Download citation
Download citation
link to html
Post-metallation derivatives of the sodium dialk­yl(amido)­zincate reagent (TMEDA)Na([mu]-TMP)Zn(tBu)2 (TMEDA is N,N,N',N'-tetra­methyl­ethylenediamine and TMP is 2,2,6,6-tetra­methyl­piperidide) have been of structural inter­est due to the insight they give into aromatic metallation mechanisms. Here, the aromatic substrate is formally replaced with [ZnO]2 to give tetra-tert-butyldi-[mu]4-oxido-bis­(tetra­methyl­ethylene­di­amine-[kappa]2N,N')bis­([mu]2-2,2,6,6-tetra­methyl­piperidin-1-ido-[kappa]2N:N)disodiumtetra­zinc hexane 0.59-solvate, [Na2Zn4(C4H9)4(C9H18N)2O2(C6H16N2)2]·0.59C6H14. The crystallographically centrosymmetric complex retains many of the structural features of its parent monomer but has an unusual dimeric structure, with a central planar Zn-O-Zn-O ring joined to two orthogonal near-planar Zn-O-Na-N rings through the dis­torted tetra­hedral geometries of the oxide ions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111022645/wq3004sup1.cif
Contains datablocks global, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111022645/wq3004IIsup2.hkl
Contains datablock II

CCDC reference: 838138

Comment top

Deprotozincation (transformation of a C—H bond to a C—Zn bond) is currently receiving widespread attention from synthetic chemists (Armstrong et al., 2010; Dayaker et al., 2010; Mosrin et al., 2009; Mulvey, 2009) as an improved alternative to lithiation (Snieckus, 1990) for labilizing aromatic substrates towards subsequent regioselective functionalization. A key factor in the development of this new type of metallation has been a series of X-ray crystallographic studies (Mulvey, 2006) that have elucidated the structures of both the zincate reagents and the zincated aromatic intermediates they generate on reaction with aromatic substrates. Germane to the present study, the most studied zincate reagent to date has been the sodium dialkyl-amidozincate (TMEDA)Na(µ-TMP)Zn(t-Bu)2, (I), (TMEDA is N,N,N',N'-tetramethylethylenediamine and TMP is 2,2,6,6-tetramethylpiperidide), which adopts a dinuclear contact ion-pair structure (Andrikopoulos et al., 2005) where a trigonal planar Zn centre is connected to a TMEDA-chelated Na centre through a bridging TMP ligand (see scheme). Generally, this monomeric dinuclear motif is retained on reaction of this zincate base with aromatic substrates, with the deprotonated fragment replacing one of the alkyl units attached to Zn in a bridging position between the two metal centres (Armstrong et al., 2009). Emphasizing the experimental care that must be taken when performing these acutely air- and moisture-sensitive zincation reactions, in the course of investigating the deprotonating action of (I) towards N,N-dimethylbenzylamine we have fortuitously prepared the oxide-containing disodium tetrazinc monoalkyl monoamide complex, [(TMEDA)Na(µ-TMP)Zn24-O)(t-Bu)]2, (II). Whether the oxide derives from moisture or oxygen contamination is not known. Such mixed s-block metal–zinc complexes have recently been shown to be important in the production of mixed metal oxide semiconducting nanoparticles (Heitz et al., 2011). By elucidating the crystal structure of the partial hexane solvate of (II), we show that what can be described formally as incorporating a molecule of zinc oxide (ZnO) into the structure of the starting zincate base leads to a dimerized variant of the structure common to both (I) and its aromatic-containing derivatives.

The molecular structure of (II) (Fig. 1) has a crystallographically imposed centre of symmetry and a highly unusual framework involving three linked four-membered rings. A search of the Cambridge Structural Database (Version?; Allen, 2002) found only one similar heterometallic structural motif with O and N donors - that of a lithium–indium species (Nöth & Seifert, 2002). Literature examples of heterometallic alkali metal–zinc compounds do not show the same coordination framework. Indeed, they are not normally isolated as 2:4 M:Zn species as seen here. Instead, 1:1, 1:2 and 2:2 M:Zn species are common [for examples, see (I) and Zho et al., 2006; Clegg et al., 2009; Baggio et al., 1997; Purdy & George, 1994]. The large organic substituents ensure that the discrete units of (II) interact with each other only via hydrophobic interactions. The packing could formally be described as stacking of the central ZnOZnO rings along the c direction, but as the distance between the rings corresponds to the c cell dimension this is far from a real intermolecular interaction. The hexane solvent molecules lie in channels that also run parallel to the c axis (Fig. 2).

Within the context of previous work on similar metal–alkyl organometallics, the oxide ions of (II) are also unusual. This is partly because aerobic contamination of such systems typically results in the creation of alkoxide ligands and hence alkoxide complexes (Conway et al., 2005), and this only where complete decomposition of all organometallic species is avoided. Where oxide has been incorporated into similar main group metal amides, it is normally observed to lie at the centre of inverse-crown ether complexes in a square-planar geometry (for example, Kennedy et al., 1999). However, in (II) the oxide ion is four-coordinate but is much nearer to tetrahedral than to square-planar geometry [angular range 88.36 (6)–125.94 (7) °]. This geometry about O ensures that the central, strictly planar, ZnOZnO ring plane is perpendicular to the two ZnONaN ring planes. [The dihedral angle between the ring planes is 89.57 (3)°. The ZnONaN ring deviates slightly from planarity, with the metal atoms displaced `down' and the ligand atoms `up'. The maximum deviation from the plane is -0.0414 (7) Å for atom Zn1].

The outer ZnONaN rings and their substituents retain many of the structural features seen in the ZnCNaN-based rings of aromatic derivatives of (I). Thus, Table 1 shows that each of the crystallographically independent Zn atoms has a three-coordinate geometry, with distortions away from trigonal-planar geometry due to the constraints of being part of the ZnOZnO and ZnONaN four-membered rings. Note that both the Zn—O and Zn—C distances for atom Zn2 with its OOC coordination are slightly shorter than the comparable bond distances involving atom Zn1 with its ONC coordination mode. The Na atoms are four-coordinate and have an ONNN coordination shell. The three unique Na—N bonds display considerable variation in length, with the bond to the anionic TMP ligand understandably shorter than the two bonds involving neutral TMEDA, despite the bridging nature of the TMP ligand.

Related literature top

For related literature, see: Allen (2002); Andrikopoulos et al. (2005); Armstrong et al. (2009, 2010); Baggio et al. (1997); Clegg et al. (2009); Conway et al. (2005); Dayaker et al. (2010); Heitz et al. (2011); Kennedy (1999); Mosrin et al. (2009); Mulvey (2006, 2009); Nöth & Seifert (2002); Purdy & George (1994); Snieckus (1990); Spek (2009); Zho et al. (2006).

Experimental top

Under what were assumed to be stringently air- and moisture-free conditions and in a Schlenk tube under argon, n-BuNa (2 mmol, 0.16 g) was suspended in hexane (10 ml) and sonicated for 10 min to form a fine dispersion. TMP(H) (2 mmol, 0.34 ml) was introduced and the subsequent yellow suspension was stirred for 1 h. In a separate Schlenk tube, t-Bu2Zn (2 mmol, 0.36 g) was dissolved in hexane (10 ml) and transferred to the already prepared NaTMP via a cannula. TMEDA was then added (2 mmol, 0.3 ml) and the resulting suspension was gently heated to produce a homogeneous yellow solution, an in situ mixture of (I). N,N-dimethylbenzylamine (2 mmol, 0.3 ml) was added and the reaction mixture was stirred overnight. The resulting orange solution was concentrated by the removal of solvent in vacuo and transferred to a refrigerator (at 278 K). A small number of colourless crystals of (II) were deposited overnight. The synthesis has not been reproduced.

Refinement top

H atoms were positioned geometrically and refined in riding modes, with C—H = 0.98 or 0.99 Å for CH3 and CH2 groups, respectively, and with Uiso(H) = 1.5Ueq(C) for methyl groups or 1.2Ueq(C) for CH2 groups. The model of the partially present hexane solvent molecule was restrained, with respect to both C—C distances and Uaniso parameters. Its occupancy was estimated using the SQUEEZE procedure implemented within PLATON (Spek, 2009). The largest remaining residual electron-density peaks all lie close to the solvent molecule.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (II), showing 50% probability displacement ellipsoids. H atoms and the partial hexane solvent molecule have been omitted for clarity.
[Figure 2] Fig. 2. A packing diagram for (II), viewed along the c direction.
