
The cationic distribution is decisive for both the magnetic and electric properties of complex oxides. While it can be easily determined in bulk materials using classical methods such as X-ray or neutron diffraction, difficulties arise for thin films owing to the relatively small amount of material to probe. It is shown here that a full determination of the cationic site distribution in thin films is possible through an optimized processing of resonant elastic X-ray scattering experiments. The method is illustrated using gallium ferrite Ga2−xFexO3 samples which have been the focus of an increasing number of studies this past decade. They indeed represent an alternative to the, to date, only room-temperature magnetoelectric compound BiFeO3. The methodology can be applied to determine the element distribution over the various crystallographic sites in any crystallized system.
Supporting information
![]() | Portable Document Format (PDF) file https://doi.org/10.1107/S1600576716010001/to5141sup1.pdf |