Download citation
Download citation
link to html
New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H2O)3·2H2O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108767312031996/wl5162sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108767312031996/wl5162Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108767312031996/wl5162sup3.pdf
Flow chart for a joint refinement strategy

CCDC reference: 914664

Computing details top

Program(s) used to refine structure: SHELXL97 (Sheldrick, 2008).

(I) top
Crystal data top
C7H16CuMnN2O11Z = 4
Mr = 422.69F(000) = 856
Orthorhombic, PnmaDx = 1.998 Mg m3
a = 12.7158 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 21.3520 (5) ŵ = 2.48 mm1
c = 5.1745 (2) ÅT = 10 K
V = 1404.92 (7) Å30.27 × 0.16 × 0.06 mm
Data collection top
Radiation source: fine-focus sealed tubeRint = 0.000
Absorption correction: gaussian
CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.44 (release 25-10-2010 CrysAlis171 .NET) (compiled Oct 25 2010,18:11:34) Numerical absorption correction based on gaussian integration over a multifaceted crystal model
θmax = 53.3°, θmin = 3.2°
Tmin = 0.615, Tmax = 0.880h = 028
8505 measured reflectionsk = 047
8505 independent reflectionsl = 011
6880 reflections with > 3σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.029Secondary atom site location: difference Fourier map
wR(F2) = 0.062Hydrogen site location: inferred from neighbouring sites
S = 0.96H atoms treated by a mixture of independent and constrained refinement
8505 reflections w = 1/[σ2(Fo2) + (0.0177P)2 + 1.3214P]
where P = (Fo2 + 2Fc2)/3
140 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.050679 (8)0.25000.150042 (19)0.00415 (2)
Mn0.00000.50000.00000.00501 (2)
O10.06303 (3)0.423844 (19)0.22854 (9)0.00660 (5)
O20.09575 (4)0.42089 (2)0.12554 (9)0.00716 (6)
O30.11523 (3)0.317983 (19)0.06201 (9)0.00643 (5)
O40.11791 (4)0.47868 (2)0.29552 (9)0.00889 (6)
O50.17489 (6)0.25000.46535 (14)0.00904 (9)
O60.21400 (4)0.41212 (3)0.42287 (10)0.01069 (7)
N0.03674 (4)0.31734 (2)0.28494 (10)0.00587 (6)
C10.07282 (4)0.37043 (2)0.01580 (10)0.00557 (6)
C20.01646 (4)0.37163 (2)0.18463 (10)0.00536 (6)
C40.10898 (6)0.25000.62761 (15)0.00669 (9)
C30.12204 (5)0.31020 (3)0.47259 (12)0.00734 (7)
H10.1630 (17)0.25000.761 (4)0.015 (5)*
H20.0382 (16)0.25000.706 (4)0.013 (4)*
H30.1877 (12)0.3103 (7)0.388 (3)0.015 (3)*
H40.1224 (11)0.3445 (7)0.585 (3)0.015 (3)*
H50.1509 (15)0.5102 (9)0.342 (4)0.036 (5)*
H60.1047 (13)0.4602 (8)0.426 (3)0.021 (4)*
H70.1673 (14)0.2199 (8)0.559 (3)0.034 (5)*
H80.1986 (14)0.4119 (8)0.574 (4)0.028 (4)*
H90.2733 (15)0.4166 (8)0.413 (4)0.034 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.00437 (3)0.00378 (3)0.00429 (3)0.0000.00067 (2)0.000
Mn0.00614 (3)0.00385 (3)0.00503 (4)0.00021 (3)0.00029 (3)0.00065 (3)
O10.00760 (13)0.00505 (11)0.00715 (14)0.00133 (10)0.00143 (11)0.00047 (10)
O20.00841 (13)0.00557 (12)0.00749 (14)0.00003 (10)0.00203 (11)0.00171 (11)
O30.00692 (12)0.00532 (11)0.00705 (13)0.00076 (10)0.00147 (11)0.00037 (10)
O40.01031 (15)0.00899 (14)0.00737 (14)0.00099 (12)0.00087 (12)0.00066 (12)
O50.0095 (2)0.0099 (2)0.0077 (2)0.0000.00093 (17)0.000
O60.00880 (15)0.01390 (17)0.00935 (16)0.00074 (13)0.00066 (13)0.00134 (14)
N0.00629 (14)0.00500 (12)0.00632 (14)0.00004 (10)0.00167 (11)0.00052 (11)
C10.00607 (15)0.00516 (13)0.00547 (15)0.00006 (12)0.00049 (12)0.00050 (12)
C20.00559 (15)0.00484 (13)0.00565 (15)0.00029 (11)0.00073 (12)0.00027 (12)
C40.0080 (2)0.0062 (2)0.0058 (2)0.0000.00127 (19)0.000
C30.00745 (16)0.00606 (14)0.00850 (18)0.00082 (13)0.00319 (14)0.00084 (14)
Geometric parameters (Å, º) top
Cu—Ni1.9469 (5)Mn—O4ii2.1894 (5)
Cu—N1.9469 (5)O1—C21.2827 (6)
Cu—O3i1.9962 (4)O2—C11.2524 (7)
Cu—O31.9962 (4)O3—C11.2657 (7)
Cu—O52.2709 (7)N—C21.2960 (7)
Mn—O12.1645 (4)N—C31.4637 (7)
Mn—O1ii2.1645 (4)C1—C21.5378 (7)
Mn—O2ii2.1811 (4)C4—C3i1.5243 (7)
Mn—O22.1811 (4)C4—C31.5243 (7)
Mn—O42.1894 (5)
Ni—Cu—N95.22 (3)O1—Mn—O4ii91.613 (18)
Ni—Cu—O3i83.962 (18)O1ii—Mn—O4ii88.387 (18)
N—Cu—O3i165.67 (2)O2ii—Mn—O4ii90.758 (18)
Ni—Cu—O3165.67 (2)O2—Mn—O4ii89.242 (18)
N—Cu—O383.962 (18)O4—Mn—O4ii180.0
O3i—Cu—O393.30 (2)C2—O1—Mn112.66 (3)
Ni—Cu—O598.021 (19)C1—O2—Mn113.66 (4)
N—Cu—O598.021 (19)C1—O3—Cu111.36 (4)
O3i—Cu—O596.252 (18)C2—N—C3120.42 (5)
O3—Cu—O596.252 (18)C2—N—Cu113.79 (4)
O1—Mn—O1ii180.000 (14)C3—N—Cu125.73 (3)
O1—Mn—O2ii102.260 (16)O2—C1—O3125.19 (5)
O1ii—Mn—O2ii77.740 (16)O2—C1—C2117.60 (5)
O1—Mn—O277.740 (16)O3—C1—C2117.17 (5)
O1ii—Mn—O2102.260 (16)O1—C2—N127.92 (5)
O2ii—Mn—O2180.0O1—C2—C1118.35 (5)
O1—Mn—O488.387 (18)N—C2—C1113.71 (4)
O1ii—Mn—O491.613 (18)C3i—C4—C3114.98 (7)
O2ii—Mn—O489.242 (18)N—C3—C4110.87 (5)
O2—Mn—O490.758 (18)
Symmetry codes: (i) x, y+1/2, z; (ii) x, y+1, z.
 

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds