Download citation
Download citation
link to html
The title compound, {[N,N-bis­(2-pyridylmeth­yl)­amino]­ethanol-[kappa]3N,N',N''}tricarbonyl­rhenium(I) bromide methanol solvate, [Re(C14H17N3O)(CO)3]Br·CH4O, has been prepared in almost quantitative yield by reacting (NEt4)2[Re(CO)3Br3] with the ligand N,N-bis­picol­yl-2-ethano­lamine in refluxing methanol. The X-ray structure revealed that the Re(CO)3N3 coordination sphere is highly distorted from octa­hedral geometry and that the Re(CO)3 core is facial. The coordinated ligand forms two five-membered rings, with the pyridine rings in a butterfly formation. The OH group is not involved in metal coordination. The packing of the mol­ecule shows a network of classical O...H-O and Br...H-O, and non-classical Br...H-C and O...H-C hydrogen bonds between the methanol solvate mol­ecules, the metal complex cations and the bromide anions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105009820/tr1108sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105009820/tr1108Isup2.hkl
Contains datablock I

CCDC reference: 275497

Comment top

The pendant design of novel 99mTc-based radiopharmaceuticals requires the development of suitable bifunctional ligands, which serve two purposes, viz. to hold the radionucleotide securely without leakage in vivo and to provide a side arm for linkage to a bioactive molecule while maintaining maximal integrity of the biomolecule (Liu & Edwards, 1999). We have recently reported the synthesis of a series of M(I) binding ligands (M = Tc and Re) based on a lysine-derived bispicolylamine, referred to as a single amino acid chelate (SAAC), which forms inert complexes with the chemically robust {M(CO)3}+ core (M = 99mTc and Re) and which can be incorporated into peptides as if it were a natural amino acid (Banerjee et al., 2002; Levadala et al., 2004; Stephenson et al., 2004).

As a part of continuing efforts to prepare new bifunctional ligands, we have recently investigated the maleimide functionalities for the conjugation of sulfhydryl group containing biomolecules (Banerjee et al., 2004). Recent literature studies have shown that the maleimide derivatives can be conveniently prepared in good yield from the alcohol precursor under Mitsunobu conditions (King et al., 2002). We report here the synthesis and structural characterization of a novel rhenium(I) tricarbonyl compound, (I), incorporating a tridentate ligand bispicolyl-2-ethanolamine (L1) with a free –OH functionality, which is potentially useful as a precursor for the maleimide-containing bifunctional linkers. Compound (I) was prepared quantitatively by the reaction of rhenium precursor (NEt4)2[Re(CO)3Br3] with the ligand under refluxing methanol conditions. A perspective view of (I) is shown in Fig. 1. Selected bond lengths and angles for the compound are given in Table 1. There are two independent molecules in the asymmetric unit. The bond distance and angles of the two molecules are found to be slightly different. The hydrogen-bonded methanol molecules are relatively closer to the Re1 molecule than to the Re2 molecule. These two solvent molecules are responsible for destroying the symmetry of the unit cell and the doubling of the asymmetric unit.

The distorted octahedral coordination environment of Re is defined by the three facially bound CO groups and the secondary amine and pyridine N-atom donors of the ligand. The mirror plane, which contains the OH group, the ethylene backbone, and the Re1—N2, Re1—C3—O3 and Re2—N5, Re2—C19—O7 bonds for the two independent molecules, divides the two pyridine–methylene units symmetrically. The structure of (I) provides an opportunity to observe the effect of rhenium oxidation states on the metal–ligand bond lengths via comparison with [Re(V)O(OCH2CH2O)(L1)]ReO4 [Cambridge Structural Database (CSD; Allen, 2002) code NOMCEX], where L1 serves as an N,N,N-tridentate ligand with a pendant –OH group, the same as in compound (I), with [Re(V)OCl(L1)]PF6 (CSD code NOMCAT), where L1 acts as an anionic N,N,N,O-tetradentate ligand, and with [Re(V)OCl2(L1)] (CSD code NOMBOG), where L1 is an anionic N,N,O-tridentate ligand with a pendant pyridine ring (Botha et al., 1998). The ReI—Npy bond lengths [average 2.171 (6) Å] in (I) lie at the longer end of the range of the ReV—Npy bond lengths (2.11–2.17 Å), which possibly reveals the contraction of the metal radius upon increase in oxidation state from I to V. However, the Re—Namine bond distance in [Re(V)O(OCH2CH2O)(L1)]ReO4 is longer than all the other ReV—Namine bonds, including that in (I), by ca 0.1 Å, probably as a result of the strong trans influence of the ReO bond.

The N,N,N-chelating ligand forms two five-membered rings with the two pyridine rings in a butterfly formation. The observed N—ReI—N bite angles in (I) are comparable to the related bite angles in the previously discussed structures containing L1 (Botha et al., 1998). The packing of the molecules shows antiparallel stacks, with the ligand (L1) moieties and the bromide ions from the adjacent stacks in a face-to-face orientation. The interplanar distance between two pyridine rings of approximately 3.5 Å is of the same order as the π-stacking distances in aromatic and charge-transfer compounds (Batchelor et al., 2000; Glusker et al.,, 1994). The antiparallel arrangement of the ligand moieties facilitates the formation of intermolecular non-classical hydrogen bonding between carbonyl O atoms and pyridine H atoms. Classical intramolecular O–H···O hydrogen bonds were observed between the two methanol molecules and between the methanol molecules and the complexes. Intramolecular classical hydrogen bonds (e.g. O4–H4···Br1, O8–H8···Br2 and O9–H9···Br1) and non-classical intramolecular hydrogen bonding (e.g. C17—H17···Br2, C26—H26B···Br1, C26···H26A···Br2 and C27···H27B···Br1 etc.) are also present (Table 2). In addition side-to-side intermolecular hydrogen bonding is observed between adjacent pyridine rings and bromide ions (e.g. C22—H22···Br1).

Experimental top

For the synthesis of the ligand bispicolyl-2-ethanolamine (L1), pyridine-2-aldehyde (7.36 g, 0.069 mol) was added to a solution of 2-aminoethanol (2 g, 0.033 mol in 20 ml dichloroethane) and the solution was stirred for 30 min under an argon atmosphere. The reaction mixture was cooled to 273 K, sodium triacetoxy borohydride (16.08 g, 0.076 mol) was added in small portions at a time and the solution stirred for another hour at room temperature. Thin layer chromatography indicated the completion of the reaction at this time. The reaction mixture was quenched with 2% sodium bicarbonate solution (30 ml) and extracted with dichloromethane (20 ml). The organic layer containing the product was dried over sodium sulfate, concentrated to a 3 ml volume and purified via routine chromatographic techniques using a silica gel column. The product was eluated with MeOH/CH2Cl2 (5:95) and dried under reduced pressure to give the ligand as a colorless oil. Yield 6.10 g, 76.76%. For the preparation of (I), to a (NEt4)2[Re(CO)3Br3] solution (0.1 g, 0.13 mmol in 15 ml me thanol) was added L1 (0.030 g, 0.13 mmol), and the solution was refluxed for 2 h. The colorless reaction mixture was evaporated to dryness and the solid residue thus obtained was dissolved in dichloromethane (10 ml) and extracted with water (3 × 20 ml) to remove all the tetraethyl ammonium bromide obtained as the main side product. The organic layer was concentrated to 2 ml and subjected to chromatographic separation using a silica gel column. The product was eluted with MeOH/CH2Cl2 (10:90) and evaporated under vacuum to give a colorless solid product. Yield 67 mg, 87%. Analysis found: C 34.95, H 2.91, N 7.10%; C17H17BrN3O4Re requires: C 34.41, H 2.89, N 7.08%. Crystals suitable for single-crystal X-ray diffraction were grown by slow diffusion of a solution of (I) in CH2Cl2 into a hexane solution at room temperature.

Refinement top

All H atoms were located in difference Fourier maps and refined as riding, with Uiso(H) values of 1.2Ueq(C) (CH and CH2 H atoms) and 1.5Ueq(C) (CH3 H atoms). A residual peak of electron density was located 0.83 Å from Re1. This residual density is mainly due to inadequate absorption correction.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
Fig. 1 A view of (I), with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
{[N,N-bis(2-pyridylmethyl)amino]ethanol-κ3N,N',N''}tricarbonylrhenium(I) bromide methanol solvate top
Crystal data top
[Re(C14H17N3O)(CO)3]Br·CH4OF(000) = 2400
Mr = 625.49Dx = 2.007 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1200 reflections
a = 14.962 (2) Åθ = 1.5–31.5°
b = 16.577 (3) ŵ = 7.83 mm1
c = 18.117 (3) ÅT = 91 K
β = 112.881 (3)°Parallelepiped, colorless
V = 4139.9 (11) Å30.22 × 0.14 × 0.09 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-dectector
diffractometer
13759 independent reflections
Radiation source: fine-focus sealed tube10981 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 512 pixels mm-1θmax = 31.5°, θmin = 1.5°
ϕ and ω scansh = 2222
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
k = 2424
Tmin = 0.278, Tmax = 0.508l = 2626
52775 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0255P)2 + 54.5922P]
where P = (Fo2 + 2Fc2)/3
13759 reflections(Δ/σ)max = 0.001
511 parametersΔρmax = 6.45 e Å3
0 restraintsΔρmin = 2.59 e Å3
Crystal data top
[Re(C14H17N3O)(CO)3]Br·CH4OV = 4139.9 (11) Å3
Mr = 625.49Z = 8
Monoclinic, P21/cMo Kα radiation
a = 14.962 (2) ŵ = 7.83 mm1
b = 16.577 (3) ÅT = 91 K
c = 18.117 (3) Å0.22 × 0.14 × 0.09 mm
β = 112.881 (3)°
Data collection top
Bruker SMART APEX CCD area-dectector
diffractometer
13759 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
10981 reflections with I > 2σ(I)
Tmin = 0.278, Tmax = 0.508Rint = 0.062
52775 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0255P)2 + 54.5922P]
where P = (Fo2 + 2Fc2)/3
13759 reflectionsΔρmax = 6.45 e Å3
511 parametersΔρmin = 2.59 e Å3
Special details top

Experimental. Synthesis of ligand (L1). Pyridine-2-aldehyde (7.36 g, 0.069 mol) was added to a solution of 2-aminoethanol (2 g, 0.033 mol in 20 ml dichloroethane) and the solution stirred for 30 min under argon atmosphere. The reaction mixture was cooled to 273 K and sodium triacetoxy borohydride (16.08 g, 0.076 mol) added in small portions at a time and the solution stirred for another hour at room temperature. The TLC indicated the completion of the reaction at this time. The reaction mixture was quenched with 30 ml 2% sodium bicarbonate solution and extracted with 20 ml me thylene chloride. The organic layer containing the product was dried over sodium sulfate, concentrated to a 3 ml volume, and purified via routine chromatographic technique using a silica gel column. The product was eluted with 5:95 (MeOH: CH2Cl2) and dried under reduced pressure to give the ligand as a colorless oil. Yield: 6.10 g (81.43%). 1H NMR (CDCl3, 300 MHz): 8.25(d, J=6.0 Hz, 2H), 7.33(t, J= 9.0 Hz, 2H), 7.15(d, J= 7.8 Hz, 2H), 6.85(t, J=6.0 Hz, 2H), 3.65(s, 4H), 3.45(t, J= 5.1 Hz, 2H), 2.58(t, J= 5.1 Hz, 2H). 13 C NMR (CDCl3, 300 MHz): 158.98, 148.46, 136.21, 122.78, 121.69, 59.82, 59.502, 53.13. Analysis, found: C 69.30, H 7.08, N 17.30; C14 H17 N3 O requires: C, 69.11; H, 7.04; N, 17.27.

For (I) IR (KBr, cm−1): 2022, 1919 [fac-Re-(CO)3]; 1H NMR (CD3OD, 300 MHz): 8.45 (d, J = 6.0 Hz, 2H, PyH), 7.66 (t, J = 9.0 Hz, 2H, PyH), 7.43 (d, J = 7.8 Hz, 2H, PyH), 7.14 (t, J = 6.0 Hz, 2H, PyH), 5.42 (dd, J = 16.2 Hz, 2H, PyCH2), 4.42 (dd, 16.2 Hz, 2H, PyCH2), 3.95 (t, J = 5.1 Hz, 2H, NCH2), 3.79 (t, J = 5.1 Hz, 2H, OCH2). 13C NMR (CD3OD, 300 MHz): 195.42, 194.99 [fac-Re-(CO)3], 160.39 (2 C, py), 150.70 (2CH, py), 140.11 (2CH, py), 125.50 (2CH, py), 123.69 (2CH, py), 71.87 (2 C, PyCH2), 67.52 (1 C, NCH2), 58.23 (1 C, OCH2).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Highest peak 6.45 at 0.0198 0.5921 0.2018 [0.83 A from Re1] Deepest hole −2.59 at 0.4378 0.4885 0.1393 [1.78 A from H35C]

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.44150 (2)0.174923 (18)0.640561 (17)0.01940 (7)
Re20.03551 (2)0.908034 (17)0.702824 (16)0.01708 (7)
Br10.83250 (6)0.10631 (5)0.91770 (5)0.02831 (17)
Br20.31058 (6)1.10065 (5)0.91134 (5)0.02507 (16)
O10.2909 (5)0.0467 (4)0.6349 (5)0.0414 (17)
O20.5805 (5)0.0424 (4)0.6314 (4)0.0399 (16)
O30.3478 (5)0.1754 (4)0.4554 (4)0.0399 (15)
O40.6396 (4)0.1453 (4)0.9487 (3)0.0305 (13)
H40.68990.12740.94440.046*
O50.2106 (5)1.0225 (4)0.6498 (4)0.0387 (15)
O60.0712 (6)1.0232 (5)0.6323 (5)0.0481 (19)
O70.1332 (5)0.8351 (4)0.5341 (4)0.0368 (15)
O80.1065 (4)1.1543 (3)0.9252 (3)0.0249 (11)
H80.16021.15830.92070.037*
O90.7884 (6)0.3005 (5)0.9516 (5)0.052 (2)
H90.80830.25510.94390.078*
O100.6007 (7)0.3261 (6)0.9782 (6)0.072 (3)
H100.64940.30450.97420.107*
N10.5419 (4)0.2744 (4)0.6564 (4)0.0203 (12)
N20.5096 (4)0.1832 (4)0.7735 (4)0.0208 (12)
N30.3660 (4)0.2764 (4)0.6652 (4)0.0208 (12)
N40.0851 (4)0.8247 (4)0.7534 (4)0.0180 (11)
N50.0334 (4)0.9517 (4)0.8291 (4)0.0176 (11)
N60.0942 (4)0.8247 (4)0.7649 (4)0.0182 (11)
C10.3476 (6)0.0942 (5)0.6368 (5)0.0289 (17)
C20.5276 (6)0.0916 (5)0.6334 (5)0.0263 (16)
C30.3833 (6)0.1761 (5)0.5249 (5)0.0249 (15)
C40.5401 (6)0.3266 (5)0.6000 (5)0.0272 (16)
H4A0.50220.31360.54570.033*
C50.5906 (6)0.3991 (5)0.6162 (5)0.0279 (17)
H50.58690.43500.57420.034*
C60.6467 (6)0.4176 (5)0.6956 (6)0.0300 (18)
H60.68220.46660.70880.036*
C70.6504 (6)0.3639 (5)0.7557 (5)0.0281 (17)
H70.68880.37540.81030.034*
C80.5970 (5)0.2932 (5)0.7343 (5)0.0217 (14)
C90.6008 (5)0.2320 (5)0.7958 (4)0.0207 (14)
H9A0.61320.25980.84720.025*
H9B0.65580.19500.80420.025*
C100.4389 (6)0.2271 (5)0.8003 (4)0.0225 (14)
H10A0.39180.18800.80550.027*
H10B0.47470.25140.85360.027*
C110.3857 (5)0.2915 (5)0.7429 (4)0.0207 (14)
C120.3556 (6)0.3617 (5)0.7689 (5)0.0261 (16)
H120.36890.37010.82400.031*
C130.3056 (6)0.4191 (5)0.7115 (5)0.0285 (17)
H130.28430.46760.72730.034*
C140.2870 (6)0.4057 (5)0.6324 (5)0.0282 (16)
H140.25430.44510.59300.034*
C150.3172 (6)0.3326 (5)0.6108 (5)0.0260 (16)
H150.30270.32240.55580.031*
C160.5318 (6)0.1007 (5)0.8130 (5)0.0274 (16)
H16A0.58530.07660.80110.033*
H16B0.47400.06610.78720.033*
C170.5601 (6)0.0971 (6)0.9039 (5)0.0290 (17)
H17A0.50350.11400.91570.035*
H17B0.57500.04050.92170.035*
C180.1443 (6)0.9808 (5)0.6697 (5)0.0253 (15)
C190.0952 (6)0.8606 (5)0.5978 (5)0.0251 (15)
C200.0307 (6)0.9812 (5)0.6578 (5)0.0293 (17)
C210.0981 (6)0.7554 (5)0.7185 (5)0.0253 (16)
H210.05670.74460.66450.030*
C220.1694 (6)0.7004 (5)0.7591 (5)0.0251 (15)
H220.17660.65260.73300.030*
C230.2299 (6)0.7148 (5)0.8372 (5)0.0261 (16)
H230.27910.67710.86570.031*
C240.2183 (5)0.7848 (4)0.8738 (5)0.0220 (14)
H240.25880.79610.92790.026*
C250.1454 (5)0.8386 (4)0.8292 (4)0.0175 (13)
C260.1354 (5)0.9175 (5)0.8649 (4)0.0200 (14)
H26A0.18070.95680.85700.024*
H26B0.15440.91050.92330.024*
C270.0260 (5)0.9200 (5)0.8729 (4)0.0213 (14)
H27A0.01540.91670.93070.026*
H27B0.07910.95850.86640.026*
C280.0685 (5)0.8389 (4)0.8441 (4)0.0171 (13)
C290.0866 (5)0.7837 (5)0.8946 (4)0.0214 (14)
H290.06690.79440.95020.026*
C300.1343 (6)0.7126 (5)0.8612 (5)0.0256 (16)
H300.14800.67380.89390.031*
C310.1617 (6)0.6986 (5)0.7800 (5)0.0245 (15)
H310.19460.65040.75620.029*
C320.1404 (5)0.7554 (5)0.7347 (4)0.0214 (14)
H320.15920.74540.67900.026*
C330.0405 (5)1.0421 (4)0.8374 (4)0.0207 (14)
H33A0.02511.06530.80940.025*
H33B0.08201.06220.81020.025*
C340.0813 (6)1.0726 (5)0.9237 (4)0.0217 (14)
H34A0.03231.06590.94740.026*
H34B0.13931.04060.95600.026*
C350.5966 (11)0.4066 (9)0.9570 (7)0.065 (4)
H35A0.66170.43020.98100.097*
H35B0.55280.43530.97650.097*
H35C0.57250.41120.89860.097*
C360.8667 (9)0.3505 (9)0.9893 (10)0.071 (4)
H36A0.84570.40690.97950.106*
H36B0.91680.34030.96820.106*
H36C0.89310.33991.04710.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01870 (13)0.02209 (14)0.01595 (12)0.00161 (10)0.00516 (10)0.00003 (10)
Re20.02032 (13)0.01710 (12)0.01372 (12)0.00114 (10)0.00653 (10)0.00135 (10)
Br10.0264 (4)0.0355 (4)0.0235 (4)0.0064 (3)0.0101 (3)0.0085 (3)
Br20.0234 (3)0.0271 (4)0.0257 (4)0.0009 (3)0.0105 (3)0.0016 (3)
O10.026 (3)0.032 (4)0.062 (5)0.006 (3)0.013 (3)0.007 (3)
O20.035 (3)0.035 (4)0.054 (4)0.006 (3)0.021 (3)0.000 (3)
O30.049 (4)0.046 (4)0.020 (3)0.001 (3)0.008 (3)0.002 (3)
O40.025 (3)0.043 (4)0.023 (3)0.001 (3)0.009 (2)0.001 (3)
O50.035 (3)0.031 (3)0.042 (4)0.011 (3)0.005 (3)0.002 (3)
O60.066 (5)0.045 (4)0.045 (4)0.022 (4)0.036 (4)0.005 (3)
O70.053 (4)0.034 (3)0.019 (3)0.002 (3)0.009 (3)0.000 (2)
O80.030 (3)0.018 (3)0.026 (3)0.002 (2)0.010 (2)0.005 (2)
O90.059 (5)0.039 (4)0.054 (5)0.012 (4)0.017 (4)0.008 (4)
O100.086 (7)0.056 (6)0.053 (5)0.032 (5)0.005 (5)0.005 (4)
N10.018 (3)0.020 (3)0.023 (3)0.002 (2)0.008 (2)0.000 (2)
N20.016 (3)0.025 (3)0.020 (3)0.002 (2)0.006 (2)0.006 (2)
N30.016 (3)0.025 (3)0.021 (3)0.002 (2)0.007 (2)0.001 (2)
N40.020 (3)0.018 (3)0.018 (3)0.001 (2)0.009 (2)0.002 (2)
N50.017 (3)0.017 (3)0.020 (3)0.001 (2)0.009 (2)0.004 (2)
N60.017 (3)0.021 (3)0.016 (3)0.000 (2)0.005 (2)0.000 (2)
C10.026 (4)0.026 (4)0.030 (4)0.001 (3)0.007 (3)0.001 (3)
C20.025 (4)0.030 (4)0.021 (3)0.002 (3)0.006 (3)0.001 (3)
C30.025 (4)0.028 (4)0.019 (3)0.001 (3)0.006 (3)0.002 (3)
C40.029 (4)0.033 (4)0.024 (4)0.002 (3)0.015 (3)0.004 (3)
C50.031 (4)0.023 (4)0.037 (4)0.003 (3)0.021 (4)0.005 (3)
C60.034 (4)0.022 (4)0.041 (5)0.004 (3)0.023 (4)0.002 (3)
C70.030 (4)0.030 (4)0.023 (4)0.005 (3)0.009 (3)0.008 (3)
C80.019 (3)0.027 (4)0.021 (3)0.002 (3)0.010 (3)0.003 (3)
C90.025 (3)0.022 (3)0.011 (3)0.005 (3)0.002 (3)0.003 (3)
C100.025 (4)0.026 (4)0.015 (3)0.002 (3)0.006 (3)0.003 (3)
C110.018 (3)0.024 (4)0.019 (3)0.004 (3)0.005 (3)0.004 (3)
C120.022 (4)0.037 (4)0.019 (3)0.001 (3)0.007 (3)0.003 (3)
C130.025 (4)0.027 (4)0.034 (4)0.003 (3)0.012 (3)0.001 (3)
C140.022 (4)0.031 (4)0.032 (4)0.001 (3)0.010 (3)0.004 (3)
C150.024 (4)0.029 (4)0.025 (4)0.001 (3)0.010 (3)0.005 (3)
C160.022 (4)0.032 (4)0.025 (4)0.001 (3)0.006 (3)0.009 (3)
C170.026 (4)0.038 (5)0.021 (4)0.002 (3)0.007 (3)0.006 (3)
C180.027 (4)0.024 (4)0.021 (3)0.002 (3)0.004 (3)0.005 (3)
C190.033 (4)0.020 (4)0.022 (3)0.002 (3)0.010 (3)0.000 (3)
C200.035 (4)0.032 (4)0.026 (4)0.008 (3)0.017 (4)0.007 (3)
C210.025 (4)0.029 (4)0.025 (4)0.009 (3)0.012 (3)0.011 (3)
C220.030 (4)0.020 (3)0.029 (4)0.000 (3)0.015 (3)0.004 (3)
C230.023 (4)0.023 (4)0.034 (4)0.002 (3)0.013 (3)0.002 (3)
C240.022 (3)0.019 (3)0.027 (4)0.002 (3)0.011 (3)0.004 (3)
C250.017 (3)0.020 (3)0.017 (3)0.000 (2)0.008 (3)0.000 (3)
C260.018 (3)0.024 (4)0.017 (3)0.002 (3)0.005 (3)0.004 (3)
C270.017 (3)0.028 (4)0.022 (3)0.003 (3)0.011 (3)0.006 (3)
C280.014 (3)0.023 (3)0.016 (3)0.000 (2)0.008 (2)0.003 (3)
C290.023 (3)0.026 (4)0.016 (3)0.000 (3)0.009 (3)0.003 (3)
C300.026 (4)0.021 (4)0.033 (4)0.005 (3)0.015 (3)0.003 (3)
C310.027 (4)0.020 (4)0.025 (4)0.006 (3)0.009 (3)0.003 (3)
C320.025 (4)0.026 (4)0.013 (3)0.002 (3)0.007 (3)0.004 (3)
C330.023 (3)0.017 (3)0.020 (3)0.001 (3)0.007 (3)0.001 (3)
C340.025 (4)0.021 (3)0.020 (3)0.003 (3)0.010 (3)0.007 (3)
C350.083 (10)0.067 (9)0.038 (6)0.003 (7)0.016 (6)0.005 (6)
C360.046 (7)0.062 (9)0.088 (11)0.011 (6)0.009 (7)0.005 (8)
Geometric parameters (Å, º) top
Re1—C11.922 (9)C9—H9B0.9900
Re1—C21.927 (9)C10—C111.488 (10)
Re1—C31.932 (8)C10—H10A0.9900
Re1—N12.174 (6)C10—H10B0.9900
Re1—N22.225 (6)C11—C121.393 (11)
Re1—N32.167 (6)C12—C131.394 (12)
Re2—C181.925 (8)C12—H120.9500
Re2—C191.927 (8)C14—C131.367 (12)
Re2—C201.936 (8)C14—C151.401 (12)
Re2—N42.171 (6)C14—H140.9500
Re2—N52.233 (6)C13—H130.9500
Re2—N62.171 (6)C15—H150.9500
O1—C11.148 (10)C16—C171.534 (11)
O2—C21.147 (10)C16—H16A0.9900
O3—C31.160 (9)C16—H16B0.9900
O4—C171.401 (10)C17—H17A0.9900
O4—H40.8400C17—H17B0.9900
O5—C181.146 (10)C21—C221.379 (12)
O6—C201.132 (10)C21—H210.9500
O7—C191.150 (10)C22—C231.372 (12)
O8—C341.403 (9)C22—H220.9500
O8—H80.8400C23—C241.380 (11)
O9—C361.380 (14)C23—H230.9500
O9—H90.8400C24—C251.397 (10)
O10—C351.382 (16)C24—H240.9500
O10—H100.8400C25—C261.493 (10)
N1—C41.331 (10)C26—H26A0.9900
N1—C81.366 (10)C26—H26B0.9900
N2—C91.499 (9)C27—C281.493 (10)
N2—C101.510 (10)C27—H27A0.9900
N2—C161.519 (10)C27—H27B0.9900
N3—C111.345 (9)C28—C291.392 (10)
N3—C151.347 (10)C29—C301.389 (11)
N4—C251.338 (9)C29—H290.9500
N4—C211.361 (10)C30—C311.385 (11)
N5—C271.497 (9)C30—H300.9500
N5—C331.506 (9)C31—C321.366 (11)
N5—C261.518 (9)C31—H310.9500
N6—C321.342 (10)C32—H320.9500
N6—C281.354 (9)C33—C341.526 (10)
C4—C51.388 (12)C33—H33A0.9900
C4—H4A0.9500C33—H33B0.9900
C5—C61.389 (13)C34—H34A0.9900
C5—H50.9500C34—H34B0.9900
C6—C71.391 (12)C35—H35A0.9800
C6—H60.9500C35—H35B0.9800
C7—C81.386 (11)C35—H35C0.9800
C7—H70.9500C36—H36A0.9800
C8—C91.492 (10)C36—H36B0.9800
C9—H9A0.9900C36—H36C0.9800
C1—Re1—C289.8 (4)C11—C12—H12121.1
C1—Re1—C387.3 (4)C13—C12—H12121.1
C2—Re1—C388.0 (3)C13—C14—C15118.4 (8)
C1—Re1—N396.7 (3)C13—C14—H14120.8
C2—Re1—N3170.3 (3)C15—C14—H14120.8
C3—Re1—N399.5 (3)C14—C13—C12120.2 (8)
C1—Re1—N1172.4 (3)C14—C13—H13119.9
C2—Re1—N196.2 (3)C12—C13—H13119.9
C3—Re1—N197.6 (3)N3—C15—C14122.5 (8)
N3—Re1—N176.9 (2)N3—C15—H15118.8
C1—Re1—N295.9 (3)C14—C15—H15118.8
C2—Re1—N294.6 (3)N2—C16—C17117.2 (7)
C3—Re1—N2175.9 (3)N2—C16—H16A108.0
N3—Re1—N277.6 (2)C17—C16—H16A108.0
N1—Re1—N278.9 (2)N2—C16—H16B108.0
C18—Re2—C1986.4 (3)C17—C16—H16B108.0
C18—Re2—C2089.2 (4)H16A—C16—H16B107.2
C19—Re2—C2087.5 (3)O4—C17—C16114.7 (7)
C18—Re2—N4173.3 (3)O4—C17—H17A108.6
C19—Re2—N498.5 (3)C16—C17—H17A108.6
C20—Re2—N495.7 (3)O4—C17—H17B108.6
C18—Re2—N695.5 (3)C16—C17—H17B108.6
C19—Re2—N697.3 (3)H17A—C17—H17B107.6
C20—Re2—N6173.5 (3)O5—C18—Re2178.3 (8)
N4—Re2—N679.3 (2)O7—C19—Re2177.2 (8)
C18—Re2—N596.5 (3)O6—C20—Re2178.6 (9)
C19—Re2—N5174.7 (3)N4—C21—C22122.1 (7)
C20—Re2—N597.0 (3)N4—C21—H21118.9
N4—Re2—N578.3 (2)C22—C21—H21118.9
N6—Re2—N578.1 (2)C23—C22—C21119.9 (7)
C17—O4—H4109.5C23—C22—H22120.1
C34—O8—H8109.5C21—C22—H22120.1
C36—O9—H9109.5C22—C23—C24119.1 (8)
C35—O10—H10109.5C22—C23—H23120.5
C4—N1—C8118.0 (7)C24—C23—H23120.5
C4—N1—Re1125.9 (5)C23—C24—C25118.3 (7)
C8—N1—Re1114.7 (5)C23—C24—H24120.8
C9—N2—C10109.3 (6)C25—C24—H24120.8
C9—N2—C16110.4 (6)N4—C25—C24123.2 (7)
C10—N2—C16109.6 (6)N4—C25—C26117.0 (6)
C9—N2—Re1108.1 (4)C24—C25—C26119.7 (6)
C10—N2—Re1107.1 (4)C25—C26—N5113.2 (6)
C16—N2—Re1112.2 (5)C25—C26—H26A108.9
C11—N3—C15118.2 (7)N5—C26—H26A108.9
C11—N3—Re1116.2 (5)C25—C26—H26B108.9
C15—N3—Re1124.4 (5)N5—C26—H26B108.9
C25—N4—C21117.4 (7)H26A—C26—H26B107.7
C25—N4—Re2116.2 (5)C28—C27—N5113.0 (6)
C21—N4—Re2125.9 (5)C28—C27—H27A109.0
C27—N5—C33109.2 (5)N5—C27—H27A109.0
C27—N5—C26110.4 (6)C28—C27—H27B109.0
C33—N5—C26108.0 (5)N5—C27—H27B109.0
C27—N5—Re2107.3 (4)H27A—C27—H27B107.8
C33—N5—Re2114.3 (4)N6—C28—C29122.3 (7)
C26—N5—Re2107.7 (4)N6—C28—C27115.7 (6)
C32—N6—C28118.1 (6)C29—C28—C27121.9 (6)
C32—N6—Re2125.5 (5)C30—C29—C28118.0 (7)
C28—N6—Re2115.7 (5)C30—C29—H29121.0
O1—C1—Re1179.1 (8)C28—C29—H29121.0
O2—C2—Re1178.1 (8)C31—C30—C29119.7 (7)
O3—C3—Re1178.8 (8)C31—C30—H30120.2
N1—C4—C5123.6 (8)C29—C30—H30120.2
N1—C4—H4A118.2C32—C31—C30118.7 (7)
C5—C4—H4A118.2C32—C31—H31120.6
C4—C5—C6118.0 (8)C30—C31—H31120.6
C4—C5—H5121.0N6—C32—C31123.2 (7)
C6—C5—H5121.0N6—C32—H32118.4
C5—C6—C7119.6 (8)C31—C32—H32118.4
C5—C6—H6120.2N5—C33—C34114.7 (6)
C7—C6—H6120.2N5—C33—H33A108.6
C8—C7—C6118.6 (8)C34—C33—H33A108.6
C8—C7—H7120.7N5—C33—H33B108.6
C6—C7—H7120.7C34—C33—H33B108.6
N1—C8—C7122.2 (7)H33A—C33—H33B107.6
N1—C8—C9116.7 (7)O8—C34—C33109.7 (6)
C7—C8—C9121.1 (7)O8—C34—H34A109.7
C8—C9—N2113.5 (6)C33—C34—H34A109.7
C8—C9—H9A108.9O8—C34—H34B109.7
N2—C9—H9A108.9C33—C34—H34B109.7
C8—C9—H9B108.9H34A—C34—H34B108.2
N2—C9—H9B108.9O10—C35—H35A109.5
H9A—C9—H9B107.7O10—C35—H35B109.5
C11—C10—N2111.9 (6)H35A—C35—H35B109.5
C11—C10—H10A109.2O10—C35—H35C109.5
N2—C10—H10A109.2H35A—C35—H35C109.5
C11—C10—H10B109.2H35B—C35—H35C109.5
N2—C10—H10B109.2O9—C36—H36A109.5
H10A—C10—H10B107.9O9—C36—H36B109.5
N3—C11—C12122.8 (7)H36A—C36—H36B109.5
N3—C11—C10115.9 (7)O9—C36—H36C109.5
C12—C11—C10121.2 (7)H36A—C36—H36C109.5
C11—C12—C13117.9 (7)H36B—C36—H36C109.5
C2—Re1—N1—C4102.0 (7)C6—C7—C8—N10.7 (12)
C3—Re1—N1—C413.2 (7)C6—C7—C8—C9177.9 (7)
N3—Re1—N1—C484.9 (6)N1—C8—C9—N231.2 (10)
N2—Re1—N1—C4164.5 (7)C7—C8—C9—N2151.5 (7)
C2—Re1—N1—C892.4 (6)C10—N2—C9—C886.8 (7)
C3—Re1—N1—C8178.8 (6)C16—N2—C9—C8152.5 (7)
N3—Re1—N1—C880.8 (5)Re1—N2—C9—C829.5 (7)
N2—Re1—N1—C81.1 (5)C9—N2—C10—C1180.9 (7)
C1—Re1—N2—C9169.2 (5)C16—N2—C10—C11157.9 (6)
C2—Re1—N2—C978.9 (5)Re1—N2—C10—C1136.0 (7)
N3—Re1—N2—C995.3 (5)C15—N3—C11—C121.6 (11)
N1—Re1—N2—C916.5 (5)Re1—N3—C11—C12169.2 (6)
C1—Re1—N2—C1073.1 (5)C15—N3—C11—C10179.5 (7)
C2—Re1—N2—C10163.3 (5)Re1—N3—C11—C1012.9 (8)
N3—Re1—N2—C1022.5 (5)N2—C10—C11—N333.8 (9)
N1—Re1—N2—C10101.3 (5)N2—C10—C11—C12148.3 (7)
C1—Re1—N2—C1647.2 (5)N3—C11—C12—C131.9 (11)
C2—Re1—N2—C1643.1 (5)C10—C11—C12—C13179.6 (7)
N3—Re1—N2—C16142.7 (5)C15—C14—C13—C121.6 (12)
N1—Re1—N2—C16138.5 (5)C11—C12—C13—C140.2 (12)
C1—Re1—N3—C1188.4 (6)C11—N3—C15—C140.3 (11)
C3—Re1—N3—C11176.8 (5)Re1—N3—C15—C14166.2 (6)
N1—Re1—N3—C1187.5 (5)C13—C14—C15—N31.9 (12)
N2—Re1—N3—C116.2 (5)C9—N2—C16—C1771.1 (8)
C1—Re1—N3—C15104.8 (7)C10—N2—C16—C1749.5 (8)
C3—Re1—N3—C1516.4 (7)Re1—N2—C16—C17168.3 (5)
N1—Re1—N3—C1579.2 (6)N2—C16—C17—O456.1 (10)
N2—Re1—N3—C15160.6 (6)C25—N4—C21—C220.8 (11)
C19—Re2—N4—C25179.7 (5)Re2—N4—C21—C22171.0 (6)
C20—Re2—N4—C2592.0 (5)N4—C21—C22—C230.0 (12)
N6—Re2—N4—C2583.9 (5)C21—C22—C23—C240.2 (12)
N5—Re2—N4—C254.0 (5)C22—C23—C24—C250.5 (11)
C19—Re2—N4—C217.8 (6)C21—N4—C25—C241.6 (10)
C20—Re2—N4—C2196.1 (6)Re2—N4—C25—C24171.1 (6)
N6—Re2—N4—C2188.0 (6)C21—N4—C25—C26175.4 (6)
N5—Re2—N4—C21167.9 (6)Re2—N4—C25—C2611.9 (8)
C20—Re2—N5—C27164.5 (5)C23—C24—C25—N41.4 (11)
N4—Re2—N5—C27101.1 (5)C23—C24—C25—C26175.5 (7)
N6—Re2—N5—C2719.8 (4)N4—C25—C26—N528.5 (9)
C18—Re2—N5—C3346.7 (5)C24—C25—C26—N5154.4 (6)
C20—Re2—N5—C3343.3 (5)C27—N5—C26—C2587.6 (7)
N4—Re2—N5—C33137.7 (5)C33—N5—C26—C25153.1 (6)
N6—Re2—N5—C33141.0 (5)Re2—N5—C26—C2529.2 (7)
C18—Re2—N5—C26166.7 (5)C33—N5—C27—C28158.2 (6)
C20—Re2—N5—C2676.7 (5)C26—N5—C27—C2883.3 (7)
N4—Re2—N5—C2617.7 (4)Re2—N5—C27—C2833.8 (7)
N6—Re2—N5—C2699.0 (5)C32—N6—C28—C291.3 (10)
C18—Re2—N6—C3298.1 (6)Re2—N6—C28—C29169.0 (5)
C19—Re2—N6—C3211.1 (7)C32—N6—C28—C27174.4 (6)
N4—Re2—N6—C3286.2 (6)Re2—N6—C28—C2715.2 (8)
N5—Re2—N6—C32166.4 (6)N5—C27—C28—N634.0 (9)
C18—Re2—N6—C2892.4 (5)N5—C27—C28—C29150.2 (7)
C19—Re2—N6—C28179.4 (5)N6—C28—C29—C301.2 (11)
N4—Re2—N6—C2883.3 (5)C27—C28—C29—C30174.3 (7)
N5—Re2—N6—C283.2 (5)C28—C29—C30—C310.3 (11)
C8—N1—C4—C50.4 (11)C29—C30—C31—C320.4 (12)
Re1—N1—C4—C5164.8 (6)C28—N6—C32—C310.6 (11)
N1—C4—C5—C60.6 (12)Re2—N6—C32—C31168.7 (6)
C4—C5—C6—C70.2 (12)C30—C31—C32—N60.2 (12)
C5—C6—C7—C80.5 (12)C27—N5—C33—C3456.0 (8)
C4—N1—C8—C70.3 (11)C26—N5—C33—C3464.0 (8)
Re1—N1—C8—C7167.1 (6)Re2—N5—C33—C34176.2 (5)
C4—N1—C8—C9177.6 (7)N5—C33—C34—O8165.9 (6)
Re1—N1—C8—C915.6 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···Br10.842.393.213 (7)167
O8—H8···Br20.842.513.282 (6)153
O9—H9···Br10.842.563.390 (8)168
O10—H10···O90.842.273.059 (16)156
C9—H9A···O40.992.572.969 (10)104
C24—H24···O4i0.952.373.299 (8)167
C30—H30···O7ii0.952.473.225 (11)137
C17—H17A···Br2iii0.992.873.788 (10)155
C22—H22···Br1iv0.952.793.552 (7)138
C26—H26B···Br1i0.992.823.798 (6)167
C27—H27A···Br1i0.992.833.798 (8)166
C34—H34A···Br1v0.992.903.724 (9)141
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+3/2, z+1/2; (iii) x, y1, z; (iv) x+1, y+1/2, z+3/2; (v) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Re(C14H17N3O)(CO)3]Br·CH4O
Mr625.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)91
a, b, c (Å)14.962 (2), 16.577 (3), 18.117 (3)
β (°) 112.881 (3)
V3)4139.9 (11)
Z8
Radiation typeMo Kα
µ (mm1)7.83
Crystal size (mm)0.22 × 0.14 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD area-dectector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.278, 0.508
No. of measured, independent and
observed [I > 2σ(I)] reflections
52775, 13759, 10981
Rint0.062
(sin θ/λ)max1)0.735
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.132, 1.18
No. of reflections13759
No. of parameters511
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0255P)2 + 54.5922P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)6.45, 2.59

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
Re1—C11.922 (9)Re2—N42.171 (6)
Re1—C21.927 (9)Re2—N52.233 (6)
Re1—C31.932 (8)Re2—N62.171 (6)
Re1—N12.174 (6)O1—C11.148 (10)
Re1—N22.225 (6)O2—C21.147 (10)
Re1—N32.167 (6)O3—C31.160 (9)
Re2—C181.925 (8)O5—C181.146 (10)
Re2—C191.927 (8)O6—C201.132 (10)
Re2—C201.936 (8)O7—C191.150 (10)
C1—Re1—C289.8 (4)C18—Re2—C1986.4 (3)
C1—Re1—C387.3 (4)C18—Re2—C2089.2 (4)
C1—Re1—N396.7 (3)C18—Re2—N4173.3 (3)
C2—Re1—N3170.3 (3)C19—Re2—N498.5 (3)
C1—Re1—N1172.4 (3)C20—Re2—N495.7 (3)
C2—Re1—N196.2 (3)C18—Re2—N695.5 (3)
C3—Re1—N197.6 (3)C20—Re2—N6173.5 (3)
N3—Re1—N176.9 (2)N4—Re2—N679.3 (2)
C3—Re1—N2175.9 (3)C19—Re2—N5174.7 (3)
N1—Re1—N278.9 (2)N4—Re2—N578.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···Br10.842.393.213 (7)167
O8—H8···Br20.842.513.282 (6)153
O9—H9···Br10.842.563.390 (8)168
O10—H10···O90.842.273.059 (16)156
C9—H9A···O40.992.572.969 (10)104
C24—H24···O4i0.952.373.299 (8)167
C30—H30···O7ii0.952.473.225 (11)137
C17—H17A···Br2iii0.992.873.788 (10)155
C22—H22···Br1iv0.952.793.552 (7)138
C26—H26B···Br1i0.992.823.798 (6)167
C27—H27A···Br1i0.992.833.798 (8)166
C34—H34A···Br1v0.992.903.724 (9)141
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+3/2, z+1/2; (iii) x, y1, z; (iv) x+1, y+1/2, z+3/2; (v) x1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds