In the title cadmium(II) complex, [Cd(C
8H
4O
5)(C
14H
14N
4)(H
2O)]
n, the 5-hydroxybenzene-1,3-dicarboxylate (5-OH-1,3-bdc) and 1,4-bis(imidazol-1-ylmethyl)benzene (1,4,-bix) ligands bridge water-coordinated Cd
II atoms to generate a three-dimensional network. Two carboxylate groups from different ligands function as
O,
O'-chelates, while two imidazole N atoms from different ligands coordinate in a monodentate fashion, and one water molecule completes the seven-coordinate pentagonal bipyramid around the Cd
II atom, in which the N atoms occupy the axial sites and the O atoms occupy the equatorial sites. The overall architecture is a twofold interpenetrated CdSO
4-type framework. The two crystallographically equivalent frameworks are linked by O-H
O hydrogen bonds between the water, hydroxy and carboxylate groups.
Supporting information
CCDC reference: 838130
A mixture of CdCl2.2.5H2O (0.5 mmol), 1,4-bis(imidazol-1-ylmethyl)benzene
(0.5 mmol), 5-hydroxybenzene-1,3-dicarboxylic acid (0.5 mmol) and water (12 ml) was sealed in a 23 ml Teflon-lined stainless-steel Parr bomb. The bomb was
heated at 413 K for 3 d. It was then cooled to room temperature. Colourless
block-shaped crystals were collected and washed with water; the yield based on
Cd was about 40%.
Carbon-bound H atoms were positioned geometrically [C—H = 0.93 (aromatic) or
0.97 (methylene) Å] and included as riding atoms with Uiso(H) fixed
at 1.2Ueq(C). H atoms bonded to water molecules were located in
difference Fourier maps and refined isotropically with distance restraints of
O—H = 0.85 (1) and H···H = 1.35 (1) with Uiso = 1.5Ueq(O).
The hydroxy H atom was located in a difference Fourier map and refined
isotropically with a distance restraint of O—H = 0.82 (1) Å and
Uiso = 1.5Ueq(O).
Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
Poly[aqua[µ
2-1,4-bis(imidazol-1-ylmethyl)benzene-
κ2N3:
N3'](µ
2-5-hydroxybenzene-1,3-dicarboxylato-
κ4O1,
O1':
O3,
O3']cadmium(II)]
top
Crystal data top
[Cd(C8H4O5)(C14H14N4)(H2O)] | F(000) = 552 |
Mr = 548.82 | Dx = 1.749 Mg m−3 |
Monoclinic, Pn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P -2yac | Cell parameters from 2693 reflections |
a = 11.5800 (9) Å | θ = 2.1–28.3° |
b = 8.4221 (6) Å | µ = 1.10 mm−1 |
c = 11.6393 (9) Å | T = 293 K |
β = 113.354 (1)° | Block, colorless |
V = 1042.16 (14) Å3 | 0.18 × 0.16 × 0.11 mm |
Z = 2 | |
Data collection top
Bruker APEX diffractometer | 3693 independent reflections |
Radiation source: fine-focus sealed tube | 3404 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ϕ and ω scans | θmax = 28.3°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→15 |
Tmin = 0.39, Tmax = 0.57 | k = −11→8 |
6155 measured reflections | l = −15→14 |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.054 | w = 1/[σ2(Fo2) + (0.0136P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
3693 reflections | Δρmax = 0.38 e Å−3 |
307 parameters | Δρmin = −0.39 e Å−3 |
6 restraints | Absolute structure: Flack (1983), ???? Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.013 (19) |
Crystal data top
[Cd(C8H4O5)(C14H14N4)(H2O)] | V = 1042.16 (14) Å3 |
Mr = 548.82 | Z = 2 |
Monoclinic, Pn | Mo Kα radiation |
a = 11.5800 (9) Å | µ = 1.10 mm−1 |
b = 8.4221 (6) Å | T = 293 K |
c = 11.6393 (9) Å | 0.18 × 0.16 × 0.11 mm |
β = 113.354 (1)° | |
Data collection top
Bruker APEX diffractometer | 3693 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 3404 reflections with I > 2σ(I) |
Tmin = 0.39, Tmax = 0.57 | Rint = 0.031 |
6155 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.028 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.054 | Δρmax = 0.38 e Å−3 |
S = 1.02 | Δρmin = −0.39 e Å−3 |
3693 reflections | Absolute structure: Flack (1983), ???? Friedel pairs |
307 parameters | Absolute structure parameter: −0.013 (19) |
6 restraints | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cd1 | 0.74827 (2) | 0.59903 (3) | 0.92168 (2) | 0.02739 (7) | |
C1 | 0.8351 (4) | 0.2245 (5) | 1.0146 (4) | 0.0371 (9) | |
H1 | 0.9061 | 0.2274 | 0.9960 | 0.044* | |
C2 | 0.8004 (5) | 0.0995 (5) | 1.0672 (5) | 0.0371 (11) | |
H2 | 0.8416 | 0.0026 | 1.0906 | 0.045* | |
C3 | 0.6645 (4) | 0.2929 (4) | 1.0332 (4) | 0.0340 (9) | |
H3 | 0.5949 | 0.3505 | 1.0302 | 0.041* | |
C4 | 0.6212 (4) | 0.0550 (4) | 1.1358 (4) | 0.0359 (9) | |
H4A | 0.6308 | −0.0572 | 1.1230 | 0.043* | |
H4B | 0.5327 | 0.0809 | 1.0932 | 0.043* | |
C5 | 0.6608 (4) | 0.0849 (4) | 1.2738 (4) | 0.0346 (9) | |
C6 | 0.7597 (5) | 0.1817 (6) | 1.3458 (5) | 0.0395 (12) | |
H6 | 0.8080 | 0.2308 | 1.3085 | 0.047* | |
C7 | 0.5911 (4) | 0.0142 (5) | 1.3327 (4) | 0.0417 (10) | |
H7 | 0.5248 | −0.0524 | 1.2868 | 0.050* | |
C8 | 0.6178 (5) | 0.0400 (5) | 1.4583 (4) | 0.0451 (11) | |
H8 | 0.5701 | −0.0102 | 1.4957 | 0.054* | |
C9 | 0.7152 (5) | 0.1403 (5) | 1.5283 (4) | 0.0348 (11) | |
C10 | 0.7887 (5) | 0.2071 (5) | 1.4711 (4) | 0.0425 (11) | |
H10 | 0.8577 | 0.2694 | 1.5177 | 0.051* | |
C11 | 0.7392 (5) | 0.1826 (5) | 1.6620 (4) | 0.0429 (11) | |
H11A | 0.8283 | 0.2030 | 1.7074 | 0.052* | |
H11B | 0.6943 | 0.2797 | 1.6624 | 0.052* | |
C12 | 0.5960 (4) | 0.0628 (5) | 1.7552 (4) | 0.0405 (10) | |
H12 | 0.5370 | 0.1439 | 1.7365 | 0.049* | |
C13 | 0.5961 (4) | −0.0752 (4) | 1.8158 (4) | 0.0373 (9) | |
H13 | 0.5365 | −0.1041 | 1.8469 | 0.045* | |
C14 | 0.7585 (4) | −0.0810 (4) | 1.7695 (4) | 0.0363 (9) | |
H14 | 0.8317 | −0.1135 | 1.7614 | 0.044* | |
C15 | 0.4697 (4) | 0.4802 (4) | 1.3868 (3) | 0.0273 (8) | |
C16 | 0.5843 (4) | 0.5526 (4) | 1.3806 (3) | 0.0264 (8) | |
C17 | 0.5929 (4) | 0.5792 (4) | 1.2659 (3) | 0.0269 (8) | |
H17 | 0.5256 | 0.5546 | 1.1916 | 0.032* | |
C18 | 0.7039 (4) | 0.6434 (4) | 1.2634 (4) | 0.0274 (8) | |
C19 | 0.7169 (4) | 0.6621 (4) | 1.1412 (4) | 0.0300 (9) | |
C20 | 0.8022 (4) | 0.6847 (5) | 1.3746 (4) | 0.0282 (8) | |
H20 | 0.8751 | 0.7290 | 1.3730 | 0.034* | |
C21 | 0.7921 (4) | 0.6600 (4) | 1.4888 (3) | 0.0293 (8) | |
C22 | 0.6843 (4) | 0.5937 (4) | 1.4904 (4) | 0.0279 (9) | |
H22 | 0.6783 | 0.5761 | 1.5667 | 0.033* | |
N1 | 0.7499 (3) | 0.3462 (4) | 0.9927 (3) | 0.0334 (8) | |
N2 | 0.6920 (3) | 0.1456 (3) | 1.0788 (3) | 0.0317 (8) | |
N3 | 0.7004 (4) | 0.0586 (4) | 1.7272 (3) | 0.0348 (9) | |
N4 | 0.6982 (3) | −0.1657 (4) | 1.8238 (3) | 0.0334 (8) | |
O1 | 0.8266 (3) | 0.6877 (3) | 1.1446 (2) | 0.0371 (7) | |
O2 | 0.6211 (3) | 0.6472 (4) | 1.0407 (3) | 0.0361 (7) | |
O3 | 0.4686 (3) | 0.4481 (3) | 1.4917 (2) | 0.0396 (7) | |
O4 | 0.3735 (3) | 0.4533 (4) | 1.2877 (3) | 0.0380 (7) | |
O5 | 0.8918 (3) | 0.7014 (4) | 1.5949 (3) | 0.0421 (7) | |
H5 | 0.896 (5) | 0.670 (6) | 1.662 (2) | 0.063* | |
O1W | 0.5537 (3) | 0.5093 (4) | 0.7498 (3) | 0.0542 (9) | |
HW11 | 0.486 (3) | 0.483 (7) | 0.756 (4) | 0.081* | |
HW12 | 0.537 (4) | 0.511 (7) | 0.6721 (14) | 0.081* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cd1 | 0.03035 (12) | 0.03188 (12) | 0.02375 (11) | 0.00339 (19) | 0.01479 (9) | 0.00450 (17) |
C1 | 0.030 (2) | 0.038 (2) | 0.041 (2) | 0.0026 (19) | 0.011 (2) | −0.0045 (18) |
C2 | 0.036 (3) | 0.034 (3) | 0.035 (3) | 0.011 (2) | 0.007 (2) | −0.0015 (19) |
C3 | 0.038 (2) | 0.026 (2) | 0.040 (2) | 0.0083 (18) | 0.017 (2) | 0.0066 (16) |
C4 | 0.045 (3) | 0.0257 (19) | 0.038 (2) | −0.0018 (18) | 0.018 (2) | 0.0030 (16) |
C5 | 0.039 (2) | 0.027 (2) | 0.039 (2) | 0.0086 (18) | 0.016 (2) | 0.0055 (17) |
C6 | 0.043 (3) | 0.043 (3) | 0.037 (3) | −0.006 (3) | 0.021 (2) | 0.008 (2) |
C7 | 0.044 (3) | 0.040 (2) | 0.042 (2) | −0.009 (2) | 0.018 (2) | −0.0049 (19) |
C8 | 0.054 (3) | 0.042 (2) | 0.047 (3) | −0.011 (2) | 0.029 (3) | 0.000 (2) |
C9 | 0.041 (3) | 0.030 (2) | 0.032 (2) | 0.0031 (19) | 0.013 (2) | 0.0083 (17) |
C10 | 0.047 (3) | 0.038 (2) | 0.046 (3) | −0.008 (2) | 0.022 (2) | 0.0024 (18) |
C11 | 0.063 (3) | 0.029 (2) | 0.037 (2) | −0.004 (2) | 0.020 (2) | 0.0042 (18) |
C12 | 0.034 (3) | 0.041 (2) | 0.041 (2) | 0.007 (2) | 0.010 (2) | 0.0008 (18) |
C13 | 0.030 (2) | 0.039 (2) | 0.044 (2) | 0.0001 (18) | 0.016 (2) | 0.0018 (18) |
C14 | 0.045 (3) | 0.033 (2) | 0.035 (2) | 0.0033 (19) | 0.021 (2) | −0.0006 (17) |
C15 | 0.027 (2) | 0.031 (2) | 0.029 (2) | 0.0020 (16) | 0.0158 (18) | −0.0016 (15) |
C16 | 0.027 (2) | 0.0323 (19) | 0.0235 (19) | 0.0039 (15) | 0.0146 (17) | 0.0002 (14) |
C17 | 0.0237 (19) | 0.035 (2) | 0.0221 (18) | 0.0014 (16) | 0.0089 (16) | 0.0007 (15) |
C18 | 0.035 (2) | 0.0288 (19) | 0.025 (2) | 0.0035 (16) | 0.0184 (18) | 0.0014 (14) |
C19 | 0.050 (3) | 0.0209 (18) | 0.029 (2) | 0.0050 (18) | 0.026 (2) | 0.0039 (15) |
C20 | 0.026 (2) | 0.032 (2) | 0.031 (2) | 0.0019 (18) | 0.0155 (18) | 0.0073 (17) |
C21 | 0.026 (2) | 0.033 (2) | 0.025 (2) | 0.0042 (17) | 0.0064 (18) | 0.0023 (15) |
C22 | 0.029 (2) | 0.034 (2) | 0.0222 (19) | 0.0005 (18) | 0.0125 (17) | 0.0026 (16) |
N1 | 0.037 (2) | 0.0320 (17) | 0.0317 (18) | 0.0050 (15) | 0.0140 (16) | 0.0031 (13) |
N2 | 0.040 (2) | 0.0265 (17) | 0.0313 (19) | 0.0057 (15) | 0.0169 (17) | 0.0032 (13) |
N3 | 0.048 (3) | 0.0309 (18) | 0.027 (2) | 0.0075 (18) | 0.017 (2) | 0.0054 (15) |
N4 | 0.039 (2) | 0.0335 (17) | 0.0289 (18) | 0.0012 (15) | 0.0146 (16) | 0.0032 (13) |
O1 | 0.0397 (17) | 0.0464 (17) | 0.0346 (16) | −0.0003 (14) | 0.0248 (15) | 0.0021 (12) |
O2 | 0.045 (2) | 0.0384 (16) | 0.0290 (17) | 0.0068 (16) | 0.0191 (16) | 0.0056 (13) |
O3 | 0.0350 (17) | 0.0622 (19) | 0.0284 (15) | −0.0083 (14) | 0.0199 (14) | 0.0006 (13) |
O4 | 0.0266 (17) | 0.0599 (19) | 0.0260 (16) | −0.0037 (17) | 0.0090 (14) | −0.0046 (15) |
O5 | 0.0351 (17) | 0.061 (2) | 0.0257 (15) | −0.0080 (15) | 0.0070 (14) | 0.0037 (14) |
O1W | 0.047 (2) | 0.075 (2) | 0.0317 (16) | −0.0192 (18) | 0.0054 (15) | 0.0046 (16) |
Geometric parameters (Å, º) top
Cd1—N4i | 2.244 (3) | C11—H11B | 0.9700 |
Cd1—N1 | 2.282 (3) | C12—C13 | 1.359 (5) |
Cd1—O3ii | 2.384 (3) | C12—N3 | 1.370 (6) |
Cd1—O2 | 2.423 (3) | C12—H12 | 0.9300 |
Cd1—O1W | 2.465 (3) | C13—N4 | 1.378 (5) |
Cd1—O1 | 2.499 (3) | C13—H13 | 0.9300 |
Cd1—O4ii | 2.554 (3) | C14—N4 | 1.322 (5) |
C1—C2 | 1.357 (6) | C14—N3 | 1.347 (5) |
C1—N1 | 1.375 (5) | C14—H14 | 0.9300 |
C1—H1 | 0.9300 | C15—O3 | 1.256 (4) |
C2—N2 | 1.371 (6) | C15—O4 | 1.267 (5) |
C2—H2 | 0.9300 | C15—C16 | 1.488 (5) |
C3—N1 | 1.331 (5) | C16—C22 | 1.386 (5) |
C3—N2 | 1.337 (4) | C16—C17 | 1.396 (5) |
C3—H3 | 0.9300 | C17—C18 | 1.405 (5) |
C4—N2 | 1.457 (5) | C17—H17 | 0.9300 |
C4—C5 | 1.507 (6) | C18—C20 | 1.387 (6) |
C4—H4A | 0.9700 | C18—C19 | 1.496 (5) |
C4—H4B | 0.9700 | C19—O2 | 1.260 (5) |
C5—C7 | 1.383 (6) | C19—O1 | 1.274 (5) |
C5—C6 | 1.385 (7) | C20—C21 | 1.395 (5) |
C6—C10 | 1.377 (7) | C20—H20 | 0.9300 |
C6—H6 | 0.9300 | C21—O5 | 1.359 (5) |
C7—C8 | 1.386 (6) | C21—C22 | 1.375 (5) |
C7—H7 | 0.9300 | C22—H22 | 0.9300 |
C8—C9 | 1.386 (7) | N4—Cd1iii | 2.244 (3) |
C8—H8 | 0.9300 | O3—Cd1iv | 2.384 (3) |
C9—C10 | 1.390 (6) | O4—Cd1iv | 2.554 (3) |
C9—C11 | 1.512 (6) | O5—H5 | 0.814 (10) |
C10—H10 | 0.9300 | O1W—HW11 | 0.846 (10) |
C11—N3 | 1.463 (5) | O1W—HW12 | 0.847 (10) |
C11—H11A | 0.9700 | | |
| | | |
N4i—Cd1—N1 | 166.24 (13) | N3—C11—H11B | 108.9 |
N4i—Cd1—O3ii | 110.30 (11) | C9—C11—H11B | 108.9 |
N1—Cd1—O3ii | 82.34 (11) | H11A—C11—H11B | 107.7 |
N4i—Cd1—O2 | 92.80 (11) | C13—C12—N3 | 106.4 (4) |
N1—Cd1—O2 | 82.46 (11) | C13—C12—H12 | 126.8 |
O3ii—Cd1—O2 | 130.03 (10) | N3—C12—H12 | 126.8 |
N4i—Cd1—O1W | 83.67 (12) | C12—C13—N4 | 109.4 (4) |
N1—Cd1—O1W | 83.19 (12) | C12—C13—H13 | 125.3 |
O3ii—Cd1—O1W | 137.45 (11) | N4—C13—H13 | 125.3 |
O2—Cd1—O1W | 87.01 (12) | N4—C14—N3 | 111.3 (4) |
N4i—Cd1—O1 | 100.22 (10) | N4—C14—H14 | 124.4 |
N1—Cd1—O1 | 87.43 (11) | N3—C14—H14 | 124.4 |
O3ii—Cd1—O1 | 78.21 (9) | O3—C15—O4 | 120.2 (4) |
O2—Cd1—O1 | 53.80 (10) | O3—C15—C16 | 119.2 (4) |
O1W—Cd1—O1 | 140.62 (11) | O4—C15—C16 | 120.6 (3) |
N4i—Cd1—O4ii | 86.42 (11) | C22—C16—C17 | 119.4 (3) |
N1—Cd1—O4ii | 97.77 (11) | C22—C16—C15 | 119.5 (3) |
O3ii—Cd1—O4ii | 52.44 (9) | C17—C16—C15 | 121.0 (3) |
O2—Cd1—O4ii | 177.49 (12) | C16—C17—C18 | 119.7 (4) |
O1W—Cd1—O4ii | 90.53 (11) | C16—C17—H17 | 120.2 |
O1—Cd1—O4ii | 128.69 (9) | C18—C17—H17 | 120.2 |
C2—C1—N1 | 110.0 (4) | C20—C18—C17 | 119.7 (3) |
C2—C1—H1 | 125.0 | C20—C18—C19 | 120.4 (4) |
N1—C1—H1 | 125.0 | C17—C18—C19 | 119.9 (4) |
C1—C2—N2 | 105.8 (4) | O2—C19—O1 | 123.1 (3) |
C1—C2—H2 | 127.1 | O2—C19—C18 | 119.3 (4) |
N2—C2—H2 | 127.1 | O1—C19—C18 | 117.7 (4) |
N1—C3—N2 | 111.2 (3) | C18—C20—C21 | 120.3 (4) |
N1—C3—H3 | 124.4 | C18—C20—H20 | 119.8 |
N2—C3—H3 | 124.4 | C21—C20—H20 | 119.8 |
N2—C4—C5 | 114.1 (3) | O5—C21—C22 | 122.7 (3) |
N2—C4—H4A | 108.7 | O5—C21—C20 | 117.8 (4) |
C5—C4—H4A | 108.7 | C22—C21—C20 | 119.5 (4) |
N2—C4—H4B | 108.7 | C21—C22—C16 | 121.3 (3) |
C5—C4—H4B | 108.7 | C21—C22—H22 | 119.3 |
H4A—C4—H4B | 107.6 | C16—C22—H22 | 119.3 |
C7—C5—C6 | 117.3 (4) | C3—N1—C1 | 105.2 (3) |
C7—C5—C4 | 117.7 (4) | C3—N1—Cd1 | 122.9 (3) |
C6—C5—C4 | 125.0 (4) | C1—N1—Cd1 | 131.7 (3) |
C10—C6—C5 | 121.9 (5) | C3—N2—C2 | 107.8 (3) |
C10—C6—H6 | 119.1 | C3—N2—C4 | 125.3 (3) |
C5—C6—H6 | 119.1 | C2—N2—C4 | 126.8 (3) |
C5—C7—C8 | 121.7 (4) | C14—N3—C12 | 107.2 (3) |
C5—C7—H7 | 119.2 | C14—N3—C11 | 126.9 (4) |
C8—C7—H7 | 119.2 | C12—N3—C11 | 125.9 (4) |
C7—C8—C9 | 120.3 (4) | C14—N4—C13 | 105.7 (3) |
C7—C8—H8 | 119.9 | C14—N4—Cd1iii | 129.8 (3) |
C9—C8—H8 | 119.9 | C13—N4—Cd1iii | 124.4 (3) |
C8—C9—C10 | 118.4 (4) | C19—O1—Cd1 | 88.3 (2) |
C8—C9—C11 | 121.5 (4) | C19—O2—Cd1 | 92.1 (2) |
C10—C9—C11 | 120.0 (5) | C15—O3—Cd1iv | 97.2 (2) |
C6—C10—C9 | 120.4 (5) | C15—O4—Cd1iv | 89.0 (2) |
C6—C10—H10 | 119.8 | C21—O5—H5 | 120 (4) |
C9—C10—H10 | 119.8 | Cd1—O1W—HW11 | 126 (3) |
N3—C11—C9 | 113.4 (4) | Cd1—O1W—HW12 | 128 (3) |
N3—C11—H11A | 108.9 | HW11—O1W—HW12 | 106 (4) |
C9—C11—H11A | 108.9 | | |
Symmetry codes: (i) x, y+1, z−1; (ii) x+1/2, −y+1, z−1/2; (iii) x, y−1, z+1; (iv) x−1/2, −y+1, z+1/2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O4v | 0.81 (1) | 1.89 (2) | 2.675 (4) | 162 (5) |
O1W—HW12···O3vi | 0.85 (1) | 2.00 (2) | 2.813 (4) | 161 (5) |
O1W—HW11···O1vii | 0.85 (1) | 2.29 (4) | 2.935 (4) | 133 (4) |
Symmetry codes: (v) x+1/2, −y+1, z+1/2; (vi) x, y, z−1; (vii) x−1/2, −y+1, z−1/2. |
Experimental details
Crystal data |
Chemical formula | [Cd(C8H4O5)(C14H14N4)(H2O)] |
Mr | 548.82 |
Crystal system, space group | Monoclinic, Pn |
Temperature (K) | 293 |
a, b, c (Å) | 11.5800 (9), 8.4221 (6), 11.6393 (9) |
β (°) | 113.354 (1) |
V (Å3) | 1042.16 (14) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.10 |
Crystal size (mm) | 0.18 × 0.16 × 0.11 |
|
Data collection |
Diffractometer | Bruker APEX diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.39, 0.57 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6155, 3693, 3404 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.667 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.054, 1.02 |
No. of reflections | 3693 |
No. of parameters | 307 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.38, −0.39 |
Absolute structure | Flack (1983), ???? Friedel pairs |
Absolute structure parameter | −0.013 (19) |
Selected geometric parameters (Å, º) topCd1—N4i | 2.244 (3) | Cd1—O1W | 2.465 (3) |
Cd1—N1 | 2.282 (3) | Cd1—O1 | 2.499 (3) |
Cd1—O3ii | 2.384 (3) | Cd1—O4ii | 2.554 (3) |
Cd1—O2 | 2.423 (3) | | |
| | | |
N4i—Cd1—N1 | 166.24 (13) | N1—Cd1—O1 | 87.43 (11) |
N4i—Cd1—O3ii | 110.30 (11) | O3ii—Cd1—O1 | 78.21 (9) |
N1—Cd1—O3ii | 82.34 (11) | O2—Cd1—O1 | 53.80 (10) |
N4i—Cd1—O2 | 92.80 (11) | O1W—Cd1—O1 | 140.62 (11) |
N1—Cd1—O2 | 82.46 (11) | N4i—Cd1—O4ii | 86.42 (11) |
O3ii—Cd1—O2 | 130.03 (10) | N1—Cd1—O4ii | 97.77 (11) |
N4i—Cd1—O1W | 83.67 (12) | O3ii—Cd1—O4ii | 52.44 (9) |
N1—Cd1—O1W | 83.19 (12) | O2—Cd1—O4ii | 177.49 (12) |
O3ii—Cd1—O1W | 137.45 (11) | O1W—Cd1—O4ii | 90.53 (11) |
O2—Cd1—O1W | 87.01 (12) | O1—Cd1—O4ii | 128.69 (9) |
N4i—Cd1—O1 | 100.22 (10) | | |
Symmetry codes: (i) x, y+1, z−1; (ii) x+1/2, −y+1, z−1/2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O4iii | 0.814 (10) | 1.888 (19) | 2.675 (4) | 162 (5) |
O1W—HW12···O3iv | 0.847 (10) | 2.00 (2) | 2.813 (4) | 161 (5) |
O1W—HW11···O1v | 0.846 (10) | 2.29 (4) | 2.935 (4) | 133 (4) |
Symmetry codes: (iii) x+1/2, −y+1, z+1/2; (iv) x, y, z−1; (v) x−1/2, −y+1, z−1/2. |
The design and synthesis of metal–organic frameworks (MOFs) have been an area of rapid growth in recent years owing to the potential applications of MOFs in nonlinear optics, luminescence, magnetism, catalysis, gas absorption, ion exchange and as zeolite-like materials for molecular selection (O'Keeffe et al., 2008). Structural diversity in MOFs can occur as a result of various processes, including supramolecular isomerism, interpenetration or interweaving (Batten & Robson, 1998; Batten, 2001). Ideally, the topologies of MOFs can be controlled and modified by the coordination geometry preferred by the metal ion and the chemical structure of the organic ligand chosen (Abrahams et al., 1999; Yang et al., 2008). In this regard, rigid N-donor 4,4'-bipyridine (bipy) and its derivatives have been studied in the construction of MOFs (Qiao et al., 2008). So far, a number of MOFs based on bipy and its derivatives have been reported, including one-dimensional chain, two-dimensional layer and three-dimensional frameworks (Carlucci et al., 2003). However, reports of MOFs constructed by flexible N-donor ligands are relatively rare (Wang et al., 2006). Among such ligands, bis(imidazole) derivatives are a good choice (Yang et al., 2008) leading to some intriguing interpenetrating architectures and topologies (Wang et al., 2006). In this work, we chose 5-hydroxybenzene-1,3-dicarboxylic acid (5-OH-1,3-H2bdc) as a dicarboxylate ligand and 1,4-bis(imidazol-1-ylmethyl)benzene (1,4-bix) as a flexible N-donor ligand, yielding a new coordination polymer, [Cd(1,4-bix)(5-OH-1,3-bdc)(H2O)], (I), with a fascinating twofold interpenetrated three-dimensional CdSO4-like framework.
The asymetric unit of (I) contains one CdII atom, one 5-OH-1,3-bdc anion, one 1,4-bix ligand and one coordination water molecule (Fig. 1). Each CdII atom is seven-coordinated in a pentagonal bipyramid by four carboxylate oxygen atoms from two different 5-OH-1,3-bdc anions, one water oxygen atom and two nitrogen atoms from two distinct 1,4-bix ligands. The N atoms occupy the apical sites and the O atoms occupy the equatorial sites of the bipyramid. The Cd—Ocarboxylate distances (Table 1) are comparable to those observed in [Cd(bpdo)(1,4-bdc)(H2O)]n (1,4-bdc = benzene-1,4-dicarboxylate and bpdo = 4,4'-bipyridine N,N'-dioxide) (Xu & Xie, 2010).
Each crystallographically unique CdII atom is bridged by the 1,4-bix ligands and 5-OH-1,3-bdc anions to generate a novel three-dimensional framework (Fig. 2). The Cd···Cd distances bridged by 1,4-bix and 5-OH-1,3-bdc are 14.368 (3) and 9.844 (3) Å, respectively. Topologically, the CdII centre is defined as a four-connected node, and the 1,4-bix and the 5-OH-1,3-bdc serve as linkers. Therefore, on the basis of the concept of chemical topology, the overall structure of (I) is a four-connected framework with the Schläfli symbol of 658. Topological analysis reveals that this three-dimensional framework is a typical CdSO4 net. Interestingly, the large spaces in the single three-dimensional framework allow another identical framework to interpenetrate it, providing a twofold interpenetrating CdSO4 framework (Fig. 3). Each CdSO4 net is hydrogen bonded to its neighbour through O—H···O hydrogen bonds among the water molecules, hydroxy group and carboxylate oxygen atoms (Table 2).
So far, some related interpenetrated CdSO4-like MOFs based on both dicarboxylate and flexible N-donor bridging ligands have been reported. The structure of [Zn2(1,4-bdc)(bpp)Cl2]n (1,4-bdc = 1,4-benzenedicarboxylate and bpp = 1,3-bis(4-pyridyl)propane) (Zhang et al., 2006) also contains two crystallographically equivalent nets, but differs from (I) in that the four-connected nodes are based on ZnII dimers rather than mononuclear complexes. [Zn(mip)(bpa)]n [mip = 5-methylisophthalate and bpa = 1,2-bis(4-pyridyl)ethane] (Ma et al., 2009) shows an unusual threefold interpenetrated CdSO4 topology. [Ni(oba)(bbi)]2.H2O [oba = 4,4'-oxybis(benzoate) and bbi = 1,1'-(1,4-butanediyl)bis(imidazole)] (Yang et al., 2009) also shows twofold interpenetrated nets as in (I); however, the nets are crystallographically distinct. Thus, we believe that (I) represents the first example of this specific type of architecture in a Cd–dicarboxylate–flexible-N-donor system.