tetra-tert-butyldi-µ4-oxido-bis(tetramethylethylenediamine- κ2N,N')bis(µ2-2,2,6,6-tetramethylpiperidin-1-ido- κ2N:N)disodiumtetrazinc hexane 0.59-solvate top
Crystal data top
[Na2Zn4(C4H9)4(C9H18N)2O2(C6H16N2)2]·0.59C6H14F(000) = 2438
Mr = 1131.65Dx = 1.160 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 13556 reflections
a = 27.3191 (12) Åθ = 2.7–29.1°
b = 18.7841 (7) ŵ = 1.51 mm1
c = 12.7375 (6) ÅT = 123 K
β = 97.565 (4)°Plate, colourless
V = 6479.5 (5) Å30.18 × 0.18 × 0.04 mm
Z = 4
Data collection top
Oxford Gemini S
diffractometer
7387 independent reflections
Radiation source: fine-focus sealed tube5153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 3535
Tmin = 0.738, Tmax = 1.000k = 2423
42490 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0496P)2]
where P = (Fo2 + 2Fc2)/3
7387 reflections(Δ/σ)max = 0.001
313 parametersΔρmax = 0.85 e Å3
35 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Na2Zn4(C4H9)4(C9H18N)2O2(C6H16N2)2]·0.59C6H14V = 6479.5 (5) Å3
Mr = 1131.65Z = 4
Monoclinic, C2/cMo Kα radiation
a = 27.3191 (12) ŵ = 1.51 mm1
b = 18.7841 (7) ÅT = 123 K
c = 12.7375 (6) Å0.18 × 0.18 × 0.04 mm
β = 97.565 (4)°
Data collection top
Oxford Gemini S
diffractometer
7387 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
5153 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 1.000Rint = 0.039
42490 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02935 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 0.97Δρmax = 0.85 e Å3
7387 reflectionsΔρmin = 0.25 e Å3
313 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.55 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

4 low angle reflections with Fo much graeter than Fc were omitted from the final calculations. A small satellite crystal was believed to be present on the sample.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.852809 (9)0.187293 (12)0.072448 (19)0.01863 (8)
Zn20.769600 (9)0.316824 (12)0.01632 (2)0.01904 (8)
Na10.84231 (3)0.21327 (4)0.16252 (7)0.0220 (2)
O10.79586 (5)0.22550 (7)0.02363 (11)0.0178 (3)
N10.90624 (6)0.17551 (9)0.01791 (15)0.0212 (4)
N20.85961 (8)0.30121 (10)0.31418 (16)0.0306 (5)
N30.81803 (7)0.15000 (10)0.33990 (15)0.0280 (5)
C10.92261 (9)0.10139 (13)0.0290 (2)0.0311 (6)
C20.95890 (10)0.09755 (15)0.1123 (2)0.0447 (7)
H2A0.97230.04860.11370.054*
H2B0.94070.10780.18310.054*
C31.00163 (10)0.14989 (18)0.0896 (3)0.0538 (8)
H3A1.02230.13680.02260.065*
H3B1.02260.14790.14730.065*
C40.98162 (10)0.22460 (15)0.0810 (2)0.0407 (7)
H4A0.96440.23930.15090.049*
H4B1.00950.25770.06170.049*
C50.94567 (8)0.23037 (13)0.00175 (19)0.0291 (6)
C60.87696 (10)0.05811 (12)0.0682 (2)0.0373 (6)
H6A0.86110.07800.13540.056*
H6B0.85380.05980.01570.056*
H6C0.88650.00860.07900.056*
C70.94573 (11)0.06455 (15)0.0751 (2)0.0477 (8)
H7A0.97820.08540.09870.072*
H7B0.94950.01350.06230.072*
H7C0.92410.07140.12990.072*
C80.92011 (10)0.30251 (13)0.0122 (2)0.0381 (6)
H8A0.90180.30570.08360.057*
H8B0.94490.34050.00240.057*
H8C0.89720.30770.04030.057*
C90.97473 (10)0.23049 (16)0.1147 (2)0.0432 (7)
H9A0.99360.18620.12620.065*
H9B0.95160.23420.16700.065*
H9C0.99740.27120.12230.065*
C100.84053 (8)0.17141 (12)0.22420 (17)0.0229 (5)
C110.88694 (10)0.16722 (17)0.3062 (2)0.0463 (7)
H11A0.87740.15760.37630.069*
H11B0.90480.21250.30770.069*
H11C0.90830.12880.28680.069*
C120.80936 (10)0.23338 (14)0.2578 (2)0.0382 (6)
H12A0.80100.22440.32910.057*
H12B0.77900.23750.20790.057*
H12C0.82820.27770.25770.057*
C130.81084 (11)0.10338 (13)0.2301 (2)0.0399 (7)
H13A0.80340.09670.30260.060*
H13B0.83010.06280.20980.060*
H13C0.77990.10690.18160.060*
C140.79513 (8)0.41665 (12)0.04513 (19)0.0258 (5)
C150.82133 (10)0.44732 (13)0.0442 (2)0.0378 (6)
H15A0.83150.49640.02690.057*
H15B0.79870.44670.11060.057*
H15C0.85050.41840.05210.057*
C160.83120 (10)0.42031 (13)0.1468 (2)0.0363 (6)
H16A0.84240.46950.15920.054*
H16B0.85970.38960.14030.054*
H16C0.81470.40410.20640.054*
C170.75151 (10)0.46530 (13)0.0577 (2)0.0368 (6)
H17A0.73460.44800.11600.055*
H17B0.72840.46530.00810.055*
H17C0.76350.51380.07330.055*
C180.81955 (12)0.35247 (15)0.3095 (3)0.0595 (9)
H18A0.82670.38170.24560.089*
H18B0.78840.32680.30750.089*
H18C0.81670.38320.37220.089*
C190.90596 (12)0.34018 (15)0.3117 (2)0.0497 (8)
H19A0.90480.36990.37520.075*
H19B0.93340.30640.30970.075*
H19C0.91090.37050.24850.075*
C200.85121 (11)0.26000 (13)0.4128 (2)0.0398 (7)
H20A0.88180.23370.42180.048*
H20B0.84430.29340.47310.048*
C210.80922 (10)0.20778 (14)0.4166 (2)0.0355 (6)
H21A0.77900.23370.40370.043*
H21B0.80300.18710.48860.043*
C220.77156 (10)0.11118 (15)0.3365 (2)0.0431 (7)
H22A0.74730.14290.31060.065*
H22B0.77750.07020.28890.065*
H22C0.75880.09460.40790.065*
C230.85420 (10)0.10021 (14)0.3737 (2)0.0393 (7)
H23A0.84220.08230.44470.059*
H23B0.85890.06030.32390.059*
H23C0.88570.12480.37520.059*
C240.9791 (2)0.4748 (3)0.4921 (4)0.0557 (14)0.59
H24A0.94980.49910.51370.067*0.59
H24B0.98690.43430.54100.067*0.59
C250.9648 (2)0.4454 (3)0.3839 (4)0.0646 (16)0.59
H25A0.95350.48490.33520.077*0.59
H25B0.99430.42390.35900.077*0.59
C260.92599 (19)0.3921 (3)0.3787 (4)0.0564 (14)0.59
H26A0.93560.35470.43100.085*0.59
H26B0.92090.37110.30760.085*0.59
H26C0.89530.41440.39390.085*0.59
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01586 (14)0.02331 (14)0.01700 (14)0.00261 (11)0.00323 (10)0.00188 (10)
Zn20.01866 (14)0.01584 (13)0.02253 (15)0.00005 (11)0.00242 (11)0.00062 (10)
Na10.0229 (5)0.0257 (5)0.0178 (5)0.0033 (4)0.0039 (4)0.0010 (4)
O10.0150 (8)0.0182 (8)0.0202 (8)0.0035 (6)0.0026 (6)0.0003 (6)
N10.0144 (9)0.0253 (10)0.0240 (10)0.0052 (8)0.0036 (8)0.0007 (8)
N20.0371 (13)0.0264 (11)0.0297 (12)0.0024 (9)0.0099 (10)0.0022 (9)
N30.0338 (12)0.0276 (11)0.0236 (11)0.0009 (9)0.0075 (9)0.0019 (9)
C10.0268 (14)0.0343 (14)0.0329 (14)0.0141 (11)0.0065 (11)0.0023 (11)
C20.0378 (17)0.0536 (17)0.0449 (18)0.0227 (14)0.0136 (14)0.0021 (14)
C30.0251 (15)0.091 (2)0.0478 (19)0.0104 (16)0.0148 (14)0.0075 (17)
C40.0243 (14)0.0615 (19)0.0383 (16)0.0066 (13)0.0112 (12)0.0001 (14)
C50.0175 (12)0.0424 (15)0.0277 (14)0.0045 (11)0.0047 (10)0.0000 (11)
C60.0459 (17)0.0219 (12)0.0446 (17)0.0069 (12)0.0079 (13)0.0013 (11)
C70.0482 (18)0.0447 (16)0.0495 (19)0.0248 (14)0.0041 (15)0.0148 (14)
C80.0386 (16)0.0354 (15)0.0413 (16)0.0130 (12)0.0095 (13)0.0026 (12)
C90.0260 (14)0.0646 (19)0.0379 (16)0.0086 (13)0.0002 (13)0.0028 (14)
C100.0219 (12)0.0289 (13)0.0179 (11)0.0047 (10)0.0030 (10)0.0039 (9)
C110.0329 (16)0.081 (2)0.0249 (14)0.0029 (15)0.0028 (12)0.0087 (14)
C120.0529 (18)0.0417 (15)0.0219 (13)0.0124 (13)0.0121 (12)0.0032 (11)
C130.0549 (19)0.0345 (14)0.0325 (15)0.0043 (13)0.0136 (14)0.0053 (12)
C140.0261 (13)0.0185 (11)0.0330 (14)0.0027 (10)0.0048 (11)0.0028 (9)
C150.0373 (16)0.0315 (14)0.0457 (17)0.0067 (12)0.0100 (13)0.0026 (12)
C160.0357 (15)0.0301 (14)0.0415 (16)0.0037 (12)0.0010 (13)0.0058 (11)
C170.0396 (16)0.0265 (13)0.0442 (17)0.0055 (12)0.0055 (13)0.0029 (11)
C180.066 (2)0.0394 (17)0.073 (2)0.0149 (16)0.0096 (19)0.0122 (16)
C190.057 (2)0.0473 (16)0.0469 (19)0.0093 (16)0.0155 (15)0.0103 (14)
C200.065 (2)0.0328 (14)0.0246 (14)0.0053 (14)0.0170 (14)0.0062 (11)
C210.0492 (17)0.0359 (14)0.0207 (13)0.0041 (13)0.0021 (12)0.0019 (11)
C220.0425 (17)0.0451 (16)0.0434 (17)0.0036 (13)0.0120 (14)0.0082 (13)
C230.0410 (17)0.0382 (15)0.0405 (17)0.0018 (12)0.0121 (13)0.0048 (12)
C240.060 (4)0.055 (3)0.055 (3)0.015 (3)0.018 (3)0.007 (3)
C250.073 (4)0.066 (4)0.051 (3)0.011 (3)0.004 (3)0.019 (3)
C260.046 (3)0.076 (4)0.045 (3)0.028 (3)0.002 (3)0.011 (3)
Geometric parameters (Å, º) top
Zn1—O11.9829 (14)C10—C121.536 (3)
Zn1—N11.9866 (18)C11—H11A0.9800
Zn1—C102.027 (2)C11—H11B0.9800
Zn1—Na13.0086 (9)C11—H11C0.9800
Zn2—O11.9526 (14)C12—H12A0.9800
Zn2—O1i1.9706 (14)C12—H12B0.9800
Zn2—C142.017 (2)C12—H12C0.9800
Zn2—Zn2i2.7395 (5)C13—H13A0.9800
Na1—O12.3202 (17)C13—H13B0.9800
Na1—N12.470 (2)C13—H13C0.9800
Na1—N22.632 (2)C14—C161.522 (3)
Na1—N32.562 (2)C14—C171.527 (3)
O1—Zn2i1.9706 (14)C14—C151.534 (3)
N1—C11.475 (3)C15—H15A0.9800
N1—C51.488 (3)C15—H15B0.9800
N2—C191.459 (3)C15—H15C0.9800
N2—C181.465 (3)C16—H16A0.9800
N2—C201.468 (3)C16—H16B0.9800
N3—C211.459 (3)C16—H16C0.9800
N3—C231.466 (3)C17—H17A0.9800
N3—C221.470 (3)C17—H17B0.9800
C1—C61.517 (4)C17—H17C0.9800
C1—C21.546 (3)C18—H18A0.9800
C1—C71.554 (3)C18—H18B0.9800
C2—C31.525 (4)C18—H18C0.9800
C2—H2A0.9900C19—H19A0.9800
C2—H2B0.9900C19—H19B0.9800
C3—C41.515 (4)C19—H19C0.9800
C3—H3A0.9900C20—C211.505 (4)
C3—H3B0.9900C20—H20A0.9900
C4—C51.536 (3)C20—H20B0.9900
C4—H4A0.9900C21—H21A0.9900
C4—H4B0.9900C21—H21B0.9900
C5—C81.524 (3)C22—H22A0.9800
C5—C91.549 (3)C22—H22B0.9800
C6—H6A0.9800C22—H22C0.9800
C6—H6B0.9800C23—H23A0.9800
C6—H6C0.9800C23—H23B0.9800
C7—H7A0.9800C23—H23C0.9800
C7—H7B0.9800C24—C24ii1.478 (10)
C7—H7C0.9800C24—C251.488 (6)
C8—H8A0.9800C24—H24A0.9900
C8—H8B0.9800C24—H24B0.9900
C8—H8C0.9800C25—C261.454 (6)
C9—H9A0.9800C25—H25A0.9900
C9—H9B0.9800C25—H25B0.9900
C9—H9C0.9800C26—H26A0.9800
C10—C131.521 (3)C26—H26B0.9800
C10—C111.535 (3)C26—H26C0.9800
O1—Zn1—N1105.03 (7)H9A—C9—H9C109.5
O1—Zn1—C10115.28 (8)H9B—C9—H9C109.5
N1—Zn1—C10139.69 (8)C13—C10—C11108.8 (2)
O1—Zn1—Na150.43 (4)C13—C10—C12107.7 (2)
N1—Zn1—Na154.75 (5)C11—C10—C12106.8 (2)
C10—Zn1—Na1165.12 (7)C13—C10—Zn1109.09 (16)
O1—Zn2—O1i91.42 (6)C11—C10—Zn1115.51 (17)
O1—Zn2—C14137.21 (8)C12—C10—Zn1108.74 (15)
O1i—Zn2—C14131.35 (8)C10—C11—H11A109.5
O1—Zn2—Zn2i45.98 (4)C10—C11—H11B109.5
O1i—Zn2—Zn2i45.44 (4)H11A—C11—H11B109.5
C14—Zn2—Zn2i176.62 (7)C10—C11—H11C109.5
O1—Na1—N182.17 (6)H11A—C11—H11C109.5
O1—Na1—N3127.90 (7)H11B—C11—H11C109.5
N1—Na1—N3126.88 (7)C10—C12—H12A109.5
O1—Na1—N2131.81 (6)C10—C12—H12B109.5
N1—Na1—N2123.38 (7)H12A—C12—H12B109.5
N3—Na1—N272.21 (6)C10—C12—H12C109.5
O1—Na1—Zn141.21 (4)H12A—C12—H12C109.5
N1—Na1—Zn141.07 (4)H12B—C12—H12C109.5
N3—Na1—Zn1141.43 (5)C10—C13—H13A109.5
N2—Na1—Zn1146.02 (6)C10—C13—H13B109.5
Zn1—O1—Na188.36 (6)H13A—C13—H13B109.5
Zn2—O1—Zn1116.26 (7)C10—C13—H13C109.5
Zn2i—O1—Zn1117.90 (7)H13A—C13—H13C109.5
Zn2—O1—Zn2i88.58 (6)H13B—C13—H13C109.5
Zn2—O1—Na1122.85 (7)C16—C14—C17108.1 (2)
Zn2i—O1—Na1125.94 (7)C16—C14—C15107.5 (2)
C1—N1—C5116.62 (18)C17—C14—C15107.4 (2)
C1—N1—Zn1114.56 (14)C16—C14—Zn2111.49 (16)
C5—N1—Zn1113.33 (14)C17—C14—Zn2108.63 (16)
C1—N1—Na1113.17 (14)C15—C14—Zn2113.45 (16)
C5—N1—Na1110.60 (13)C14—C15—H15A109.5
Zn1—N1—Na184.19 (6)C14—C15—H15B109.5
C19—N2—C18108.7 (2)H15A—C15—H15B109.5
C19—N2—C20108.7 (2)C14—C15—H15C109.5
C18—N2—C20110.4 (2)H15A—C15—H15C109.5
C19—N2—Na1122.56 (17)H15B—C15—H15C109.5
C18—N2—Na1100.10 (17)C14—C16—H16A109.5
C20—N2—Na1105.93 (14)C14—C16—H16B109.5
C21—N3—C23109.6 (2)H16A—C16—H16B109.5
C21—N3—C22108.8 (2)C14—C16—H16C109.5
C23—N3—C22108.07 (19)H16A—C16—H16C109.5
C21—N3—Na1104.27 (14)H16B—C16—H16C109.5
C23—N3—Na1116.67 (15)C14—C17—H17A109.5
C22—N3—Na1109.20 (15)C14—C17—H17B109.5
N1—C1—C6106.92 (18)H17A—C17—H17B109.5
N1—C1—C2109.8 (2)C14—C17—H17C109.5
C6—C1—C2108.8 (2)H17A—C17—H17C109.5
N1—C1—C7115.7 (2)H17B—C17—H17C109.5
C6—C1—C7105.5 (2)N2—C18—H18A109.5
C2—C1—C7109.8 (2)N2—C18—H18B109.5
C3—C2—C1112.6 (2)H18A—C18—H18B109.5
C3—C2—H2A109.1N2—C18—H18C109.5
C1—C2—H2A109.1H18A—C18—H18C109.5
C3—C2—H2B109.1H18B—C18—H18C109.5
C1—C2—H2B109.1N2—C19—H19A109.5
H2A—C2—H2B107.8N2—C19—H19B109.5
C4—C3—C2109.7 (2)H19A—C19—H19B109.5
C4—C3—H3A109.7N2—C19—H19C109.5
C2—C3—H3A109.7H19A—C19—H19C109.5
C4—C3—H3B109.7H19B—C19—H19C109.5
C2—C3—H3B109.7N2—C20—C21113.8 (2)
H3A—C3—H3B108.2N2—C20—H20A108.8
C3—C4—C5112.6 (2)C21—C20—H20A108.8
C3—C4—H4A109.1N2—C20—H20B108.8
C5—C4—H4A109.1C21—C20—H20B108.8
C3—C4—H4B109.1H20A—C20—H20B107.7
C5—C4—H4B109.1N3—C21—C20113.9 (2)
H4A—C4—H4B107.8N3—C21—H21A108.8
N1—C5—C8106.60 (18)C20—C21—H21A108.8
N1—C5—C4110.5 (2)N3—C21—H21B108.8
C8—C5—C4107.9 (2)C20—C21—H21B108.8
N1—C5—C9115.4 (2)H21A—C21—H21B107.7
C8—C5—C9106.2 (2)N3—C22—H22A109.5
C4—C5—C9110.0 (2)N3—C22—H22B109.5
C1—C6—H6A109.5H22A—C22—H22B109.5
C1—C6—H6B109.5N3—C22—H22C109.5
H6A—C6—H6B109.5H22A—C22—H22C109.5
C1—C6—H6C109.5H22B—C22—H22C109.5
H6A—C6—H6C109.5N3—C23—H23A109.5
H6B—C6—H6C109.5N3—C23—H23B109.5
C1—C7—H7A109.5H23A—C23—H23B109.5
C1—C7—H7B109.5N3—C23—H23C109.5
H7A—C7—H7B109.5H23A—C23—H23C109.5
C1—C7—H7C109.5H23B—C23—H23C109.5
H7A—C7—H7C109.5C24ii—C24—C25117.9 (6)
H7B—C7—H7C109.5C24ii—C24—H24A107.8
C5—C8—H8A109.5C25—C24—H24A107.8
C5—C8—H8B109.5C24ii—C24—H24B107.8
H8A—C8—H8B109.5C25—C24—H24B107.8
C5—C8—H8C109.5H24A—C24—H24B107.2
H8A—C8—H8C109.5C26—C25—C24113.5 (5)
H8B—C8—H8C109.5C26—C25—H25A108.9
C5—C9—H9A109.5C24—C25—H25A108.9
C5—C9—H9B109.5C26—C25—H25B108.9
H9A—C9—H9B109.5C24—C25—H25B108.9
C5—C9—H9C109.5H25A—C25—H25B107.7
N1—Zn1—Na1—O1174.86 (8)N3—Na1—N2—C206.95 (16)
C10—Zn1—Na1—O117.7 (3)Zn1—Na1—N2—C20166.32 (13)
O1—Zn1—Na1—N1174.86 (8)O1—Na1—N3—C21107.27 (16)
C10—Zn1—Na1—N1167.4 (3)N1—Na1—N3—C21141.11 (15)
O1—Zn1—Na1—N393.65 (10)N2—Na1—N3—C2122.33 (15)
N1—Zn1—Na1—N391.49 (11)Zn1—Na1—N3—C21163.70 (13)
C10—Zn1—Na1—N375.9 (3)O1—Na1—N3—C23131.68 (16)
O1—Zn1—Na1—N296.67 (11)N1—Na1—N3—C2320.1 (2)
N1—Zn1—Na1—N278.19 (12)N2—Na1—N3—C2398.72 (17)
C10—Zn1—Na1—N2114.4 (3)Zn1—Na1—N3—C2375.25 (19)
O1i—Zn2—O1—Zn2i0.0O1—Na1—N3—C228.83 (19)
C14—Zn2—O1—Zn2i178.41 (10)N1—Na1—N3—C22102.79 (17)
O1i—Zn2—O1—Zn1120.65 (10)N2—Na1—N3—C22138.43 (17)
C14—Zn2—O1—Zn157.76 (14)Zn1—Na1—N3—C2247.60 (19)
Zn2i—Zn2—O1—Zn1120.65 (10)C5—N1—C1—C6169.7 (2)
O1i—Zn2—O1—Na1133.06 (10)Zn1—N1—C1—C654.5 (2)
C14—Zn2—O1—Na148.53 (14)Na1—N1—C1—C639.7 (2)
Zn2i—Zn2—O1—Na1133.06 (10)C5—N1—C1—C251.8 (3)
N1—Zn1—O1—Zn2121.88 (8)Zn1—N1—C1—C2172.41 (16)
C10—Zn1—O1—Zn258.74 (10)Na1—N1—C1—C278.1 (2)
Na1—Zn1—O1—Zn2126.22 (9)C5—N1—C1—C773.2 (3)
N1—Zn1—O1—Zn2i134.82 (8)Zn1—N1—C1—C762.6 (2)
C10—Zn1—O1—Zn2i44.56 (11)Na1—N1—C1—C7156.85 (18)
Na1—Zn1—O1—Zn2i130.48 (9)N1—C1—C2—C353.0 (3)
N1—Zn1—O1—Na14.34 (7)C6—C1—C2—C3169.7 (2)
C10—Zn1—O1—Na1175.04 (7)C7—C1—C2—C375.3 (3)
N1—Na1—O1—Zn2117.15 (9)C1—C2—C3—C455.5 (3)
N3—Na1—O1—Zn2111.49 (9)C2—C3—C4—C555.2 (3)
N2—Na1—O1—Zn211.31 (13)C1—N1—C5—C8168.7 (2)
Zn1—Na1—O1—Zn2120.56 (10)Zn1—N1—C5—C855.0 (2)
N1—Na1—O1—Zn2i127.28 (9)Na1—N1—C5—C837.5 (2)
N3—Na1—O1—Zn2i4.08 (12)C1—N1—C5—C451.8 (3)
N2—Na1—O1—Zn2i104.25 (10)Zn1—N1—C5—C4171.94 (16)
Zn1—Na1—O1—Zn2i123.88 (10)Na1—N1—C5—C479.4 (2)
N1—Na1—O1—Zn13.41 (5)C1—N1—C5—C973.7 (3)
N3—Na1—O1—Zn1127.95 (7)Zn1—N1—C5—C962.6 (2)
N2—Na1—O1—Zn1131.87 (8)Na1—N1—C5—C9155.12 (17)
O1—Zn1—N1—C1116.95 (15)C3—C4—C5—N152.4 (3)
C10—Zn1—N1—C162.2 (2)C3—C4—C5—C8168.5 (2)
Na1—Zn1—N1—C1112.85 (16)C3—C4—C5—C976.1 (3)
O1—Zn1—N1—C5105.85 (15)O1—Zn1—C10—C1377.48 (17)
C10—Zn1—N1—C575.01 (19)N1—Zn1—C10—C13101.60 (19)
Na1—Zn1—N1—C5109.95 (15)Na1—Zn1—C10—C1362.4 (3)
O1—Zn1—N1—Na14.10 (7)O1—Zn1—C10—C11159.69 (17)
C10—Zn1—N1—Na1175.04 (10)N1—Zn1—C10—C1121.2 (2)
O1—Na1—N1—C1117.68 (15)Na1—Zn1—C10—C11174.73 (19)
N3—Na1—N1—C114.55 (18)O1—Zn1—C10—C1239.74 (18)
N2—Na1—N1—C1106.66 (15)N1—Zn1—C10—C12141.18 (16)
Zn1—Na1—N1—C1114.26 (16)Na1—Zn1—C10—C1254.8 (3)
O1—Na1—N1—C5109.36 (14)O1—Zn2—C14—C1669.0 (2)
N3—Na1—N1—C5118.41 (14)O1i—Zn2—C14—C16108.87 (17)
N2—Na1—N1—C526.30 (16)Zn2i—Zn2—C14—C1691.2 (12)
Zn1—Na1—N1—C5112.77 (15)O1—Zn2—C14—C17171.97 (14)
O1—Na1—N1—Zn13.42 (5)O1i—Zn2—C14—C1710.1 (2)
N3—Na1—N1—Zn1128.82 (8)Zn2i—Zn2—C14—C1727.8 (13)
N2—Na1—N1—Zn1139.08 (7)O1—Zn2—C14—C1552.6 (2)
O1—Na1—N2—C19102.4 (2)O1i—Zn2—C14—C15129.56 (16)
N1—Na1—N2—C199.3 (2)Zn2i—Zn2—C14—C15147.2 (11)
N3—Na1—N2—C19132.2 (2)C19—N2—C20—C21170.0 (2)
Zn1—Na1—N2—C1941.0 (2)C18—N2—C20—C2170.9 (3)
O1—Na1—N2—C1817.6 (2)Na1—N2—C20—C2136.6 (2)
N1—Na1—N2—C18129.30 (16)C23—N3—C21—C2073.0 (3)
N3—Na1—N2—C18107.79 (17)C22—N3—C21—C20169.0 (2)
Zn1—Na1—N2—C1878.94 (19)Na1—N3—C21—C2052.6 (2)
O1—Na1—N2—C20132.30 (15)N2—C20—C21—N366.2 (3)
N1—Na1—N2—C20115.96 (16)C24ii—C24—C25—C26175.1 (6)
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Na2Zn4(C4H9)4(C9H18N)2O2(C6H16N2)2]·0.59C6H14
Mr1131.65
Crystal system, space groupMonoclinic, C2/c
Temperature (K)123
a, b, c (Å)27.3191 (12), 18.7841 (7), 12.7375 (6)
β (°) 97.565 (4)
V3)6479.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.51
Crystal size (mm)0.18 × 0.18 × 0.04
Data collection
DiffractometerOxford Gemini S
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.738, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
42490, 7387, 5153
Rint0.039
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.086, 0.97
No. of reflections7387
No. of parameters313
No. of restraints35
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.25

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Zn1—O11.9829 (14)Zn2—C142.017 (2)
Zn1—N11.9866 (18)Na1—O12.3202 (17)
Zn1—C102.027 (2)Na1—N12.470 (2)
Zn2—O11.9526 (14)Na1—N22.632 (2)
Zn2—O1i1.9706 (14)Na1—N32.562 (2)
O1—Zn1—N1105.03 (7)O1—Na1—N2131.81 (6)
O1—Zn1—C10115.28 (8)N1—Na1—N2123.38 (7)
N1—Zn1—C10139.69 (8)N3—Na1—N272.21 (6)
O1—Zn2—O1i91.42 (6)Zn1—O1—Na188.36 (6)
O1—Zn2—C14137.21 (8)Zn2—O1—Zn1116.26 (7)
O1i—Zn2—C14131.35 (8)Zn2i—O1—Zn1117.90 (7)
O1—Na1—N182.17 (6)Zn2—O1—Zn2i88.58 (6)
O1—Na1—N3127.90 (7)Zn2—O1—Na1122.85 (7)
N1—Na1—N3126.88 (7)Zn2i—O1—Na1125.94 (7)
Symmetry code: (i) x+3/2, y+1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds