Download citation
Download citation
link to html
The crystal structures of cis-di­chlorido­(ethyl­amine-κN)(piperidine-κN)platinum(II), [PtCl2(C2H7N)(C5H11N)], (I), cis-di­chlorido(3-meth­oxy­aniline-κN)­(piperidine-κN)plati­num(II), [PtCl2(C5H11N)(C7H9NO)], (II), and cis-di­chlorido­(piperidine-κN)(quinoline-κN)platinum(II), [PtCl2(C5H11N)(C9H7N)], (III), have been determined at 100 K in order to verify the influence of the nonpiperidine ligand on the geometry and crystal packing. The crystal packing is characterized by N—H...Cl hydrogen bonding, resulting in the formation of chains of mol­ecules connected in a head-to-tail fashion. Hydrogen-bonding inter­actions play a major role in the packing of (I), where the chains further aggregate into planes, but less so in the case of (II) and (III), where π–π stacking inter­actions are of greater importance.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614003386/uk3089sup1.cif
Contains datablocks I, II, III, New_Global_Publ_Block

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614003386/uk3089Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614003386/uk3089IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614003386/uk3089IIIsup4.hkl
Contains datablock III

CCDC references: 986816; 986817; 986818

Introduction top

Platinum complexes have been known for a long time and have important medical applications. Among them, Cisplatin (cis-[PtCl2(NH3)2]) is one of the most effective anti­tumor agents used in chemotherapy to treat various types of human cancers (Klein & Hambley, 2009; Wong & Giandomenico, 1999). Recently, there has been an intense inter­est in developing platinum complexes bearing either piperidine (pip) or its derivatives as ligand, most of which exhibit promising anti­tumor activity (Ali et al., 2007; Da, 2001a,b; Mukhopadhyay et al., 2003; Rounaq Ali Khan et al., 2000a,b; Solin et al., 1982). However, crystal data of these complexes are very limited, e.g. the crystal structures of cis-[PtCl2(pip)2] (Rounaq Ali Khan et al., 2000a) [OK?], and trans-[PtCl2(4-pic)(pip)] (4-pic is ????; Najajreh et al., 2005). Herein, we report the crystal structures and molecular arrangement of three compounds, namely cis-[PtCl2(ethyl­amine)(pip)], (I), cis-[PtCl2(m-anisidine)(pip)], (II), and cis-[PtCl2(pip)(quinoline)], (III). They all contain the piperidine ligand and another amine. The latter in compound (I) is a primary amine with an aliphatic chain, while in compound (II) a larger aromatic ring is present. In compound (III), a heterocyclic aromatic amine (quinoline) without an amine H atom was studied for comparison with (I) and (II).

Experimental top

Synthesis and crystallization top

The title complexes were synthesized according to the methods described by Vu et al. (2002) and Da et al. (2005). K[PtCl3(piperidine)] (0.425 g, 1 mmol), prepared according to the synthetic protocol of Da et al. (2001b), was dissolved in an aqueous ethanol solution (15 ml, 1:1 v/v) and then filtered to afford a saturated solution. To this solution, amine (1.5 mol) in an aqueous ethanol solution (5 ml, 1:1 v/v) was added gradually at 288–293 K for ethyl­amine, and at 298–303 K for m-anisidine (3-meth­oxy­aniline) and quinoline. The reaction mixture was stirred for 4–5 h. After cooling in an ice bath at 278 K for 30 min, the precipitated yellow substance was filtered off and washed with an aqueous ethanol solution (1:1 v/v). The products were first dried in air at room temperature for 1 h, and then in a vacuum at 323 K for 2 h. The yields of (I), (II) and (III) were 70, 60 and 75%, respectively. Single crystals suitable for X-ray diffraction analysis were obtained by recrystallization from ethanol–water (2.5:1 v/v) for (I) and (II), and from chloro­form–ethanol (1:3 v/v) for (III).

Structure solution and refinement top

All H atoms were placed in idealized positions and refined in riding mode with Uiso(H) values assigned as 1.2 times Ueq of the parent atoms (1.5 times for methyl groups), with C—H distances of 0.95 (aromatic), 0.98 (methyl) and 0.99 Å (methyl­ene) and N—H distances of 0.93 (NH) and 0.92 Å (NH2).

Results and discussion top

Compounds (I)–(III) crystallize in three different space groups: Pbca, P1 and P21/c for (I), (II) and (III), respectively. The molecular structures are shown in Fig. 1, and selected bond lengths and angles are given in Table 2. The PtII atoms exhibit the usual square-planar coordination and are surrounded by two Cl atoms and two N atoms [one belonging to piperidine (pip) and the other to ethyl­amine in (I), m-anisidine in (II) or quinoline in (III)]. The structures show unambiguously the cis positions of the two Cl atoms. The angles between two adjacent coordinating atoms are close to the expected values of 90°. The Pt—Cl bond lengths vary from 2.3020 (8) to 2.3155 (12) Å and are in good agreement with the average Pt—Cl bond distance of 2.33 (4) Å for cis-platinum complexes present in the Cambridge Structural Database (CSD, Version 5.34; Allen, 2002). The Pt—N(piperidine) distances are between 2.057 (3) and 2.074 (3) Å, and agree well with the closely related compound [PtCl2(pip)2] (Rounaq Ali Khan et al., 2000a) [OK?]. All the piperidine rings adopt chair conformations, as expected based on the 1H NMR results (Dinh & Da, 2003). Moreover, the piperidine ring in all three compounds are arranged perpendicular to the coordination plane of the PtII atom, thereby reducing the van der Waals repulsion [dihedral angles between best planes through the piperidine ring and the four atoms coordinating to Pt are 86.52 (13) and 86.13 (13)° in (I), 79.15 (14)° in (II) and 85.31 (19)° in (III). The ethyl­amine ligands in compound (I) exhibit different conformations: one shows an anti conformation [Pt1—N2—C6—C7 = 177.9 (2)°] and the other shows a gauche conformation [Pt2—N4—C13—C14 = -55.2 (3)°].

The crystal packing of (I) is dominated by hydrogen-bonding inter­actions of the N—H···Cl type (Table 3). The resulting corrugated layers parallel to the ab plane (Fig. 2a) are similar to those observed for cis-amminedi­chloro­ispropyl­amine­platinum(II) (Kirik et al., 2006). Between the layers only hydro­phobic inter­actions between piperidine rings and ethyl groups are observed. The molecules in these layers are arranged in a pseudo-anti­parallel β-sheet motif in which each strand is formed by a head-to-tail arrangement of molecules stabilized by hydrogen bonds between the Cl1/Cl2 and N3/N4 atoms, and betweenthe Cl3/Cl4 and N1/N2 atoms (green dotted lines in Fig. 2b; Table 3). Atoms N1 and N3 belong to the piperidine rings, and atoms N2 and N4 to the ethyl­amine ligands. The chains are linked to each other by hydrogen bonds between N2/N4 and Cl2/Cl4 (magenta dotted lines in Fig. 2b; Table 3). The unit cell contains eight voids of 32 Å3 each.

In the crystal packing of (II) chains of molecules are formed along the a axis by hydrogen bonding between the piperidine N2—H2A group and atom Cl2 (N2—H2A···Cl2i; Table 4 and green dotted lines in Fig. 3). The head-to-tail arrangement of two neighbouring chains is stabilized by hydrogen bonding between the m-anisidine N1—H1B group and atom Cl1 (N1—H1B···Cl1ii; Table 4 and red dotted lines in Fig. 3). Additionally, in the two other directions, hydro­phobic inter­actions are observed between aliphatic piperidine rings and ππ stacking of the benzene rings of the m-anisidine ligand [inter­planar distance = 3.373 (2) Å and centroid–centroid distance between benzene rings = 3.866 (2) Å; Fig. 3].

The crystal packing of (III) is much simpler than those of (I) and (II). Hydrogen-bonding contacts are limited compared to (I) and (II) due to the presence of the quinoline ligand having no amine H atom and the bulkier quinoline ring pushing molecules further away. As a result, each molecule contributes one donor (the amine H atom of piperidine) and one acceptor (Cl1) to the hydrogen-bonding network. However, a head-to-tail arrangement of molecules is still observed in this case and a chain of molecules along the b axis is formed by hydrogen bonding (N1—H1···Cl1i; Table 5 and Fig. 4). Two neighbouring chains are again anti­parallel, but this time the chains do not inter­acting by hydrogen bonding, but by ππ inter­actions between quinoline rings (Cg1···Cg2ii = 3.646 (3) Å; Cg1 and Cg2 are the centroids of the N2/C6–C9/C14 and C9–C14 rings, respectively; symmetry code: (ii) -x+2, -y+1, -z; Fig. 4).

The different nature of the nonpiperidine ligands characterizes the packing of (I), (II) and (III). For ethyl­amine in (I) with two amine H atoms and a small side chain, hydrogen bonds are dominant in the crystal packing. Replacing the aliphatic side chain with an aromatic side chain of m-anisidine in (II) decreases the number of hydrogen bonds and introduces ππ inter­actions between the aromatic rings in the crystal packing. Following this trend, compound (III), carrying a quinoline ligand, which has no amine H atom and a larger aromatic ring compared to that of (II), shows mainly ππ inter­actions. Although hydrogen bonds do not play a key role in the packing of (II) and (III), they are still responsible for the chain-building process.

Related literature top

(type here to add)

For related literature, see: Ali et al. (2007); Allen (2002); Da (2001a,b); Da et al. (2005); Dinh & Da (2003); Dolomanov et al. (2009); Kirik et al. (2006); Klein & Hambley (2009); Mukhopadhyay et al. (2003); Najajreh et al. (2005); Rounaq Ali Khan et al. (2000a,b); Sheldrick (2008); Solin et al. (1982); Vu et al. (2002); Wong & Giandomenico (1999).

Computing details top

For all compounds, data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Views of the asymmetric units in (a) (I), (b) (II) and (c) (III), showing the atom-labelling schemes. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. (a) The arrangement of layers in the crystal packing of (I), viewed along the c axis; (b) the hydrogen-bonding interactions between neighbouring chains in the layers of (I) (green dotted lines show H atoms bonds in a chain and magenta dotted lines show hydrogen bonds between chains). [Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, -y+1/2, z-1/2; (iii) -x+1, y+1/2, -z+3/2.]
[Figure 3] Fig. 3. Hydrogen-bonding and ππ interactions in (II) (green dotted lines show H atoms bonds in a chain, red dotted lines show hydrogen bonds and ππ interactions between chains; Cg1 is the centroid of C1–C6 ring). [Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, z-1; (iii) -x, -y, -z+1.]
[Figure 4] Fig. 4. Hydrogen-bonding and ππ interactions in (III). [Symmetry codes: (i) -x+3/2, y-1/2, -z+1/2; (ii) -x+2, -y+1, -z.]
(I) cis-Dichlorido(ethylamine-κN)(piperidine-κN)platinum(II) top
Crystal data top
[PtCl2(C2H7N)(C5H11N)]Dx = 2.216 Mg m3
Mr = 396.21Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 14625 reflections
a = 17.2910 (17) Åθ = 3.4–29.1°
b = 12.5737 (5) ŵ = 12.22 mm1
c = 21.8534 (5) ÅT = 100 K
V = 4751.2 (5) Å3Plate, yellow
Z = 160.3 × 0.1 × 0.05 mm
F(000) = 2976
Data collection top
Agilent SuperNova (single source at offset, Eos detector)
diffractometer
4847 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4116 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.041
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.7°
ω scansh = 2121
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1515
Tmin = 0.577, Tmax = 1.000l = 2727
46115 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.041H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0141P)2 + 3.0137P]
where P = (Fo2 + 2Fc2)/3
4847 reflections(Δ/σ)max = 0.005
219 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
[PtCl2(C2H7N)(C5H11N)]V = 4751.2 (5) Å3
Mr = 396.21Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 17.2910 (17) ŵ = 12.22 mm1
b = 12.5737 (5) ÅT = 100 K
c = 21.8534 (5) Å0.3 × 0.1 × 0.05 mm
Data collection top
Agilent SuperNova (single source at offset, Eos detector)
diffractometer
4847 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
4116 reflections with I > 2σ(I)
Tmin = 0.577, Tmax = 1.000Rint = 0.041
46115 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.041H-atom parameters constrained
S = 1.07Δρmax = 0.92 e Å3
4847 reflectionsΔρmin = 0.72 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

X-ray diffraction data were collected on an Agilent SuperNova diffractometer using mirror-monochromated Mo Kα radiation (λ = 0.71073 Å). Using OLEX2 (Dolomanov et al., 2009) the structures were solved by direct methods using SHELXS (Sheldrick, 2008) and refined by full-matrix least-squares methods based on F2 using OLEX2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.29677 (19)0.2586 (3)0.44488 (15)0.0166 (8)
H1A0.26700.26490.48340.020*
H1B0.32850.19310.44730.020*
C20.2409 (2)0.2498 (3)0.39119 (16)0.0225 (8)
H2A0.27040.23620.35320.027*
H2B0.20560.18890.39800.027*
C30.1937 (2)0.3505 (3)0.38370 (16)0.0236 (9)
H3A0.15910.35950.41940.028*
H3B0.16120.34490.34660.028*
C40.2469 (2)0.4464 (3)0.37824 (16)0.0242 (9)
H4A0.27650.44170.33960.029*
H4B0.21540.51220.37690.029*
C50.3028 (2)0.4524 (3)0.43185 (16)0.0198 (8)
H5A0.33850.51310.42570.024*
H5B0.27340.46520.47000.024*
C60.5815 (2)0.2868 (3)0.45023 (16)0.0258 (9)
H6A0.56100.21340.45280.031*
H6B0.60870.30260.48900.031*
C70.6381 (2)0.2938 (3)0.39770 (17)0.0285 (9)
H7A0.61210.27380.35960.043*
H7B0.68150.24540.40520.043*
H7C0.65750.36680.39430.043*
N10.34858 (15)0.3526 (2)0.43825 (12)0.0133 (6)
H10.37550.34360.40180.016*
N20.51662 (15)0.3616 (2)0.44271 (12)0.0143 (6)
H2C0.49430.34810.40530.017*
H2D0.53710.42910.44080.017*
Cl10.33257 (5)0.37675 (7)0.57835 (4)0.01687 (18)
Cl20.52002 (5)0.37554 (7)0.58450 (4)0.01634 (18)
Pt10.430069 (7)0.363713 (10)0.506495 (5)0.01013 (4)
C80.34304 (19)0.1193 (3)0.66174 (15)0.0181 (8)
H8A0.29850.16490.67280.022*
H8B0.34450.05890.69080.022*
C90.3317 (2)0.0769 (3)0.59713 (16)0.0205 (8)
H9A0.32440.13720.56850.025*
H9B0.28450.03230.59570.025*
C100.4012 (2)0.0111 (3)0.57703 (16)0.0222 (8)
H10A0.40490.05370.60260.027*
H10B0.39450.01110.53390.027*
C110.4749 (2)0.0762 (3)0.58336 (15)0.0192 (8)
H11A0.52000.03130.57280.023*
H11B0.47340.13660.55440.023*
C120.48393 (19)0.1180 (3)0.64813 (15)0.0176 (8)
H12A0.49050.05730.67650.021*
H12B0.53110.16240.65050.021*
C130.3470 (2)0.4609 (3)0.73897 (16)0.0260 (9)
H13A0.34340.52870.71610.031*
H13B0.35560.47820.78260.031*
C140.2713 (2)0.4009 (3)0.73257 (17)0.0318 (10)
H14A0.27520.33260.75390.048*
H14B0.26050.38840.68910.048*
H14C0.22930.44300.75050.048*
N30.41593 (14)0.1823 (2)0.66766 (12)0.0124 (6)
H30.41200.23820.63990.015*
N40.41404 (16)0.3988 (2)0.71569 (12)0.0172 (6)
H4C0.45830.43770.72260.021*
H4D0.40870.39140.67400.021*
Cl30.44578 (5)0.33064 (7)0.84693 (4)0.01915 (19)
Cl40.44297 (5)0.08527 (7)0.79815 (4)0.01935 (19)
Pt20.429206 (7)0.250441 (10)0.752744 (5)0.01126 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0172 (19)0.0157 (19)0.0169 (18)0.0011 (15)0.0015 (15)0.0009 (14)
C20.018 (2)0.023 (2)0.026 (2)0.0051 (16)0.0043 (16)0.0045 (16)
C30.0158 (19)0.034 (2)0.0208 (19)0.0004 (17)0.0046 (15)0.0037 (17)
C40.021 (2)0.026 (2)0.025 (2)0.0021 (17)0.0107 (17)0.0106 (17)
C50.0194 (19)0.0165 (19)0.0235 (19)0.0010 (16)0.0061 (16)0.0061 (16)
C60.024 (2)0.035 (2)0.0185 (19)0.0158 (18)0.0031 (16)0.0002 (17)
C70.017 (2)0.031 (2)0.038 (2)0.0032 (18)0.0026 (18)0.0068 (19)
N10.0090 (14)0.0170 (16)0.0137 (14)0.0009 (12)0.0015 (11)0.0022 (12)
N20.0124 (14)0.0164 (16)0.0143 (14)0.0021 (12)0.0002 (12)0.0003 (12)
Cl10.0173 (4)0.0213 (5)0.0120 (4)0.0031 (4)0.0020 (3)0.0003 (3)
Cl20.0165 (4)0.0206 (5)0.0120 (4)0.0024 (4)0.0041 (3)0.0006 (3)
Pt10.01166 (7)0.01011 (7)0.00862 (7)0.00033 (5)0.00112 (5)0.00066 (5)
C80.0149 (18)0.016 (2)0.0229 (19)0.0032 (15)0.0005 (15)0.0004 (15)
C90.0211 (19)0.019 (2)0.022 (2)0.0031 (16)0.0046 (16)0.0041 (16)
C100.033 (2)0.0152 (19)0.0185 (19)0.0004 (17)0.0039 (16)0.0029 (15)
C110.024 (2)0.0165 (19)0.0168 (18)0.0038 (16)0.0028 (16)0.0014 (15)
C120.0133 (17)0.022 (2)0.0178 (18)0.0014 (15)0.0032 (15)0.0007 (15)
C130.043 (3)0.021 (2)0.0140 (18)0.0142 (19)0.0028 (17)0.0020 (16)
C140.037 (2)0.040 (3)0.018 (2)0.018 (2)0.0031 (18)0.0072 (18)
N30.0122 (14)0.0138 (15)0.0111 (14)0.0010 (12)0.0009 (11)0.0010 (11)
N40.0243 (17)0.0165 (16)0.0109 (14)0.0013 (13)0.0016 (12)0.0021 (12)
Cl30.0287 (5)0.0178 (4)0.0109 (4)0.0011 (4)0.0024 (4)0.0007 (3)
Cl40.0296 (5)0.0149 (4)0.0136 (4)0.0055 (4)0.0001 (4)0.0034 (3)
Pt20.01303 (8)0.01170 (7)0.00906 (7)0.00013 (6)0.00032 (5)0.00102 (5)
Geometric parameters (Å, º) top
C1—H1A0.9900C8—H8A0.9900
C1—H1B0.9900C8—H8B0.9900
C1—C21.524 (4)C8—C91.522 (5)
C1—N11.490 (4)C8—N31.494 (4)
C2—H2A0.9900C9—H9A0.9900
C2—H2B0.9900C9—H9B0.9900
C2—C31.515 (5)C9—C101.523 (5)
C3—H3A0.9900C10—H10A0.9900
C3—H3B0.9900C10—H10B0.9900
C3—C41.521 (5)C10—C111.521 (5)
C4—H4A0.9900C11—H11A0.9900
C4—H4B0.9900C11—H11B0.9900
C4—C51.521 (4)C11—C121.518 (4)
C5—H5A0.9900C12—H12A0.9900
C5—H5B0.9900C12—H12B0.9900
C5—N11.491 (4)C12—N31.489 (4)
C6—H6A0.9900C13—H13A0.9900
C6—H6B0.9900C13—H13B0.9900
C6—C71.512 (5)C13—C141.517 (5)
C6—N21.473 (4)C13—N41.488 (4)
C7—H7A0.9800C14—H14A0.9800
C7—H7B0.9800C14—H14B0.9800
C7—H7C0.9800C14—H14C0.9800
N1—H10.9300N3—H30.9300
N1—Pt12.057 (3)N3—Pt22.060 (3)
N2—H2C0.9200N4—H4C0.9200
N2—H2D0.9200N4—H4D0.9200
N2—Pt12.045 (3)N4—Pt22.050 (3)
Cl1—Pt12.3097 (8)Cl3—Pt22.3099 (8)
Cl2—Pt12.3124 (8)Cl4—Pt22.3140 (8)
H1A—C1—H1B108.0H8A—C8—H8B107.9
C2—C1—H1A109.4C9—C8—H8A109.2
C2—C1—H1B109.4C9—C8—H8B109.2
N1—C1—H1A109.4N3—C8—H8A109.2
N1—C1—H1B109.4N3—C8—H8B109.2
N1—C1—C2111.3 (3)N3—C8—C9112.0 (3)
C1—C2—H2A109.4C8—C9—H9A109.5
C1—C2—H2B109.4C8—C9—H9B109.5
H2A—C2—H2B108.0C8—C9—C10110.9 (3)
C3—C2—C1111.4 (3)H9A—C9—H9B108.1
C3—C2—H2A109.4C10—C9—H9A109.5
C3—C2—H2B109.4C10—C9—H9B109.5
C2—C3—H3A109.6C9—C10—H10A109.6
C2—C3—H3B109.6C9—C10—H10B109.6
C2—C3—C4110.2 (3)H10A—C10—H10B108.2
H3A—C3—H3B108.1C11—C10—C9110.1 (3)
C4—C3—H3A109.6C11—C10—H10A109.6
C4—C3—H3B109.6C11—C10—H10B109.6
C3—C4—H4A109.4C10—C11—H11A109.5
C3—C4—H4B109.4C10—C11—H11B109.5
H4A—C4—H4B108.0H11A—C11—H11B108.0
C5—C4—C3111.3 (3)C12—C11—C10110.9 (3)
C5—C4—H4A109.4C12—C11—H11A109.5
C5—C4—H4B109.4C12—C11—H11B109.5
C4—C5—H5A109.3C11—C12—H12A109.2
C4—C5—H5B109.3C11—C12—H12B109.2
H5A—C5—H5B108.0H12A—C12—H12B107.9
N1—C5—C4111.6 (3)N3—C12—C11112.0 (3)
N1—C5—H5A109.3N3—C12—H12A109.2
N1—C5—H5B109.3N3—C12—H12B109.2
H6A—C6—H6B107.9H13A—C13—H13B107.9
C7—C6—H6A109.3C14—C13—H13A109.1
C7—C6—H6B109.3C14—C13—H13B109.1
N2—C6—H6A109.3N4—C13—H13A109.1
N2—C6—H6B109.3N4—C13—H13B109.1
N2—C6—C7111.8 (3)N4—C13—C14112.3 (3)
C6—C7—H7A109.5C13—C14—H14A109.5
C6—C7—H7B109.5C13—C14—H14B109.5
C6—C7—H7C109.5C13—C14—H14C109.5
H7A—C7—H7B109.5H14A—C14—H14B109.5
H7A—C7—H7C109.5H14A—C14—H14C109.5
H7B—C7—H7C109.5H14B—C14—H14C109.5
C1—N1—C5111.0 (2)C8—N3—H3106.4
C1—N1—H1106.7C8—N3—Pt2113.11 (19)
C1—N1—Pt1113.30 (19)C12—N3—C8110.7 (3)
C5—N1—H1106.7C12—N3—H3106.4
C5—N1—Pt1112.0 (2)C12—N3—Pt2113.35 (19)
Pt1—N1—H1106.7Pt2—N3—H3106.4
C6—N2—H2C107.5C13—N4—H4C108.2
C6—N2—H2D107.5C13—N4—H4D108.2
C6—N2—Pt1119.3 (2)C13—N4—Pt2116.2 (2)
H2C—N2—H2D107.0H4C—N4—H4D107.4
Pt1—N2—H2C107.5Pt2—N4—H4C108.2
Pt1—N2—H2D107.5Pt2—N4—H4D108.2
N1—Pt1—Cl189.88 (8)N3—Pt2—Cl3178.47 (8)
N1—Pt1—Cl2178.98 (8)N3—Pt2—Cl491.44 (8)
N2—Pt1—N190.36 (11)N4—Pt2—N390.44 (11)
N2—Pt1—Cl1176.67 (8)N4—Pt2—Cl388.32 (8)
N2—Pt1—Cl290.64 (8)N4—Pt2—Cl4177.49 (8)
Cl1—Pt1—Cl289.15 (3)Cl3—Pt2—Cl489.82 (3)
C1—C2—C3—C454.6 (4)C8—C9—C10—C1155.0 (4)
C1—N1—Pt1—N2122.5 (2)C8—N3—Pt2—N4111.5 (2)
C1—N1—Pt1—Cl160.8 (2)C8—N3—Pt2—Cl466.8 (2)
C2—C1—N1—C556.7 (4)C9—C8—N3—C1255.9 (4)
C2—C1—N1—Pt1176.4 (2)C9—C8—N3—Pt2175.7 (2)
C2—C3—C4—C554.3 (4)C9—C10—C11—C1255.4 (4)
C3—C4—C5—N155.7 (4)C10—C11—C12—N356.5 (4)
C4—C5—N1—C156.6 (4)C11—C12—N3—C856.1 (4)
C4—C5—N1—Pt1175.7 (2)C11—C12—N3—Pt2175.5 (2)
C5—N1—Pt1—N2111.0 (2)C12—N3—Pt2—N4121.4 (2)
C5—N1—Pt1—Cl165.6 (2)C12—N3—Pt2—Cl460.2 (2)
C6—N2—Pt1—N1129.6 (3)C13—N4—Pt2—N3119.2 (2)
C6—N2—Pt1—Cl250.2 (2)C13—N4—Pt2—Cl361.8 (2)
C7—C6—N2—Pt1177.9 (2)C14—C13—N4—Pt255.2 (3)
N1—C1—C2—C356.2 (4)N3—C8—C9—C1055.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl3i0.932.783.481 (3)133
N1—H1···Cl4i0.932.703.556 (3)153
N2—H2C···Cl3i0.922.723.424 (3)134
N2—H2C···Cl4i0.922.643.471 (3)151
N2—H2D···Cl2ii0.922.703.417 (3)135
N3—H3···Cl10.932.593.445 (3)152
N3—H3···Cl20.932.823.528 (3)134
N4—H4C···Cl4iii0.922.563.421 (3)155
N4—H4D···Cl10.922.483.327 (3)154
N4—H4D···Cl20.922.753.415 (3)130
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+3/2.
(II) cis-Dichlorido(3-methoxyaniline-κN)(piperidine-κN)platinum(II) top
Crystal data top
[PtCl2(C5H11N)(C7H9NO)]Z = 2
Mr = 474.29F(000) = 452
Triclinic, P1Dx = 2.162 Mg m3
a = 6.3800 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9376 (9) ÅCell parameters from 3469 reflections
c = 12.7899 (8) Åθ = 3.3–29.0°
α = 108.733 (7)°µ = 9.99 mm1
β = 91.463 (5)°T = 100 K
γ = 106.893 (7)°Block, yellow
V = 728.46 (9) Å30.35 × 0.15 × 0.1 mm
Data collection top
Agilent SuperNova (single source at offset, Eos detector)
diffractometer
2911 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2762 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 3.3°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1112
Tmin = 0.493, Tmax = 1.000l = 1515
5750 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.038H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0085P)2]
where P = (Fo2 + 2Fc2)/3
2911 reflections(Δ/σ)max = 0.005
164 parametersΔρmax = 1.07 e Å3
0 restraintsΔρmin = 1.08 e Å3
Crystal data top
[PtCl2(C5H11N)(C7H9NO)]γ = 106.893 (7)°
Mr = 474.29V = 728.46 (9) Å3
Triclinic, P1Z = 2
a = 6.3800 (4) ÅMo Kα radiation
b = 9.9376 (9) ŵ = 9.99 mm1
c = 12.7899 (8) ÅT = 100 K
α = 108.733 (7)°0.35 × 0.15 × 0.1 mm
β = 91.463 (5)°
Data collection top
Agilent SuperNova (single source at offset, Eos detector)
diffractometer
2911 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2762 reflections with I > 2σ(I)
Tmin = 0.493, Tmax = 1.000Rint = 0.027
5750 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.038H-atom parameters constrained
S = 1.05Δρmax = 1.07 e Å3
2911 reflectionsΔρmin = 1.08 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

X-ray diffraction data were collected on an Agilent SuperNova diffractometer using mirror-monochromated Mo Kα radiation (λ = 0.71073 Å). Using OLEX2 (Dolomanov et al., 2009) the structures were solved by direct methods using SHELXS (Sheldrick, 2008) and refined by full-matrix least-squares methods based on F2 using OLEX2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1098 (6)0.1280 (4)0.3890 (3)0.0108 (7)
C20.2058 (6)0.0317 (4)0.4135 (3)0.0143 (8)
H20.34260.06990.46060.017*
C30.1005 (6)0.1205 (4)0.3685 (3)0.0161 (8)
H30.16530.18720.38530.019*
C40.0980 (6)0.1775 (4)0.2993 (3)0.0168 (8)
H40.16840.28270.26840.020*
C50.1949 (6)0.0789 (4)0.2751 (3)0.0123 (8)
C60.0902 (6)0.0746 (4)0.3195 (3)0.0120 (7)
H60.15360.14200.30280.014*
C70.4896 (6)0.0485 (4)0.1755 (3)0.0205 (9)
H7A0.62840.10820.12610.031*
H7B0.38720.00670.13650.031*
H7C0.51910.02250.24230.031*
C80.2589 (6)0.2151 (4)0.1233 (3)0.0134 (8)
H8A0.19620.12450.14340.016*
H8B0.40280.21280.09690.016*
C90.1038 (6)0.2120 (4)0.0299 (3)0.0158 (8)
H9A0.04510.20230.05320.019*
H9B0.09170.12350.03660.019*
C100.1847 (6)0.3531 (4)0.0000 (3)0.0163 (8)
H10A0.07460.35100.05700.020*
H10B0.32520.35690.03200.020*
C110.2204 (6)0.4918 (4)0.1030 (3)0.0157 (8)
H11A0.28410.58260.08330.019*
H11B0.07620.49410.12900.019*
C120.3747 (6)0.4934 (4)0.1967 (3)0.0139 (8)
H12A0.52440.50460.17410.017*
H12B0.38510.58070.26380.017*
N10.2228 (4)0.2887 (3)0.4335 (2)0.0104 (6)
H1A0.26750.31690.50850.013*
H1B0.12610.33850.42490.013*
N20.2950 (4)0.3517 (3)0.2247 (2)0.0097 (6)
H2A0.15740.34770.24840.012*
O10.3933 (4)0.1455 (3)0.2071 (2)0.0186 (6)
Cl10.71152 (14)0.34972 (10)0.50180 (7)0.01352 (18)
Cl20.80064 (14)0.40292 (10)0.26551 (7)0.01604 (19)
Pt10.49406 (2)0.349543 (15)0.354443 (10)0.00847 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0143 (18)0.0085 (19)0.0086 (16)0.0024 (15)0.0068 (14)0.0022 (14)
C20.0137 (19)0.017 (2)0.0158 (18)0.0063 (17)0.0030 (15)0.0088 (17)
C30.022 (2)0.016 (2)0.0177 (19)0.0107 (18)0.0080 (16)0.0109 (17)
C40.022 (2)0.011 (2)0.0177 (19)0.0061 (17)0.0073 (17)0.0052 (16)
C50.0107 (18)0.012 (2)0.0136 (18)0.0038 (16)0.0051 (15)0.0040 (16)
C60.0158 (19)0.0110 (19)0.0111 (17)0.0065 (16)0.0034 (15)0.0042 (15)
C70.018 (2)0.020 (2)0.020 (2)0.0061 (18)0.0034 (16)0.0021 (17)
C80.0144 (19)0.0094 (19)0.0129 (17)0.0020 (16)0.0008 (15)0.0010 (15)
C90.0155 (19)0.015 (2)0.0149 (18)0.0023 (17)0.0013 (15)0.0051 (16)
C100.0165 (19)0.021 (2)0.0146 (18)0.0081 (17)0.0021 (16)0.0086 (17)
C110.0149 (19)0.018 (2)0.0192 (19)0.0061 (17)0.0075 (16)0.0124 (17)
C120.0146 (19)0.012 (2)0.0166 (18)0.0051 (16)0.0035 (15)0.0054 (16)
N10.0112 (15)0.0113 (16)0.0081 (14)0.0040 (13)0.0016 (12)0.0020 (13)
N20.0070 (14)0.0108 (16)0.0133 (15)0.0042 (13)0.0037 (12)0.0052 (13)
O10.0163 (14)0.0114 (14)0.0239 (14)0.0036 (12)0.0038 (11)0.0018 (12)
Cl10.0139 (4)0.0135 (5)0.0125 (4)0.0063 (4)0.0016 (3)0.0020 (4)
Cl20.0100 (4)0.0201 (5)0.0233 (5)0.0065 (4)0.0069 (4)0.0124 (4)
Pt10.00807 (8)0.00719 (8)0.00964 (7)0.00287 (6)0.00125 (5)0.00180 (6)
Geometric parameters (Å, º) top
C1—C21.383 (4)C9—H9A0.9900
C1—C61.395 (5)C9—H9B0.9900
C1—N11.456 (4)C9—C101.521 (5)
C2—H20.9500C10—H10A0.9900
C2—C31.379 (5)C10—H10B0.9900
C3—H30.9500C10—C111.525 (5)
C3—C41.383 (5)C11—H11A0.9900
C4—H40.9500C11—H11B0.9900
C4—C51.406 (5)C11—C121.525 (5)
C5—C61.389 (5)C12—H12A0.9900
C5—O11.373 (4)C12—H12B0.9900
C6—H60.9500C12—N21.512 (4)
C7—H7A0.9800N1—H1A0.9200
C7—H7B0.9800N1—H1B0.9200
C7—H7C0.9800N1—Pt12.063 (3)
C7—O11.432 (4)N2—H2A0.9300
C8—H8A0.9900N2—Pt12.074 (3)
C8—H8B0.9900Cl1—Pt12.3109 (8)
C8—C91.518 (4)Cl2—Pt12.3020 (8)
C8—N21.500 (4)
C2—C1—C6121.5 (3)C9—C10—H10B109.6
C2—C1—N1119.5 (3)C9—C10—C11110.4 (3)
C6—C1—N1118.9 (3)H10A—C10—H10B108.1
C1—C2—H2120.4C11—C10—H10A109.6
C3—C2—C1119.1 (3)C11—C10—H10B109.6
C3—C2—H2120.4C10—C11—H11A109.3
C2—C3—H3119.5C10—C11—H11B109.3
C2—C3—C4121.0 (3)H11A—C11—H11B108.0
C4—C3—H3119.5C12—C11—C10111.5 (3)
C3—C4—H4120.2C12—C11—H11A109.3
C3—C4—C5119.6 (4)C12—C11—H11B109.3
C5—C4—H4120.2C11—C12—H12A109.2
C6—C5—C4120.0 (3)C11—C12—H12B109.2
O1—C5—C4115.5 (3)H12A—C12—H12B107.9
O1—C5—C6124.5 (3)N2—C12—C11111.9 (3)
C1—C6—H6120.6N2—C12—H12A109.2
C5—C6—C1118.8 (3)N2—C12—H12B109.2
C5—C6—H6120.6C1—N1—H1A109.3
H7A—C7—H7B109.5C1—N1—H1B109.3
H7A—C7—H7C109.5C1—N1—Pt1111.7 (2)
H7B—C7—H7C109.5H1A—N1—H1B107.9
O1—C7—H7A109.5Pt1—N1—H1A109.3
O1—C7—H7B109.5Pt1—N1—H1B109.3
O1—C7—H7C109.5C8—N2—C12111.3 (3)
H8A—C8—H8B107.9C8—N2—H2A106.6
C9—C8—H8A109.2C8—N2—Pt1111.67 (19)
C9—C8—H8B109.2C12—N2—H2A106.6
N2—C8—H8A109.2C12—N2—Pt1113.7 (2)
N2—C8—H8B109.2Pt1—N2—H2A106.6
N2—C8—C9112.0 (3)C5—O1—C7116.7 (3)
C8—C9—H9A109.3N1—Pt1—N291.00 (11)
C8—C9—H9B109.3N1—Pt1—Cl188.07 (8)
C8—C9—C10111.7 (3)N1—Pt1—Cl2176.25 (8)
H9A—C9—H9B107.9N2—Pt1—Cl1178.74 (8)
C10—C9—H9A109.3N2—Pt1—Cl290.78 (8)
C10—C9—H9B109.3Cl2—Pt1—Cl190.19 (3)
C9—C10—H10A109.6
C1—C2—C3—C40.3 (5)C8—N2—Pt1—N1103.2 (2)
C1—N1—Pt1—N282.6 (2)C8—N2—Pt1—Cl273.5 (2)
C1—N1—Pt1—Cl198.3 (2)C9—C8—N2—C1254.7 (4)
C2—C1—C6—C50.6 (5)C9—C8—N2—Pt1177.1 (2)
C2—C1—N1—Pt172.6 (3)C9—C10—C11—C1254.6 (4)
C2—C3—C4—C50.5 (5)C10—C11—C12—N254.7 (4)
C3—C4—C5—C60.7 (5)C11—C12—N2—C854.3 (4)
C3—C4—C5—O1179.1 (3)C11—C12—N2—Pt1178.5 (2)
C4—C5—C6—C10.8 (5)C12—N2—Pt1—N1129.8 (2)
C4—C5—O1—C7176.4 (3)C12—N2—Pt1—Cl253.5 (2)
C6—C1—C2—C30.4 (5)N1—C1—C2—C3178.3 (3)
C6—C1—N1—Pt1105.3 (3)N1—C1—C6—C5178.5 (3)
C6—C5—O1—C73.8 (5)N2—C8—C9—C1055.6 (4)
C8—C9—C10—C1155.0 (4)O1—C5—C6—C1179.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl1i0.922.793.312 (3)117
N2—H2A···Cl2ii0.932.493.365 (3)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
(III) cis-dichlorido(piperidine-κN)(quinoline-κN)platinum(II) top
Crystal data top
[PtCl2(C5H11N)(C9H7N)]F(000) = 912
Mr = 480.29Dx = 2.128 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.8920 (19) ÅCell parameters from 12819 reflections
b = 11.3011 (8) Åθ = 3.3–30.0°
c = 13.199 (3) ŵ = 9.70 mm1
β = 112.68 (2)°T = 100 K
V = 1499.0 (4) Å3Block, yellow
Z = 40.35 × 0.35 × 0.2 mm
Data collection top
Agilent SuperNova (single source at offset, Eos detector)
diffractometer
3072 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2779 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.076
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.8°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1414
Tmin = 0.304, Tmax = 1.000l = 1616
30516 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0231P)2 + 6.243P]
where P = (Fo2 + 2Fc2)/3
3072 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 2.14 e Å3
0 restraintsΔρmin = 2.09 e Å3
Crystal data top
[PtCl2(C5H11N)(C9H7N)]V = 1499.0 (4) Å3
Mr = 480.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8920 (19) ŵ = 9.70 mm1
b = 11.3011 (8) ÅT = 100 K
c = 13.199 (3) Å0.35 × 0.35 × 0.2 mm
β = 112.68 (2)°
Data collection top
Agilent SuperNova (single source at offset, Eos detector)
diffractometer
3072 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2779 reflections with I > 2σ(I)
Tmin = 0.304, Tmax = 1.000Rint = 0.076
30516 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.07Δρmax = 2.14 e Å3
3072 reflectionsΔρmin = 2.09 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

X-ray diffraction data were collected on an Agilent SuperNova diffractometer using mirror-monochromated Mo Kα radiation (λ = 0.71073 Å). Using OLEX2 (Dolomanov et al., 2009) the structures were solved by direct methods using SHELXS (Sheldrick, 2008) and refined by full-matrix least-squares methods based on F2 using OLEX2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5797 (4)0.5091 (4)0.2663 (4)0.0186 (10)
H1A0.53450.55610.19870.022*
H1B0.52270.44010.26400.022*
C20.5947 (5)0.5842 (4)0.3650 (4)0.0190 (10)
H2A0.50550.60640.36200.023*
H2B0.64280.65790.36280.023*
C30.6700 (5)0.5195 (5)0.4719 (4)0.0227 (10)
H3A0.68400.57300.53470.027*
H3B0.61740.45070.47860.027*
C40.8030 (4)0.4780 (4)0.4739 (4)0.0196 (10)
H4A0.84860.43110.54150.024*
H4B0.85900.54770.47640.024*
C50.7890 (5)0.4026 (5)0.3741 (4)0.0178 (9)
H5A0.87860.38250.37670.021*
H5B0.74300.32780.37680.021*
C60.6942 (5)0.5850 (4)0.0008 (4)0.0160 (9)
H60.60010.57860.02460.019*
C70.7480 (5)0.6747 (4)0.0421 (4)0.0226 (10)
H70.69170.72660.09690.027*
C80.8842 (5)0.6866 (4)0.0034 (5)0.0256 (11)
H80.92270.74700.03170.031*
C90.9654 (5)0.6099 (4)0.0772 (4)0.0212 (11)
C101.1065 (5)0.6171 (5)0.1218 (5)0.0286 (13)
H101.14880.67790.09740.034*
C111.1816 (5)0.5394 (6)0.1983 (5)0.0354 (15)
H111.27580.54640.22770.043*
C121.1207 (5)0.4480 (5)0.2346 (4)0.0284 (12)
H121.17480.39360.28810.034*
C130.9851 (4)0.4358 (5)0.1944 (4)0.0205 (10)
H130.94540.37330.21910.025*
C140.9054 (4)0.5175 (4)0.1159 (4)0.0169 (9)
Cl10.58542 (10)0.21935 (10)0.18339 (9)0.0174 (2)
Cl20.62666 (10)0.28692 (10)0.04494 (9)0.0166 (2)
N10.7119 (3)0.4659 (3)0.2681 (3)0.0128 (7)
H10.76080.53290.26680.015*
N20.7684 (4)0.5081 (3)0.0756 (3)0.0150 (8)
Pt10.679720 (15)0.374755 (15)0.125207 (13)0.01080 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.015 (2)0.023 (3)0.017 (2)0.0043 (19)0.0053 (18)0.001 (2)
C20.019 (2)0.009 (2)0.025 (3)0.0012 (18)0.0049 (19)0.007 (2)
C30.028 (3)0.021 (3)0.018 (2)0.003 (2)0.009 (2)0.003 (2)
C40.020 (2)0.018 (2)0.014 (2)0.0017 (19)0.0015 (18)0.0008 (19)
C50.020 (2)0.020 (2)0.011 (2)0.001 (2)0.0039 (17)0.0043 (19)
C60.021 (2)0.015 (2)0.015 (2)0.0020 (19)0.0095 (18)0.0008 (19)
C70.034 (3)0.012 (2)0.029 (3)0.001 (2)0.020 (2)0.001 (2)
C80.041 (3)0.013 (2)0.035 (3)0.008 (2)0.028 (2)0.009 (2)
C90.023 (2)0.024 (3)0.024 (3)0.007 (2)0.016 (2)0.011 (2)
C100.030 (3)0.031 (3)0.034 (3)0.015 (2)0.022 (3)0.022 (2)
C110.018 (2)0.054 (4)0.037 (3)0.013 (3)0.014 (2)0.029 (3)
C120.016 (2)0.046 (4)0.020 (3)0.001 (2)0.003 (2)0.010 (2)
C130.015 (2)0.029 (3)0.016 (2)0.000 (2)0.0052 (18)0.003 (2)
C140.014 (2)0.020 (2)0.018 (2)0.0049 (18)0.0077 (18)0.011 (2)
Cl10.0213 (5)0.0139 (5)0.0194 (5)0.0038 (4)0.0104 (4)0.0008 (4)
Cl20.0193 (5)0.0161 (5)0.0134 (5)0.0015 (4)0.0052 (4)0.0014 (4)
N10.0122 (17)0.0103 (18)0.0154 (18)0.0001 (14)0.0048 (14)0.0012 (15)
N20.0147 (17)0.0141 (19)0.0153 (18)0.0013 (15)0.0049 (15)0.0027 (16)
Pt10.01041 (10)0.01048 (11)0.01166 (11)0.00040 (6)0.00443 (7)0.00026 (6)
Geometric parameters (Å, º) top
C1—H1A0.9900C7—C81.376 (7)
C1—H1B0.9900C8—H80.9500
C1—C21.510 (6)C8—C91.393 (8)
C1—N11.512 (5)C9—C101.421 (7)
C2—H2A0.9900C9—C141.426 (7)
C2—H2B0.9900C10—H100.9500
C2—C31.518 (7)C10—C111.350 (9)
C3—H3A0.9900C11—H110.9500
C3—H3B0.9900C11—C121.408 (8)
C3—C41.512 (7)C12—H120.9500
C4—H4A0.9900C12—C131.371 (6)
C4—H4B0.9900C13—H130.9500
C4—C51.526 (7)C13—C141.409 (7)
C5—H5A0.9900C14—N21.381 (5)
C5—H5B0.9900Cl1—Pt12.3102 (11)
C5—N11.506 (6)Cl2—Pt12.3155 (12)
C6—H60.9500N1—H10.9300
C6—C71.396 (7)N1—Pt12.057 (4)
C6—N21.330 (6)N2—Pt12.029 (4)
C7—H70.9500
H1A—C1—H1B107.8C7—C8—H8120.0
C2—C1—H1A109.1C7—C8—C9119.9 (5)
C2—C1—H1B109.1C9—C8—H8120.0
C2—C1—N1112.5 (4)C8—C9—C10123.2 (5)
N1—C1—H1A109.1C8—C9—C14119.0 (4)
N1—C1—H1B109.1C10—C9—C14117.8 (5)
C1—C2—H2A109.3C9—C10—H10119.4
C1—C2—H2B109.3C11—C10—C9121.3 (5)
C1—C2—C3111.8 (4)C11—C10—H10119.4
H2A—C2—H2B107.9C10—C11—H11119.9
C3—C2—H2A109.3C10—C11—C12120.2 (5)
C3—C2—H2B109.3C12—C11—H11119.9
C2—C3—H3A109.7C11—C12—H12119.3
C2—C3—H3B109.7C13—C12—C11121.4 (5)
H3A—C3—H3B108.2C13—C12—H12119.3
C4—C3—C2109.7 (4)C12—C13—H13120.5
C4—C3—H3A109.7C12—C13—C14119.1 (5)
C4—C3—H3B109.7C14—C13—H13120.5
C3—C4—H4A109.1C13—C14—C9120.4 (4)
C3—C4—H4B109.1N2—C14—C9119.7 (4)
C3—C4—C5112.4 (4)N2—C14—C13120.0 (4)
H4A—C4—H4B107.9C1—N1—H1106.6
C5—C4—H4A109.1C1—N1—Pt1108.8 (3)
C5—C4—H4B109.1C5—N1—C1110.8 (3)
C4—C5—H5A109.3C5—N1—H1106.6
C4—C5—H5B109.3C5—N1—Pt1116.8 (3)
H5A—C5—H5B107.9Pt1—N1—H1106.6
N1—C5—C4111.8 (4)C6—N2—C14119.5 (4)
N1—C5—H5A109.3C6—N2—Pt1119.7 (3)
N1—C5—H5B109.3C14—N2—Pt1120.7 (3)
C7—C6—H6118.5Cl1—Pt1—Cl291.14 (4)
N2—C6—H6118.5N1—Pt1—Cl190.92 (11)
N2—C6—C7123.1 (4)N1—Pt1—Cl2173.98 (10)
C6—C7—H7120.6N2—Pt1—Cl1178.04 (11)
C8—C7—C6118.8 (5)N2—Pt1—Cl288.70 (11)
C8—C7—H7120.6N2—Pt1—N189.43 (15)
C1—C2—C3—C455.2 (5)C8—C9—C14—C13177.6 (4)
C1—N1—Pt1—Cl171.7 (3)C8—C9—C14—N22.2 (7)
C1—N1—Pt1—N2110.2 (3)C9—C10—C11—C120.7 (8)
C2—C1—N1—C554.1 (5)C9—C14—N2—C60.4 (6)
C2—C1—N1—Pt1176.2 (3)C9—C14—N2—Pt1178.1 (3)
C2—C3—C4—C554.9 (5)C10—C9—C14—C131.0 (7)
C3—C4—C5—N154.9 (5)C10—C9—C14—N2179.2 (4)
C4—C5—N1—C153.1 (5)C10—C11—C12—C130.4 (8)
C4—C5—N1—Pt1178.5 (3)C11—C12—C13—C140.6 (7)
C5—N1—Pt1—Cl154.6 (3)C12—C13—C14—C91.3 (7)
C5—N1—Pt1—N2123.5 (3)C12—C13—C14—N2178.9 (4)
C6—C7—C8—C90.1 (7)C13—C14—N2—C6179.4 (4)
C6—N2—Pt1—Cl271.1 (3)C13—C14—N2—Pt11.7 (6)
C6—N2—Pt1—N1103.2 (3)C14—C9—C10—C110.0 (7)
C7—C6—N2—C141.6 (7)C14—N2—Pt1—Cl2106.6 (3)
C7—C6—N2—Pt1176.1 (4)C14—N2—Pt1—N179.1 (3)
C7—C8—C9—C10179.5 (5)N1—C1—C2—C355.8 (5)
C7—C8—C9—C142.0 (7)N2—C6—C7—C81.8 (7)
C8—C9—C10—C11178.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.932.613.521 (3)166
Symmetry code: (i) x+3/2, y+1/2, z+1/2.

Experimental details

(II)(III)
Crystal data
Chemical formula[PtCl2(C5H11N)(C7H9NO)][PtCl2(C5H11N)(C9H7N)]
Mr474.29480.29
Crystal system, space groupTriclinic, P1Monoclinic, P21/n
Temperature (K)100100
a, b, c (Å)6.3800 (4), 9.9376 (9), 12.7899 (8)10.8920 (19), 11.3011 (8), 13.199 (3)
α, β, γ (°)108.733 (7), 91.463 (5), 106.893 (7)90, 112.68 (2), 90
V3)728.46 (9)1499.0 (4)
Z24
Radiation typeMo KαMo Kα
µ (mm1)9.999.70
Crystal size (mm)0.35 × 0.15 × 0.10.35 × 0.35 × 0.2
Data collection
DiffractometerAgilent SuperNova (single source at offset, Eos detector)
diffractometer
Agilent SuperNova (single source at offset, Eos detector)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Multi-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.493, 1.0000.304, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5750, 2911, 2762 30516, 3072, 2779
Rint0.0270.076
(sin θ/λ)max1)0.6250.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.038, 1.05 0.025, 0.061, 1.07
No. of reflections29113072
No. of parameters164172
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.07, 1.082.14, 2.09

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.932.613.521 (3)166
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl1i0.922.793.312 (3)117
N2—H2A···Cl2ii0.932.493.365 (3)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
Selected bond lengths (Å) and angles (°) for (I), (II) and (III). top
(I)(II)(III)
Pt1—N12.057 (3)2.063 (3)2.057 (4)
Pt1—N22.045 (3)2.074 (3)2.029 (4)
Pt1—Cl12.3097 (8)2.3109 (8)2.3102 (11)
Pt1—Cl22.3124 (8)2.3020 (8)2.3155 (12)
Pt2—N32.060 (3)
Pt2–N42.050 (3)
Pt1—Cl32.3099 (8)
Pt2—Cl42.3140 (8)
Cl1—Pt1—Cl289.15 (3)90.19 (3)91.14 (4)
N1—Pt1—N290.36 (11)91.00 (11)89.43 (15)
N1—Pt1—Cl189.88 (8)88.07 (8)90.92 (11)
N2—Pt1—Cl290.64 (8)90.78 (8)88.70 (11)
Cl3—Pt2—Cl489.82 (3)
N3—Pt2—N490.44 (11)
N3—Pt2—Cl491.44 (8)
N4—Pt2—Cl388.32 (8)

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds