C5 | 1.404 (4) |
S1—C5 | 1.728 (3) | C4—H4 | 0.9300 |
S2—C11 | 1.723 (3) | C6—H6 | 0.9300 |
S2—Zn2iv | 2.3367 (8) | C7—C8 | 1.497 (3) |
O1—C1 | 1.273 (3) | C8—C12 | 1.372 (3) |
O2—C1 | 1.243 (3) | C8—C9 | 1.398 (4) |
O3—C7 | 1.266 (3) | C9—C10 | 1.367 (4) |
O4—C7 | 1.247 (3) | C9—H9 | 0.9300 |
N1—C6 | 1.342 (3) | C10—C11 | 1.404 (4) |
N1—C5 | 1.356 (3) | C10—H10 | 0.9300 |
N1—H1 | 0.8600 | C12—H12 | 0.9300 |
N2—C12 | 1.337 (3) | | |
| | | |
O3—Zn1—O3i | 107.26 (12) | C4—C3—H3 | 119.6 |
O3—Zn1—S1 | 119.38 (6) | C2—C3—H3 | 119.6 |
O3i—Zn1—S1 | 97.41 (6) | C3—C4—C5 | 120.5 (2) |
O3—Zn1—S1i | 97.41 (6) | C3—C4—H4 | 119.8 |
O3i—Zn1—S1i | 119.38 (6) | C5—C4—H4 | 119.8 |
S1—Zn1—S1i | 117.00 (4) | N1—C5—C4 | 116.6 (2) |
O1ii—Zn2—O1 | 98.72 (11) | N1—C5—S1 | 121.6 (2) |
O1ii—Zn2—S2iii | 126.23 (6) | C4—C5—S1 | 121.8 (2) |
O1—Zn2—S2iii | 94.59 (6) | N1—C6—C2 | 120.5 (2) |
O1ii—Zn2—S2iv | 94.59 (6) | N1—C6—H6 | 119.7 |
O1—Zn2—S2iv | 126.23 (6) | C2—C6—H6 | 119.7 |
S2iii—Zn2—S2iv | 117.98 (4) | O4—C7—O3 | 126.0 (2) |
C5—S1—Zn1 | 100.44 (9) | O4—C7—C8 | 118.3 (2) |
C11—S2—Zn2iv | 111.71 (9) | O3—C7—C8 | 115.7 (2) |
C1—O1—Zn2 | 119.22 (17) | C12—C8—C9 | 117.7 (2) |
C7—O3—Zn1 | 124.05 (17) | C12—C8—C7 | 120.1 (2) |
C6—N1—C5 | 123.9 (2) | C9—C8—C7 | 122.2 (2) |
C6—N1—H1 | 118.0 | C10—C9—C8 | 120.6 (2) |
C5—N1—H1 | 118.0 | C10—C9—H9 | 119.7 |
C12—N2—C11 | 123.6 (2) | C8—C9—H9 | 119.7 |
C12—N2—H2 | 118.2 | C9—C10—C11 | 120.6 (2) |
C11—N2—H2 | 118.2 | C9—C10—H10 | 119.7 |
O2—C1—O1 | 125.5 (2) | C11—C10—H10 | 119.7 |
O2—C1—C2 | 118.7 (2) | N2—C11—C10 | 116.6 (2) |
O1—C1—C2 | 115.8 (2) | N2—C11—S2 | 121.0 (2) |
C6—C2—C3 | 117.5 (2) | C10—C11—S2 | 122.4 (2) |
C6—C2—C1 | 120.1 (2) | N2—C12—C8 | 120.9 (2) |
C3—C2—C1 | 122.2 (2) | N2—C12—H12 | 119.5 |
C4—C3—C2 | 120.9 (2) | C8—C12—H12 | 119.5 |
| | | |
O3—Zn1—S1—C5 | −86.43 (12) | Zn1—S1—C5—C4 | −134.3 (2) |
O3i—Zn1—S1—C5 | 28.19 (12) | C5—N1—C6—C2 | 1.4 (4) |
S1i—Zn1—S1—C5 | 156.63 (10) | C3—C2—C6—N1 | 2.0 (4) |
O1ii—Zn2—O1—C1 | 161.8 (2) | C1—C2—C6—N1 | −173.4 (2) |
S2iii—Zn2—O1—C1 | −70.4 (2) | Zn1—O3—C7—O4 | −17.5 (4) |
S2iv—Zn2—O1—C1 | 59.5 (2) | Zn1—O3—C7—C8 | 162.43 (17) |
O3i—Zn1—O3—C7 | −43.26 (19) | O4—C7—C8—C12 | 4.5 (4) |
S1—Zn1—O3—C7 | 66.0 (2) | O3—C7—C8—C12 | −175.4 (2) |
S1i—Zn1—O3—C7 | −167.2 (2) | O4—C7—C8—C9 | −176.0 (3) |
Zn2—O1—C1—O2 | −11.3 (4) | O3—C7—C8—C9 | 4.1 (4) |
Zn2—O1—C1—C2 | 170.07 (16) | C12—C8—C9—C10 | 0.0 (4) |
O2—C1—C2—C6 | −0.4 (4) | C7—C8—C9—C10 | −179.6 (3) |
O1—C1—C2—C6 | 178.3 (2) | C8—C9—C10—C11 | 0.0 (4) |
O2—C1—C2—C3 | −175.5 (3) | C12—N2—C11—C10 | 1.7 (4) |
O1—C1—C2—C3 | 3.2 (4) | C12—N2—C11—S2 | −176.9 (2) |
C6—C2—C3—C4 | −2.7 (4) | C9—C10—C11—N2 | −0.8 (4) |
C1—C2—C3—C4 | 172.6 (2) | C9—C10—C11—S2 | 177.8 (2) |
C2—C3—C4—C5 | 0.1 (4) | Zn2iv—S2—C11—N2 | −33.3 (2) |
C6—N1—C5—C4 | −3.9 (4) | Zn2iv—S2—C11—C10 | 148.2 (2) |
C6—N1—C5—S1 | 173.3 (2) | C11—N2—C12—C8 | −1.8 (4) |
C3—C4—C5—N1 | 3.1 (4) | C9—C8—C12—N2 | 0.9 (4) |
C3—C4—C5—S1 | −174.2 (2) | C7—C8—C12—N2 | −179.6 (2) |
Zn1—S1—C5—N1 | 48.5 (2) | | |
Symmetry codes: (i) −x+1, y, −z+3/2; (ii) −x, y, −z+1/2; (iii) x−1, −y+1, z−1/2; (iv) −x+1, −y+1, −z+1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4 | 0.86 | 1.85 | 2.686 (3) | 163 |
N2—H2···O2iv | 0.86 | 1.87 | 2.706 (3) | 164 |
Symmetry code: (iv) −x+1, −y+1, −z+1. |
Experimental details
Crystal data |
Chemical formula | [Zn(C6H4NO2S)2] |
Mr | 373.69 |
Crystal system, space group | Monoclinic, P2/c |
Temperature (K) | 293 |
a, b, c (Å) | 13.4079 (8), 6.5765 (4), 16.0390 (9) |
β (°) | 106.283 (1) |
V (Å3) | 1357.54 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.13 |
Crystal size (mm) | 0.23 × 0.19 × 0.14 |
|
Data collection |
Diffractometer | Bruker SMART APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.640, 0.755 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8024, 3222, 2531 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.670 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.094, 1.00 |
No. of reflections | 3222 |
No. of parameters | 191 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.42 |
Selected geometric parameters (Å, º) topZn1—O3 | 1.9757 (19) | Zn2—O1 | 1.9648 (18) |
Zn1—S1 | 2.3119 (7) | Zn2—S2i | 2.3367 (8) |
| | | |
O3—Zn1—O3ii | 107.26 (12) | O1iii—Zn2—O1 | 98.72 (11) |
O3—Zn1—S1 | 119.38 (6) | O1—Zn2—S2iv | 94.59 (6) |
O3ii—Zn1—S1 | 97.41 (6) | O1—Zn2—S2i | 126.23 (6) |
S1—Zn1—S1ii | 117.00 (4) | S2iv—Zn2—S2i | 117.98 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y, −z+3/2; (iii) −x, y, −z+1/2; (iv) x−1, −y+1, z−1/2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4 | 0.86 | 1.85 | 2.686 (3) | 163.2 |
N2—H2···O2i | 0.86 | 1.87 | 2.706 (3) | 164.0 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
In recent years, research on coordination polymers has expanded rapidly because of their fascinating structural diversity and potential applications as functional materials (Batten & Robson, 1998; Moulton & Zaworotko, 2001). Multifunctional carboxylates and related species provide an effective means of designing novel hybrid materials with porous structures and other interesting properties (Kitagawa et al., 2004; Yaghi et al., 2003). In contrast with the large amount of work on ligands containing O or N donors, there have been fewer reports of studies based on organothiolate ligands. Three kinds of organothiolate ligands, viz. thiolatopyridine (Han et al., 2004; Su et al., 2000), thiolatocarboxylate (Cave et al., 2002) and thiolatopyridinecarboxylate (Humphrey et al., 2005, 2006) have been explored to construct structures with luminescent or magnetic properties. 6-Mercaptonicotinic acid (H2mna), which exists in solution as an equilibrium mixture of thiol and thione tautomeric forms, is an interesting ligand in the thiolatopyridinecarboxylate system because of its potential coordination possibilities, which include (a) an S,N-donor chelate and carboxyl uncoordinated mode (Nomiya et al., 2003), (b) an S,N-donor chelate and carboxyl multidentate mode (Humphrey et al., 2005, 2006), (c) an S,N-donor chelate and O,O-chelation bridging mode (Humphrey et al., 2005, 2006), (d) a single S-donor and carboxyl monodentate mode, and (e) an S,N-donor chelate and carboxyl monodentate mode. In addition, it can act not only as a hydrogen-bond donor but also as a hydrogen-bond acceptor, owing to the existence of deprotonated and/or protonated carboxyl groups and pyridine N atoms, as well as the thiol or thione group. These considerations prompted our interest in the structure patterns of the H2mna ligand. In this paper, we report the preparation and crystal structure of a novel two-dimensional coordination polymer, (I), formulated [Zn(Hmna)2]n.
The asymmetric unit of (I) consists of two zinc centers and two Hmna- ligands (Fig. 1). Each ZnII atom sits on a twofold rotation axis and is coordinated by two O atoms and two S atoms from four different Hmna- ligands in a typical distorted tetrahedral coordination geometry (Table 1). The bond lengths and angles involving Zn, O and S are similar to those in analogous zinc coordination polymers (Humphrey et al., 2004). The two Hmna- ligands in the asymmetric unit adopt the same coordination mode, i.e. the thione coordinates to the Zn atoms and the carboxyl group links the Zn atoms in a monodentate coordination fashion [mode (d) above]. To the best of our knowledge, (I) is the first example with this coordination mode (d) of the H2mna ligand. In the molecular structure, the C5—S1 and C11—S2 bond lengths [1.728 (3) and 1.723 (3) Å] are indicative of double bonds, similar to those in a number of structures reported previously (Chung et al., 2003; Lobana et al., 2005). The C5—S1—Zn1 and C11—S2—Zn2i [symmetry code: (i) -x + 1, -y + 1, -z + 1] bond angles are 100.44 (9) and 111.71 (9)°, respectively.
The molecules of (I) form an extended two-dimensional network involving coordination frameworks of (4,4)-topology (Fig. 2). In the grid, the adjacent Zn···Zn distances (linked by Hmna- ligands) are 10.015 and 9.618 Å, so each 4 × 4 unit is an approximate rhombus. Considering the ZnII atoms as three-connected nodes, the corrugated metal-organic framework can be represented as a two-dimensional distorted sheet of (4,4)-topology in the ac plane. These layers are then stacked on top of each other to give rise to the final structure (Fig. 3).
There are some significant hydrogen-bonding interactions between the protonated N atoms of the Hmna- ligands (owing to the thiol–thione tautomerism) and the uncoordinated carboxyl O atoms (Table 2). The coordination mode of the S atoms and the hydrogen-bonding interactions lead the complex to form a wavelike extended structure along the (010) plane (Fig. 3).