Download citation
Download citation
link to html
In the title MnII complex, [Mn2(C10H2O8)(H2O)10]·H2O, two independent binuclear mol­ecules bridged by the 1,2,4,5-benzene­tetra­carboxyl anion exist in a unit cell, with each anion lying about an inversion centre. One of the Mn-Owater distances [2.2922 (13) Å] is significantly longer than the MnII-Owater distances reported so far for MnII complexes and very close to the Mn-Owater distances found in the axial direction of MnIII complexes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100000342/ta1268sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100000342/ta1268Isup2.hkl
Contains datablock I

Comment top

As water coordination to manganese is an important step for oxygen evolution in the photosynthesis process, we are interested in the structural chemistry of manganese complexes. Some manganese complexes with water ligands have been synthesized and their molecular structures have recently been determined in our laboratory (Yin et al., 1999). We here present the structure of one such compound, (I). \sch

The crystal structure (Fig. 1), is composed of two, binuclear, crystallographically independent complex molecules (1) and (2) centered about 0,0,0 and 0,0,1/2, respectively. The benzenetetracarboxyl anion bridges two MnII atoms through carboxyl oxygen atoms to form the binuclear molecule. Five water molecules, together with one carboxyl oxygen atom, complete an octahedral coordination geometry around each MnII atom. There is no significant difference in the coordination distance between carboxyl oxygen and water oxygen atoms. Most of the coordination bond distances in the present complex range from 2.1516 (14) to 2.216 (2) Å and are comparable to those reported previously, for example 2.181 (1) Å in [Mn(H2O)6]2+ZnBr2- (Villella et al., 1985), 2.221 (6) Å in [Mn(HC4O4)2(OH2)4] (Yaghi et al., 1995) and 2.247 (3) Å in MnII(Me2PO2)2·2H2O (Cicha et al., 1985). But it is notable that the Mn1—O19 distance of 2.2922 (13) Å in the present MnII complex is significantly longer than the MnII—O(water) distances reported so far for the MnII complexes and very close to the Mn—O(water) distances of 2.319 (3) Å (Horwitz et al., 1995) and 2.287 (5) Å (Li et al., 1999) found in the axial direction of two MnIII complexes, both of which showed significant Jahn-Teller distortion. Jahn-Teller distortion is not expected in MnII complexes. Corresponding to the longer Mn1—O19 distance of 2.2922 (13) Å in the molecule (1) there is a shorter Mn2—O29 distance of 2.1516 (14) Å in molecule (2). Both bonds are in the para-position to the coordinated carboxyl groups and the difference in the length of about 0.15 Å, is one of the significant differences between the two molecules in the unit cell. The ranges for O—Mn—O angles of the two molecules are normal. Another difference between the two molecules is the conformation of carboxyl groups, viz. the orientation of the uncoordinated oxygen atom of the coordinated carboxyl group is the same as the carboxyl group in the ortho position for the molecule (1), while is opposite to that for the molecule (2) as shown in Fig. 1.

There is an extensive network of hydrogen bonds between coordinated water molecules and including hydration water linking the complex ions. O—O distances for these interactions range from 2.563 (12) to 2.881 (12) Å.

Experimental top

About 5 mmol of 1,2,4,5-benzenetetracarboxylate acid was added slowly to NaOH (0.80 g, 20 mmol) aqueous solution (20 ml) with stirring at room temperature until the pH was close to 7.0. Manganese(II) acetate tetrahydrate (1.22 g, 5 mmol) was dissolved in water (10 ml). The two solutions were mixed and divided into three parts. The first part was maintained in the same condition, to the second part was added some methanol (0.5 ml), and to the last part was added some acetonitrile (0.5 ml). The above solutions were filtered, respectively, left to stand for two days, and only in diluted methanol solution well formed, colorless, single crystals were obtained.

Computing details top

Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structures of the title complex showing 30% probability displacement ellipsoids, the molecule 1 (left) and molecule 2 (right) being around the inverse centre at 0,0,0 and 0,0,1/2, respectively, in the unit cell. H atoms are omitted for clarity.
(I) top
Crystal data top
[Mn2(C10H2O8)(H2O)10]·H2OZ = 2
Mr = 558.17F(000) = 572
Triclinic, P1Dx = 1.835 Mg m3
Dm = 1.832 (3) Mg m3
Dm measured by flotation
a = 9.502 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.286 (1) ÅCell parameters from 25 reflections
c = 11.289 (1) Åθ = 10–25°
α = 87.76 (1)°µ = 1.34 mm1
β = 77.48 (1)°T = 293 K
γ = 69.85 (1)°Hexagonal prism, colorless
V = 1010.43 (17) Å30.50 × 0.48 × 0.45 mm
Data collection top
Bruker AXS P4
diffractometer
4045 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 27.5°, θmin = 1.9°
θ/2θ scansh = 1212
Absorption correction: empirical (using intensity measurements)
XPREP (Siemens, 1995)
k = 1312
Tmin = 0.476, Tmax = 0.546l = 014
5471 measured reflections3 standard reflections every 97 reflections
4628 independent reflections intensity decay: 1.7%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: difference Fourier map
wR(F2) = 0.086Fixed
S = 1.03Calculated w = 1/[σ2(Fo2) + (0.0505P)2 + 0.2541P]
where P = (Fo2 + 2Fc2)/3
4628 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Mn2(C10H2O8)(H2O)10]·H2Oγ = 69.85 (1)°
Mr = 558.17V = 1010.43 (17) Å3
Triclinic, P1Z = 2
a = 9.502 (1) ÅMo Kα radiation
b = 10.286 (1) ŵ = 1.34 mm1
c = 11.289 (1) ÅT = 293 K
α = 87.76 (1)°0.50 × 0.48 × 0.45 mm
β = 77.48 (1)°
Data collection top
Bruker AXS P4
diffractometer
4045 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
XPREP (Siemens, 1995)
Rint = 0.017
Tmin = 0.476, Tmax = 0.5463 standard reflections every 97 reflections
5471 measured reflections intensity decay: 1.7%
4628 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.086Fixed
S = 1.03Δρmax = 0.41 e Å3
4628 reflectionsΔρmin = 0.32 e Å3
280 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn(1)0.30780 (3)0.25988 (2)0.75577 (2)0.02422 (9)
Mn(2)0.37339 (3)0.29080 (3)0.26023 (2)0.02699 (9)
O(11)0.21279 (14)0.16361 (13)0.64180 (12)0.0316 (3)
O(12)0.0363 (2)0.2912 (2)0.69159 (15)0.0458 (4)
O(13)0.32692 (14)0.32553 (13)0.54497 (14)0.0363 (3)
O(14)0.1196 (2)0.37160 (14)0.4544 (2)0.0465 (4)
O(15)0.3223 (2)0.41431 (14)0.62273 (13)0.0394 (3)
O(16)0.54123 (13)0.14764 (13)0.66208 (11)0.0278 (2)
O(17)0.3524 (2)0.10372 (14)0.89135 (12)0.0400 (3)
O(18)0.07481 (15)0.37306 (14)0.85453 (12)0.0339 (3)
O(19)0.3911 (2)0.38460 (13)0.87143 (12)0.0330 (3)
O(21)0.60323 (13)0.17021 (13)0.16184 (11)0.0294 (3)
O(22)0.73325 (15)0.30616 (15)0.18918 (14)0.0423 (3)
O(23)0.67674 (15)0.26711 (13)0.09640 (12)0.0336 (3)
O(24)0.7254 (2)0.06615 (13)0.19298 (14)0.0399 (3)
O(25)0.3268 (2)0.4555 (2)0.12664 (14)0.0504 (4)
O(26)0.2743 (2)0.18876 (13)0.15040 (13)0.0349 (3)
O(27)0.3992 (2)0.13266 (15)0.39953 (13)0.0431 (3)
O(28)0.45805 (15)0.41272 (14)0.36084 (14)0.0381 (3)
O(29)0.1507 (2)0.4034 (2)0.3694 (2)0.0465 (4)
O(30)0.00102 (15)0.35080 (14)0.10361 (13)0.0362 (3)
C(11)0.0739 (2)0.1926 (2)0.63612 (15)0.0259 (3)
C(12)0.1854 (2)0.2908 (2)0.5035 (2)0.0269 (3)
C(13)0.0386 (2)0.0958 (2)0.55946 (14)0.0230 (3)
C(14)0.0897 (2)0.1406 (2)0.50667 (14)0.0226 (3)
C(15)0.1274 (2)0.0441 (2)0.44862 (14)0.0228 (3)
C(21)0.7234 (2)0.2018 (2)0.14389 (14)0.0252 (3)
C(22)0.7489 (2)0.1413 (2)0.11911 (15)0.0253 (3)
C(23)0.8671 (2)0.1006 (2)0.06616 (14)0.0229 (3)
C(24)0.8773 (2)0.0687 (2)0.05511 (14)0.0233 (3)
C(25)0.9908 (2)0.0321 (2)0.11986 (14)0.0238 (3)
H(C15)0.22120.07680.40300.060*
H(C25)0.98690.05950.20080.060*
H(15A)0.24640.48100.60590.060*
H(15B)0.38360.39410.55650.060*
H(16A)0.60780.12110.70960.060*
H(16B)0.58700.19500.61580.060*
H(17A)0.34890.11910.96970.060*
H(17B)0.35730.02370.88050.060*
H(18A)0.01610.35270.81100.060*
H(18B)0.04370.35530.93270.060*
H(19A)0.38370.46100.84240.060*
H(19B)0.48650.35700.87910.060*
H(25A)0.30170.53680.13220.060*
H(25B)0.33570.43800.05750.060*
H(26A)0.18100.24330.14850.060*
H(26B)0.27670.10100.16300.060*
H(27A)0.34950.13970.47710.060*
H(27B)0.41950.05730.39100.060*
H(28A)0.55400.40140.33760.060*
H(28B)0.43140.49570.38650.060*
H(29A)0.07150.38110.39780.060*
H(29B)0.12990.48820.40070.060*
H(30A)0.08840.33670.13340.060*
H(30B)0.00290.42770.13520.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn(1)0.02238 (14)0.02463 (14)0.02611 (14)0.00793 (10)0.00627 (9)0.00009 (9)
Mn(2)0.02196 (14)0.02539 (14)0.03103 (15)0.00660 (9)0.00204 (10)0.00431 (9)
O(11)0.0242 (6)0.0348 (6)0.0374 (6)0.0103 (5)0.0078 (5)0.0094 (5)
O(12)0.0287 (7)0.0425 (8)0.0618 (9)0.0025 (6)0.0114 (6)0.0282 (7)
O(13)0.0209 (6)0.0232 (6)0.0591 (8)0.0048 (5)0.0017 (5)0.0027 (5)
O(14)0.0248 (6)0.0260 (6)0.0841 (11)0.0085 (5)0.0051 (7)0.0168 (7)
O(15)0.0345 (7)0.0361 (7)0.0422 (7)0.0066 (6)0.0088 (6)0.0156 (6)
O(16)0.0239 (6)0.0292 (6)0.0299 (6)0.0080 (5)0.0074 (5)0.0042 (5)
O(17)0.0592 (9)0.0287 (7)0.0323 (7)0.0175 (6)0.0066 (6)0.0048 (5)
O(18)0.0274 (6)0.0367 (7)0.0359 (7)0.0083 (5)0.0057 (5)0.0098 (5)
O(19)0.0318 (7)0.0301 (6)0.0403 (7)0.0106 (5)0.0142 (5)0.0025 (5)
O(21)0.0200 (5)0.0273 (6)0.0368 (6)0.0068 (5)0.0008 (5)0.0039 (5)
O(22)0.0260 (6)0.0387 (7)0.0577 (9)0.0102 (5)0.0031 (6)0.0234 (6)
O(23)0.0288 (6)0.0261 (6)0.0433 (7)0.0029 (5)0.0134 (5)0.0011 (5)
O(24)0.0433 (8)0.0294 (6)0.0527 (8)0.0071 (6)0.0307 (7)0.0014 (6)
O(25)0.0778 (12)0.0293 (7)0.0406 (8)0.0160 (7)0.0102 (8)0.0034 (6)
O(26)0.0336 (7)0.0280 (6)0.0449 (7)0.0092 (5)0.0140 (6)0.0001 (5)
O(27)0.0559 (9)0.0309 (7)0.0338 (7)0.0112 (6)0.0021 (6)0.0001 (5)
O(28)0.0259 (6)0.0345 (7)0.0522 (8)0.0096 (5)0.0036 (6)0.0138 (6)
O(29)0.0259 (7)0.0378 (8)0.0684 (10)0.0121 (6)0.0106 (6)0.0181 (7)
O(30)0.0300 (6)0.0327 (7)0.0463 (7)0.0119 (5)0.0067 (6)0.0018 (6)
C(11)0.0258 (8)0.0239 (7)0.0294 (8)0.0095 (6)0.0067 (6)0.0025 (6)
C(12)0.0232 (7)0.0202 (7)0.0370 (9)0.0062 (6)0.0080 (6)0.0013 (6)
C(13)0.0213 (7)0.0227 (7)0.0253 (7)0.0082 (6)0.0042 (6)0.0013 (5)
C(14)0.0213 (7)0.0197 (7)0.0260 (7)0.0064 (6)0.0042 (6)0.0007 (5)
C(15)0.0205 (7)0.0221 (7)0.0262 (7)0.0062 (6)0.0075 (6)0.0007 (5)
C(21)0.0201 (7)0.0250 (7)0.0270 (7)0.0041 (6)0.0033 (6)0.0027 (6)
C(22)0.0218 (7)0.0255 (7)0.0291 (8)0.0080 (6)0.0071 (6)0.0035 (6)
C(23)0.0186 (7)0.0222 (7)0.0260 (7)0.0062 (6)0.0022 (5)0.0009 (5)
C(24)0.0192 (7)0.0235 (7)0.0269 (7)0.0065 (6)0.0059 (6)0.0015 (6)
C(25)0.0215 (7)0.0253 (7)0.0230 (7)0.0062 (6)0.0046 (6)0.0009 (6)
Geometric parameters (Å, º) top
Mn(1)—O(11)2.1610 (12)C(23)—C(24)1.395 (2)
Mn(1)—O(15)2.1616 (13)C(23)—C(25)1.396 (2)
Mn(1)—O(16)2.1646 (12)C(24)—C(25)ii1.395 (2)
Mn(1)—O(17)2.1731 (14)O(15)—H(15A)0.857 (1)
Mn(1)—O(18)2.1806 (13)O(15)—H(15B)0.827 (1)
Mn(1)—O(19)2.2922 (13)O(16)—H(16A)0.883 (1)
Mn(2)—O(21)2.1752 (12)O(16)—H(16B)0.853 (1)
Mn(2)—O(25)2.216 (2)O(17)—H(17A)0.896 (1)
Mn(2)—O(26)2.1941 (13)O(17)—H(17B)0.821 (1)
Mn(2)—O(27)2.2071 (15)O(18)—H(18A)0.896 (1)
Mn(2)—O(28)2.1707 (13)O(18)—H(18B)0.903 (1)
Mn(2)—O(29)2.1516 (14)O(19)—H(19A)0.825 (1)
O(11)—C(11)1.265 (2)O(19)—H(19B)0.875 (1)
O(12)—C(11)1.245 (2)O(25)—H(25A)0.788 (1)
O(13)—C(12)1.251 (2)O(25)—H(25B)0.787 (1)
O(14)—C(12)1.249 (2)O(26)—H(26A)0.875 (1)
O(21)—C(21)1.265 (2)O(26)—H(26B)0.902 (1)
O(22)—C(21)1.247 (2)O(27)—H(27A)0.893 (1)
O(23)—C(22)1.245 (2)O(27)—H(27B)0.737 (1)
O(24)—C(22)1.262 (2)O(28)—H(28A)0.860 (1)
C(11)—C(13)1.508 (2)O(28)—H(28B)0.845 (1)
C(12)—C(14)1.502 (2)O(29)—H(29A)0.854 (1)
C(13)—C(14)1.401 (2)O(29)—H(29B)0.896 (1)
C(13)—C(15)i1.390 (2)O(30)—H(30A)0.901 (1)
C(14)—C(15)1.392 (2)O(30)—H(30B)0.890 (1)
C(21)—C(23)1.513 (2)C(15)—H(C15)1.074 (2)
C(22)—C(24)1.511 (2)C(25)—H(C25)0.956 (2)
O(11)—Mn(1)—O(15)90.89 (6)C(12)—C(14)—C(13)122.75 (14)
O(11)—Mn(1)—O(16)92.56 (5)C(12)—C(14)—C(15)117.64 (14)
O(11)—Mn(1)—O(17)99.85 (5)C(13)—C(14)—C(15)119.52 (14)
O(11)—Mn(1)—O(18)88.76 (5)C(13)i—C(15)—C(14)121.23 (14)
O(11)—Mn(1)—O(19)173.78 (5)C(21)—C(23)—C(24)122.32 (14)
O(15)—Mn(1)—O(16)84.27 (5)C(21)—C(23)—C(25)118.51 (14)
O(15)—Mn(1)—O(17)165.08 (6)C(24)—C(23)—C(25)119.09 (14)
O(15)—Mn(1)—O(18)96.47 (6)C(22)—C(24)—C(23)121.63 (14)
O(15)—Mn(1)—O(19)84.59 (5)C(22)—C(24)—C(25)ii118.70 (14)
O(16)—Mn(1)—O(17)84.92 (5)C(23)—C(24)—C(25)ii119.67 (14)
O(16)—Mn(1)—O(18)178.48 (5)C(23)—C(25)—C(24)ii121.24 (14)
O(16)—Mn(1)—O(19)91.24 (5)Mn(1)—O(15)—H(15A)126.12 (12)
O(17)—Mn(1)—O(18)94.12 (6)Mn(1)—O(15)—H(15B)121.59 (12)
O(17)—Mn(1)—O(19)85.39 (5)H(15A)—O(15)—H(15B)102.75 (14)
O(18)—Mn(1)—O(19)87.52 (5)Mn(1)—O(16)—H(16A)114.48 (10)
O(21)—Mn(2)—O(25)96.39 (6)Mn(1)—O(16)—H(16B)115.95 (10)
O(21)—Mn(2)—O(26)90.23 (5)H(16A)—O(16)—H(16B)95.93 (12)
O(21)—Mn(2)—O(27)88.12 (5)Mn(1)—O(17)—H(17A)126.23 (11)
O(21)—Mn(2)—O(28)92.74 (5)Mn(1)—O(17)—H(17B)122.99 (12)
O(21)—Mn(2)—O(29)175.85 (6)H(17A)—O(17)—H(17B)109.67 (15)
O(25)—Mn(2)—O(29)87.41 (7)Mn(1)—O(18)—H(18A)103.36 (9)
O(25)—Mn(2)—O(28)90.44 (6)Mn(1)—O(18)—H(18B)119.96 (11)
O(25)—Mn(2)—O(26)83.79 (6)H(18A)—O(18)—H(18B)108.13 (14)
O(25)—Mn(2)—O(27)175.28 (6)Mn(1)—O(19)—H(19A)110.30 (11)
O(26)—Mn(2)—O(27)94.82 (6)Mn(1)—O(19)—H(19B)121.59 (11)
O(26)—Mn(2)—O(28)173.78 (5)H(19A)—O(19)—H(19B)99.74 (14)
O(26)—Mn(2)—O(29)91.85 (6)Mn(2)—O(25)—H(25A)132.82 (14)
O(27)—Mn(2)—O(28)90.74 (6)Mn(2)—O(25)—H(25B)121.75 (13)
O(27)—Mn(2)—O(29)88.13 (6)H(25A)—O(25)—H(25B)105.43 (17)
O(28)—Mn(2)—O(29)85.54 (5)Mn(2)—O(26)—H(26A)109.10 (10)
C(11)—O(11)—Mn(1)128.58 (11)Mn(2)—O(26)—H(26B)121.60 (11)
C(21)—O(21)—Mn(2)128.07 (11)H(26A)—O(26)—H(26B)110.28 (15)
O(11)—C(11)—C(13)116.90 (14)Mn(2)—O(27)—H(27A)129.36 (12)
O(12)—C(11)—O(11)125.59 (15)Mn(2)—O(27)—H(27B)128.07 (14)
O(12)—C(11)—C(13)117.46 (15)H(27A)—O(27)—H(27B)97.06 (14)
O(13)—C(12)—C(14)117.81 (14)Mn(2)—O(28)—H(28A)115.72 (11)
O(14)—C(12)—O(13)124.2 (2)Mn(2)—O(28)—H(28B)137.96 (13)
O(14)—C(12)—C(14)117.89 (15)H(28A)—O(28)—H(28B)95.26 (14)
O(21)—C(21)—O(22)125.01 (15)Mn(2)—O(29)—H(29A)132.69 (12)
O(21)—C(21)—C(23)116.76 (14)Mn(2)—O(29)—H(29B)121.01 (11)
O(22)—C(21)—C(23)118.16 (14)H(29A)—O(29)—H(29B)106.05 (14)
O(23)—C(22)—O(24)125.7 (2)H(30A)—O(30)—H(30B)111.74 (14)
O(23)—C(22)—C(24)118.83 (14)H(C15)—C(15)—C(13)i117.88 (14)
O(24)—C(22)—C(24)115.47 (14)H(C15)—C(15)—C(14)120.71 (14)
C(11)—C(13)—C(14)121.72 (14)H(C25)—C(25)—C(24)ii119.76 (16)
C(11)—C(13)—C(15)i118.72 (14)H(C25)—C(25)—C(23)118.81 (15)
C(14)—C(13)—C(15)i119.24 (14)
Symmetry codes: (i) x, y, z+1; (ii) x+2, y, z.
Hydrogen-bond geometry (Å) top
D—H···AD···A
O(15)···O(14)iii2.640 (12)
O(16)···O(13)iv2.709 (14)
O(16)···O(24)v2.563 (12)
O(17)···O(21)vi2.772 (12)
O(18)···O(12)2.603 (13)
O(18)···O(30)v2.768 (14)
O(19)···O(23)v2.664 (12)
O(25)···O(19)vii2.881 (14)
O(25)···O(23)viii2.850 (15)
O(26)···O(24)vi2.647 (15)
O(26)···O(30)2.710 (14)
O(27)···O(11)2.881 (12)
O(27)···O(16)vi2.825 (15)
O(28)···O(13)iii2.696 (13)
O(28)···O(22)2.791 (12)
O(29)···O(14)2.667 (11)
O(30)···O(18)iii2.714 (15)
O(30)···O(22)ix2.705 (12)
Symmetry codes: (iii) x, y+1, z+1; (iv) x+1, y, z; (v) x, y, z+1; (vi) x+1, y, z+1; (vii) x, y, z1; (viii) x+1, y+1, z; (ix) x1, y, z.

Experimental details

Crystal data
Chemical formula[Mn2(C10H2O8)(H2O)10]·H2O
Mr558.17
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.502 (1), 10.286 (1), 11.289 (1)
α, β, γ (°)87.76 (1), 77.48 (1), 69.85 (1)
V3)1010.43 (17)
Z2
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.50 × 0.48 × 0.45
Data collection
DiffractometerBruker AXS P4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
XPREP (Siemens, 1995)
Tmin, Tmax0.476, 0.546
No. of measured, independent and
observed [I > 2σ(I)] reflections
5471, 4628, 4045
Rint0.017
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.086, 1.03
No. of reflections4628
No. of parameters280
H-atom treatmentFixed
Δρmax, Δρmin (e Å3)0.41, 0.32

Computer programs: SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997).

Selected bond lengths (Å) top
Mn(1)—O(11)2.1610 (12)Mn(2)—O(21)2.1752 (12)
Mn(1)—O(15)2.1616 (13)Mn(2)—O(25)2.216 (2)
Mn(1)—O(16)2.1646 (12)Mn(2)—O(26)2.1941 (13)
Mn(1)—O(17)2.1731 (14)Mn(2)—O(27)2.2071 (15)
Mn(1)—O(18)2.1806 (13)Mn(2)—O(28)2.1707 (13)
Mn(1)—O(19)2.2922 (13)Mn(2)—O(29)2.1516 (14)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds