Download citation
Download citation
link to html
The double phosphate Cs3In3(PO4)4, prepared by a flux technique, features a fragment of composition In3O16 formed by three corner-sharing InO6 polyhedra. The central In atom resides on a twofold rotation axis, while the other two In atoms are on general positions. The O atoms in this fragment also belong to PO4 tetra­hedra, which link the structure into an overall three-dimensional anionic In-O-P network that is penetrated by tunnels running along c. Two independent Cs+ cations reside inside the tunnels, one of which sits on a centre of inversion. In general, the organization of the framework is similar to that of K3In3(PO4)4, which also contains an In3O16 fragment. However, in the latter case the unit consists of one InO7 polyhedron and one InO6 polyhedron sharing an edge, with a third InO6 octa­hedron connected via a shared corner. Calculations of the Voronoi-Dirichlet polyhedra of the alkali metals give coordination schemes for Cs of [9+2] and [8+4] (\overline{1} symmetry), and for K of [8+1], [7+2] and [7+2]. This structural analysis shows that the coordination requirements of the alkali metals residing inside the tunnels cause the difference in the In3O16 geometry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110017695/sq3240sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110017695/sq3240Isup2.hkl
Contains datablock I

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

tricaesium triindium tetraphosphate top
Crystal data top
Cs3In3(PO4)4F(000) = 2000
Mr = 1123.07Dx = 4.541 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 16601 reflections
a = 16.4370 (2) Åθ = 2.9–41.0°
b = 10.0498 (1) ŵ = 11.20 mm1
c = 9.9473 (1) ÅT = 293 K
β = 91.485 (1)°Prism, colourless
V = 1642.63 (3) Å30.20 × 0.10 × 0.01 mm
Z = 4
Data collection top
Goniometer Kuma KM4/Oxford Xcalibur, detector Oxford Sapphire3
diffractometer
5338 independent reflections
Radiation source: fine-focus sealed tube4413 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 16.1827 pixels mm-1θmax = 41.1°, θmin = 3.1°
ω and φ scansh = 2930
Absorption correction: multi-scan
(Blessing, 1995)
k = 1818
Tmin = 0.213, Tmax = 0.896l = 1818
27935 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0386P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.070(Δ/σ)max = 0.001
S = 1.04Δρmax = 2.77 e Å3
5338 reflectionsΔρmin = 2.75 e Å3
121 parametersExtinction correction: SHELXL97 (Sheldrick, 2008)
0 restraintsExtinction coefficient: 0.00171 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
In100.083779 (17)0.750.00754 (3)
In20.146950 (7)0.181510 (12)0.330465 (12)0.00814 (2)
Cs10.112225 (10)0.443900 (17)0.685605 (19)0.02624 (3)
Cs20.250.2500.03236 (5)
P10.01047 (3)0.21533 (5)1.06136 (5)0.00772 (7)
P20.19943 (3)0.08388 (5)0.64501 (5)0.00782 (7)
O10.08536 (9)0.25042 (16)1.14726 (15)0.0133 (3)
O20.02972 (8)0.08288 (14)1.11447 (14)0.0100 (2)
O30.03625 (9)0.20895 (16)0.91492 (15)0.0133 (3)
O40.05995 (9)0.31631 (14)1.07579 (16)0.0126 (2)
O50.21365 (10)0.05580 (15)0.70291 (16)0.0141 (3)
O60.20687 (10)0.08089 (17)0.49120 (16)0.0158 (3)
O70.26633 (10)0.17355 (16)0.70490 (17)0.0168 (3)
O80.11668 (9)0.13462 (18)0.68684 (18)0.0171 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.00733 (5)0.00768 (6)0.00759 (6)00.00000 (5)0
In20.00714 (4)0.00940 (4)0.00787 (4)0.00084 (3)0.00006 (3)0.00003 (3)
Cs10.02532 (6)0.01944 (6)0.03344 (8)0.00252 (5)0.00935 (6)0.00558 (6)
Cs20.05061 (13)0.02570 (10)0.02180 (9)0.00504 (10)0.02102 (9)0.00841 (8)
P10.00733 (14)0.00904 (16)0.00675 (16)0.00041 (13)0.00036 (13)0.00028 (13)
P20.00682 (14)0.00909 (16)0.00757 (17)0.00131 (13)0.00023 (13)0.00058 (13)
O10.0115 (5)0.0171 (6)0.0112 (6)0.0027 (5)0.0032 (4)0.0014 (5)
O20.0101 (4)0.0090 (5)0.0108 (5)0.0009 (4)0.0002 (4)0.0020 (4)
O30.0153 (5)0.0167 (6)0.0079 (5)0.0050 (5)0.0012 (4)0.0011 (4)
O40.0110 (5)0.0110 (5)0.0159 (6)0.0022 (4)0.0013 (5)0.0026 (4)
O50.0190 (6)0.0107 (5)0.0128 (6)0.0016 (5)0.0018 (5)0.0034 (4)
O60.0174 (6)0.0214 (7)0.0085 (5)0.0032 (5)0.0004 (5)0.0025 (5)
O70.0151 (5)0.0172 (6)0.0179 (7)0.0094 (5)0.0014 (5)0.0003 (5)
O80.0095 (5)0.0208 (7)0.0212 (7)0.0017 (5)0.0055 (5)0.0002 (6)
Geometric parameters (Å, º) top
In1—O82.0968 (14)Cs2—O3iv3.6161 (15)
In1—O8i2.0968 (14)Cs2—O3v3.6161 (15)
In1—O32.1396 (15)Cs2—O8v3.937 (2)
In1—O3i2.1396 (15)Cs2—O8v3.937 (2)
In1—O2ii2.1971 (14)P1—O11.5216 (15)
In1—O2iii2.1971 (14)P1—O31.5290 (15)
In2—O7iv2.0744 (15)P1—O41.5488 (15)
In2—O62.1136 (16)P1—O21.5828 (14)
In2—O5ii2.1166 (15)P2—O81.5207 (15)
In2—O1v2.1748 (15)P2—O71.5305 (16)
In2—O4i2.1953 (14)P2—O51.5329 (16)
In2—O2i2.2473 (14)P2—O61.5384 (16)
Cs1—O4i3.0046 (16)O1—In2x2.1748 (15)
Cs1—O5vi3.0426 (16)O1—Cs2x3.1104 (15)
Cs1—O83.1090 (18)O1—Cs1xi3.1256 (16)
Cs1—O1vii3.1256 (16)O2—In1iii2.1971 (14)
Cs1—O7vi3.2225 (17)O2—In2i2.2473 (14)
Cs1—O6iv3.5025 (16)O3—Cs1i3.5220 (16)
Cs1—O4viii3.5050 (15)O3—Cs2x3.6161 (15)
Cs1—O3i3.5220 (16)O4—In2i2.1953 (14)
Cs1—O33.5334 (15)O4—Cs1i3.0046 (16)
Cs1—O73.7162 (17)O4—Cs1viii3.5050 (15)
Cs1—O4vii3.854 (2)O5—In2xii2.1166 (15)
Cs2—O5ii2.8814 (16)O5—Cs2xiii2.8814 (16)
Cs2—O5ix2.8814 (16)O5—Cs1xiv3.0426 (16)
Cs2—O7iv3.0529 (17)O6—Cs2xiii3.4008 (17)
Cs2—O7v3.0529 (17)O6—Cs1iv3.5025 (16)
Cs2—O1v3.1104 (15)O7—In2iv2.0744 (15)
Cs2—O1iv3.1104 (15)O7—Cs2x3.0529 (17)
Cs2—O6ii3.4008 (17)O7—Cs1xiv3.2225 (17)
Cs2—O6ix3.4008 (17)
O8—In1—O8i151.79 (10)O7iv—Cs2—O1iv123.54 (4)
O8—In1—O381.24 (6)O7v—Cs2—O1iv56.46 (4)
O8i—In1—O382.28 (6)O1v—Cs2—O1iv180.00 (5)
O8—In1—O3i82.28 (6)O5ii—Cs2—O6ii46.28 (4)
O8i—In1—O3i81.24 (6)O5ix—Cs2—O6ii133.72 (4)
O3—In1—O3i107.98 (9)O7iv—Cs2—O6ii104.32 (4)
O8—In1—O2ii101.09 (6)O7v—Cs2—O6ii75.68 (4)
O8i—In1—O2ii100.32 (6)O1v—Cs2—O6ii80.22 (4)
O3—In1—O2ii166.34 (6)O1iv—Cs2—O6ii99.78 (4)
O3i—In1—O2ii85.68 (6)O5ii—Cs2—O6ix133.72 (4)
O8—In1—O2iii100.32 (6)O5ix—Cs2—O6ix46.28 (4)
O8i—In1—O2iii101.09 (6)O7iv—Cs2—O6ix75.68 (4)
O3—In1—O2iii85.68 (6)O7v—Cs2—O6ix104.32 (4)
O3i—In1—O2iii166.34 (6)O1v—Cs2—O6ix99.78 (4)
O2ii—In1—O2iii80.66 (8)O1iv—Cs2—O6ix80.22 (4)
O8—In1—Cs147.36 (5)O6ii—Cs2—O6ix180.000 (12)
O8i—In1—Cs1104.43 (5)O5ii—Cs2—O3iv97.54 (4)
O3—In1—Cs159.06 (4)O5ix—Cs2—O3iv82.46 (4)
O3i—In1—Cs158.75 (4)O7iv—Cs2—O3iv81.68 (4)
O2ii—In1—Cs1131.88 (4)O7v—Cs2—O3iv98.32 (4)
O2iii—In1—Cs1132.20 (4)O1v—Cs2—O3iv137.86 (4)
O8—In1—Cs1i104.43 (5)O1iv—Cs2—O3iv42.14 (4)
O8i—In1—Cs1i47.36 (5)O6ii—Cs2—O3iv108.55 (4)
O3—In1—Cs1i58.75 (4)O6ix—Cs2—O3iv71.45 (4)
O3i—In1—Cs1i59.06 (4)O5ii—Cs2—O3v82.46 (4)
O2ii—In1—Cs1i132.20 (4)O5ix—Cs2—O3v97.54 (4)
O2iii—In1—Cs1i131.88 (4)O7iv—Cs2—O3v98.32 (4)
Cs1—In1—Cs1i57.080 (5)O7v—Cs2—O3v81.68 (4)
O7iv—In2—O698.94 (7)O1v—Cs2—O3v42.14 (4)
O7iv—In2—O5ii87.06 (6)O1iv—Cs2—O3v137.86 (4)
O6—In2—O5ii85.95 (6)O6ii—Cs2—O3v71.45 (4)
O7iv—In2—O1v86.63 (6)O6ix—Cs2—O3v108.55 (4)
O6—In2—O1v169.70 (6)O3iv—Cs2—O3v180.000 (12)
O5ii—In2—O1v85.69 (6)O5ii—Cs2—P2ii22.09 (3)
O7iv—In2—O4i95.55 (6)O5ix—Cs2—P2ii157.91 (3)
O6—In2—O4i105.66 (6)O7iv—Cs2—P2ii80.19 (3)
O5ii—In2—O4i167.48 (6)O7v—Cs2—P2ii99.81 (3)
O1v—In2—O4i82.26 (6)O1v—Cs2—P2ii67.43 (3)
O7iv—In2—O2i161.50 (6)O1iv—Cs2—P2ii112.57 (3)
O6—In2—O2i89.45 (6)O6ii—Cs2—P2ii24.19 (3)
O5ii—In2—O2i110.09 (6)O6ix—Cs2—P2ii155.81 (3)
O1v—In2—O2i87.78 (5)O3iv—Cs2—P2ii103.62 (3)
O4i—In2—O2i66.20 (5)O3v—Cs2—P2ii76.38 (3)
O7iv—In2—P1i127.97 (5)O5ii—Cs2—P2ix157.91 (3)
O6—In2—P1i100.45 (4)O5ix—Cs2—P2ix22.09 (3)
O5ii—In2—P1i141.94 (4)O7iv—Cs2—P2ix99.81 (3)
O1v—In2—P1i82.58 (4)O7v—Cs2—P2ix80.19 (3)
O4i—In2—P1i32.62 (4)O1v—Cs2—P2ix112.57 (3)
O2i—In2—P1i33.64 (4)O1iv—Cs2—P2ix67.43 (3)
O7iv—In2—Cs253.30 (5)O6ii—Cs2—P2ix155.81 (3)
O6—In2—Cs2122.12 (4)O6ix—Cs2—P2ix24.19 (3)
O5ii—In2—Cs248.71 (4)O3iv—Cs2—P2ix76.38 (3)
O1v—In2—Cs254.95 (4)O3v—Cs2—P2ix103.62 (3)
O4i—In2—Cs2124.45 (4)P2ii—Cs2—P2ix180.000 (6)
O2i—In2—Cs2134.03 (4)O1—P1—O3107.74 (8)
P1i—In2—Cs2137.300 (10)O1—P1—O4113.07 (9)
O7iv—In2—Cs1vii51.72 (5)O3—P1—O4110.00 (9)
O6—In2—Cs1vii140.30 (5)O1—P1—O2110.24 (8)
O5ii—In2—Cs1vii114.23 (4)O3—P1—O2114.27 (8)
O1v—In2—Cs1vii49.47 (4)O4—P1—O2101.58 (8)
O4i—In2—Cs1vii59.48 (4)O1—P1—In2i123.03 (6)
O2i—In2—Cs1vii112.42 (4)O3—P1—In2i129.19 (6)
P1i—In2—Cs1vii84.424 (10)O4—P1—In2i49.82 (6)
Cs2—In2—Cs1vii65.625 (3)O2—P1—In2i51.87 (5)
O7iv—In2—Cs1iv63.11 (5)O1—P1—Cs1i128.07 (6)
O6—In2—Cs1iv57.25 (4)O3—P1—Cs1i64.84 (6)
O5ii—In2—Cs1iv44.62 (4)O4—P1—Cs1i45.16 (6)
O1v—In2—Cs1iv119.13 (4)O2—P1—Cs1i119.57 (5)
O4i—In2—Cs1iv146.52 (4)In2i—P1—Cs1i81.246 (11)
O2i—In2—Cs1iv134.29 (4)O1—P1—Cs1xi45.67 (6)
P1i—In2—Cs1iv157.673 (11)O3—P1—Cs1xi101.93 (6)
Cs2—In2—Cs1iv64.900 (3)O4—P1—Cs1xi73.58 (6)
Cs1vii—In2—Cs1iv113.064 (4)O2—P1—Cs1xi142.47 (6)
O7iv—In2—Cs179.72 (5)In2i—P1—Cs1xi111.268 (14)
O6—In2—Cs175.54 (5)Cs1i—P1—Cs1xi83.981 (10)
O5ii—In2—Cs1155.13 (4)O1—P1—Cs2x44.20 (6)
O1v—In2—Cs1114.17 (4)O3—P1—Cs2x64.00 (6)
O4i—In2—Cs136.86 (4)O4—P1—Cs2x134.06 (6)
O2i—In2—Cs186.53 (4)O2—P1—Cs2x122.89 (5)
P1i—In2—Cs159.582 (10)In2i—P1—Cs2x166.362 (17)
Cs2—In2—Cs1130.367 (4)Cs1i—P1—Cs2x110.320 (11)
Cs1vii—In2—Cs173.346 (3)Cs1xi—P1—Cs2x64.413 (7)
Cs1iv—In2—Cs1110.557 (4)O8—P2—O7109.56 (10)
O4i—Cs1—O5vi124.13 (4)O8—P2—O5109.45 (9)
O4i—Cs1—O865.35 (4)O7—P2—O5106.97 (9)
O5vi—Cs1—O888.72 (4)O8—P2—O6111.93 (9)
O4i—Cs1—O1vii106.11 (4)O7—P2—O6108.89 (10)
O5vi—Cs1—O1vii99.91 (4)O5—P2—O6109.91 (9)
O8—Cs1—O1vii170.51 (4)O8—P2—Cs2xiii127.84 (7)
O4i—Cs1—O7vi139.37 (4)O7—P2—Cs2xiii120.78 (7)
O5vi—Cs1—O7vi46.17 (4)O5—P2—Cs2xiii44.99 (6)
O8—Cs1—O7vi134.45 (4)O6—P2—Cs2xiii64.93 (7)
O1vii—Cs1—O7vi54.66 (4)O8—P2—Cs1xiv137.30 (7)
O4i—Cs1—O6iv76.27 (4)O7—P2—Cs1xiv58.05 (7)
O5vi—Cs1—O6iv51.70 (4)O5—P2—Cs1xiv51.18 (6)
O8—Cs1—O6iv84.87 (4)O6—P2—Cs1xiv110.65 (6)
O1vii—Cs1—O6iv97.34 (4)Cs2xiii—P2—Cs1xiv69.497 (9)
O7vi—Cs1—O6iv72.19 (4)O8—P2—Cs147.91 (7)
O4i—Cs1—O4viii144.08 (5)O7—P2—Cs171.16 (7)
O5vi—Cs1—O4viii89.85 (4)O5—P2—Cs1149.30 (6)
O8—Cs1—O4viii133.70 (4)O6—P2—Cs199.17 (7)
O1vii—Cs1—O4viii50.99 (4)Cs2xiii—P2—Cs1161.923 (14)
O7vi—Cs1—O4viii55.90 (4)Cs1xiv—P2—Cs1126.788 (13)
O6iv—Cs1—O4viii127.96 (4)O8—P2—Cs2x77.53 (7)
O4i—Cs1—O3i44.58 (4)O7—P2—Cs2x43.55 (7)
O5vi—Cs1—O3i137.95 (4)O5—P2—Cs2x91.40 (6)
O8—Cs1—O3i49.23 (4)O6—P2—Cs2x150.66 (7)
O1vii—Cs1—O3i121.98 (4)Cs2xiii—P2—Cs2x132.342 (13)
O7vi—Cs1—O3i174.09 (4)Cs1xiv—P2—Cs2x66.928 (8)
O6iv—Cs1—O3i113.63 (4)Cs1—P2—Cs2x65.733 (8)
O4viii—Cs1—O3i118.23 (3)P1—O1—In2x138.51 (9)
O4i—Cs1—O3100.11 (4)P1—O1—Cs2x115.87 (8)
O5vi—Cs1—O396.33 (4)In2x—O1—Cs2x90.14 (5)
O8—Cs1—O348.55 (4)P1—O1—Cs1xi113.95 (8)
O1vii—Cs1—O3133.19 (4)In2x—O1—Cs1xi98.60 (5)
O7vi—Cs1—O3119.12 (4)Cs2x—O1—Cs1xi86.38 (4)
O6iv—Cs1—O3126.54 (4)P1—O2—In1iii139.27 (8)
O4viii—Cs1—O385.72 (3)P1—O2—In2i94.49 (7)
O3i—Cs1—O358.76 (5)In1iii—O2—In2i111.41 (6)
O4i—Cs1—O784.95 (4)P1—O3—In1132.58 (9)
O5vi—Cs1—O749.34 (4)P1—O3—Cs1i92.02 (7)
O8—Cs1—O741.66 (4)In1—O3—Cs1i89.96 (5)
O1vii—Cs1—O7144.97 (4)P1—O3—Cs1134.29 (8)
O7vi—Cs1—O795.206 (9)In1—O3—Cs189.66 (5)
O6iv—Cs1—O752.23 (4)Cs1i—O3—Cs167.83 (3)
O4viii—Cs1—O7130.27 (4)P1—O3—Cs2x93.66 (6)
O3i—Cs1—O789.48 (3)In1—O3—Cs2x119.74 (6)
O3—Cs1—O774.33 (4)Cs1i—O3—Cs2x130.68 (4)
O4i—Cs1—P2vi139.58 (3)Cs1—O3—Cs2x73.58 (3)
O5vi—Cs1—P2vi23.11 (3)P1—O4—In2i97.56 (7)
O8—Cs1—P2vi110.69 (3)P1—O4—Cs1i113.40 (8)
O1vii—Cs1—P2vi78.40 (3)In2i—O4—Cs1i117.14 (6)
O7vi—Cs1—P2vi23.76 (3)P1—O4—Cs1viii135.25 (8)
O6iv—Cs1—P2vi63.36 (3)In2i—O4—Cs1viii87.87 (5)
O4viii—Cs1—P2vi69.68 (2)Cs1i—O4—Cs1viii102.88 (4)
O3i—Cs1—P2vi159.17 (3)P2—O5—In2xii134.07 (9)
O3—Cs1—P2vi105.16 (3)P2—O5—Cs2xiii112.92 (8)
O7—Cs1—P2vi72.43 (3)In2xii—O5—Cs2xiii97.80 (5)
O4i—Cs1—P1i21.44 (3)P2—O5—Cs1xiv105.70 (7)
O5vi—Cs1—P1i134.30 (3)In2xii—O5—Cs1xiv106.13 (6)
O8—Cs1—P1i54.81 (3)Cs2xiii—O5—Cs1xiv92.55 (4)
O1vii—Cs1—P1i115.73 (3)P2—O6—In2134.06 (10)
O7vi—Cs1—P1i160.59 (3)P2—O6—Cs2xiii90.88 (7)
O6iv—Cs1—P1i94.24 (3)In2—O6—Cs2xiii125.45 (7)
O4viii—Cs1—P1i134.56 (2)P2—O6—Cs1iv126.25 (8)
O3i—Cs1—P1i23.14 (2)In2—O6—Cs1iv92.25 (5)
O3—Cs1—P1i80.03 (3)Cs2xiii—O6—Cs1iv76.37 (3)
O7—Cs1—P1i86.70 (3)P2—O7—In2iv146.87 (11)
P2vi—Cs1—P1i155.754 (11)P2—O7—Cs2x116.25 (8)
O5ii—Cs2—O5ix180.00 (4)In2iv—O7—Cs2x93.69 (6)
O5ii—Cs2—O7iv58.12 (4)P2—O7—Cs1xiv98.19 (8)
O5ix—Cs2—O7iv121.88 (4)In2iv—O7—Cs1xiv97.93 (6)
O5ii—Cs2—O7v121.88 (4)Cs2x—O7—Cs1xiv85.66 (4)
O5ix—Cs2—O7v58.12 (4)P2—O7—Cs185.89 (7)
O7iv—Cs2—O7v180.000 (17)In2iv—O7—Cs187.04 (5)
O5ii—Cs2—O1v58.15 (4)Cs2x—O7—Cs177.81 (4)
O5ix—Cs2—O1v121.85 (4)Cs1xiv—O7—Cs1163.04 (6)
O7iv—Cs2—O1v56.46 (4)P2—O8—In1146.28 (11)
O7v—Cs2—O1v123.54 (4)P2—O8—Cs1110.81 (8)
O5ii—Cs2—O1iv121.85 (4)In1—O8—Cs1102.90 (6)
O5ix—Cs2—O1iv58.15 (4)
Symmetry codes: (i) x, y, z+3/2; (ii) x, y, z1/2; (iii) x, y, z+2; (iv) x+1/2, y+1/2, z+1; (v) x, y, z1; (vi) x+1/2, y+1/2, z+3/2; (vii) x, y+1, z1/2; (viii) x, y+1, z+2; (ix) x+1/2, y+1/2, z+1/2; (x) x, y, z+1; (xi) x, y+1, z+1/2; (xii) x, y, z+1/2; (xiii) x+1/2, y1/2, z+1/2; (xiv) x+1/2, y1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds