Download citation
Download citation
link to html
Transition metal atoms can be bridged by aliphatic di­carboxyl­ate ligands to pro­duce chains, layers and frameworks. The reaction of copper sulfate with succinic acid (H2succ) and N,N-di­ethyl­ethylenedi­amine (deed) in basic solution produces the complex catena-poly[[[(N,N-di­ethyl­ethylenedi­amine-κ2N,N′)copper(II)]-μ-succinato-κ2O1:O4] tetra­hydrate], {[Cu(C4H4O4)(C6H16N2)]·4H2O}n or {[Cu(succ)(deed)]·4H2O}n. Each carboxyl­ate group of the succinate ligand coordinates to a CuII atom in a monodentate fashion, giving rise to a square-planar coordination envir­onment. The succinate ligands bridge the CuII centres to form one-dimensional polymeric chains. Hydrogen bonds between the ligands and water mol­ecules link these chains into sheets that lie in the ab plane. Density functional theory (DFT) calculations were used to support the experimental data. From these calculations, a good linear correlation was observed between the experimental and theoretically predicted structural and spectroscopic parameters (R2 ∼ 0.97).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617008452/wq3133sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617008452/wq3133Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229617008452/wq3133sup3.pdf
Figures: shape index and curvedness

CCDC reference: 1554702

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012).

catena-poly[[[(N,N'-diethylethylenediamine-κ2N,N')copper(II)]-µ-succinato-κ2O1:O4] tetrahydrate] top
Crystal data top
[Cu(C4H4O4)(C6H16N2)]·4H2OF(000) = 780
Mr = 367.88Dx = 1.480 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.7523 (8) ÅCell parameters from 4139 reflections
b = 7.1201 (3) Åθ = 2.6–28.4°
c = 15.9540 (8) ŵ = 1.36 mm1
β = 112.709 (4)°T = 296 K
V = 1650.65 (14) Å3Prism, colourless
Z = 40.59 × 0.28 × 0.22 mm
Data collection top
Stoe IPDS 2
diffractometer
4139 independent reflections
Radiation source: fine-focus sealed tube3319 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
rotation method scansθmax = 28.4°, θmin = 2.6°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 2119
Tmin = 0.706, Tmax = 0.746k = 99
14320 measured reflectionsl = 2121
Refinement top
Refinement on F28 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0463P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.003
4139 reflectionsΔρmax = 0.31 e Å3
230 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.67131 (2)0.18512 (3)0.01348 (2)0.03201 (7)
O20.57540 (9)0.10373 (19)0.06668 (9)0.0420 (3)
O10.69858 (8)0.02860 (17)0.07478 (8)0.0370 (3)
O40.58542 (9)0.66700 (17)0.08988 (9)0.0406 (3)
O30.71163 (9)0.4996 (2)0.05059 (10)0.0509 (4)
O81.03765 (13)0.3245 (3)0.10053 (12)0.0609 (4)
O60.84947 (12)0.0078 (2)0.13168 (12)0.0585 (4)
N20.77661 (9)0.0890 (2)0.12811 (9)0.0341 (3)
O70.87644 (11)0.3607 (2)0.05928 (13)0.0593 (4)
N10.61688 (11)0.2886 (3)0.09755 (11)0.0405 (3)
O50.40918 (11)0.6981 (3)0.09353 (12)0.0555 (4)
C80.62893 (12)0.2168 (2)0.17965 (11)0.0346 (4)
H8A0.6909030.2420060.1756310.042*
H8B0.5965710.1507420.2362300.042*
C100.63105 (12)0.5279 (2)0.10114 (12)0.0338 (3)
C70.63387 (11)0.0920 (2)0.10136 (11)0.0317 (3)
C90.58072 (12)0.4019 (2)0.18145 (12)0.0347 (3)
H9A0.5196770.3763730.1829160.042*
H9B0.5735130.4682780.2368960.042*
C30.85343 (13)0.2279 (3)0.15207 (13)0.0456 (4)
H3A0.8981680.1990610.2123680.055*
H3B0.8290920.3521010.1543160.055*
C20.73707 (13)0.0909 (3)0.19961 (12)0.0426 (4)
H2A0.7864330.0842560.2592450.051*
H2B0.6978290.0180020.1923290.051*
C50.80721 (13)0.1044 (3)0.11766 (14)0.0433 (4)
H5A0.8289460.1037540.0684630.052*
H5B0.7543290.1873710.1000510.052*
C40.90179 (15)0.2320 (4)0.08705 (16)0.0562 (5)
H4A0.9500120.3240780.1068260.084*
H4B0.9276790.1105930.0855030.084*
H4C0.8585100.2638380.0273730.084*
C10.68198 (14)0.2672 (3)0.19240 (13)0.0432 (4)
H1A0.6486900.2591100.2322830.052*
H1B0.7226980.3750300.2104700.052*
C60.88274 (19)0.1852 (4)0.20193 (17)0.0661 (6)
H6A0.8979860.3094800.1889800.099*
H6B0.9363130.1066350.2191330.099*
H6C0.8615390.1904270.2507880.099*
H7A0.5710 (16)0.221 (3)0.0898 (15)0.048 (6)*
H7B0.6036 (17)0.407 (4)0.0821 (16)0.055 (7)*
H8WA1.041 (3)0.218 (3)0.075 (3)0.146 (17)*
H8WB1.066 (3)0.424 (4)0.087 (3)0.125 (14)*
H7WB0.914 (4)0.337 (10)0.001 (2)0.26 (3)*
H7WA0.8247 (16)0.388 (4)0.052 (2)0.082 (9)*
H6WA0.8053 (16)0.027 (4)0.115 (2)0.082 (9)*
H6WB0.867 (2)0.104 (3)0.111 (3)0.129 (15)*
H5WA0.414 (2)0.756 (4)0.049 (2)0.069 (9)*
H5WB0.463 (2)0.697 (4)0.0933 (18)0.069 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03143 (11)0.03345 (11)0.03124 (11)0.00226 (8)0.01220 (8)0.00288 (9)
O20.0469 (7)0.0427 (7)0.0445 (7)0.0045 (6)0.0265 (6)0.0034 (6)
O10.0368 (6)0.0377 (6)0.0375 (6)0.0063 (5)0.0155 (5)0.0076 (5)
O40.0393 (6)0.0376 (7)0.0444 (7)0.0048 (5)0.0157 (6)0.0039 (6)
O30.0337 (7)0.0524 (8)0.0551 (8)0.0042 (6)0.0043 (6)0.0130 (7)
O80.0618 (10)0.0614 (10)0.0625 (10)0.0038 (8)0.0273 (8)0.0019 (9)
O60.0581 (10)0.0569 (10)0.0688 (11)0.0002 (8)0.0335 (9)0.0013 (8)
N20.0326 (7)0.0370 (8)0.0317 (7)0.0027 (6)0.0113 (6)0.0006 (6)
O70.0437 (8)0.0585 (9)0.0745 (11)0.0010 (7)0.0215 (8)0.0102 (8)
N10.0391 (8)0.0442 (10)0.0406 (8)0.0005 (7)0.0181 (7)0.0047 (7)
O50.0440 (8)0.0715 (11)0.0532 (9)0.0052 (7)0.0213 (7)0.0143 (8)
C80.0422 (9)0.0320 (9)0.0301 (8)0.0000 (7)0.0145 (7)0.0000 (6)
C100.0355 (8)0.0319 (8)0.0368 (9)0.0002 (7)0.0170 (7)0.0029 (7)
C70.0353 (8)0.0293 (8)0.0287 (8)0.0027 (6)0.0106 (6)0.0039 (6)
C90.0350 (8)0.0332 (9)0.0330 (8)0.0003 (7)0.0101 (7)0.0031 (7)
C30.0394 (9)0.0533 (12)0.0408 (10)0.0119 (8)0.0118 (8)0.0048 (9)
C20.0443 (10)0.0517 (11)0.0339 (9)0.0013 (8)0.0173 (8)0.0018 (8)
C50.0421 (10)0.0407 (10)0.0456 (10)0.0045 (8)0.0152 (8)0.0011 (8)
C40.0419 (11)0.0728 (15)0.0560 (13)0.0124 (10)0.0214 (10)0.0061 (11)
C10.0465 (10)0.0507 (11)0.0355 (9)0.0027 (8)0.0191 (8)0.0075 (8)
C60.0683 (15)0.0681 (15)0.0568 (13)0.0273 (12)0.0186 (12)0.0178 (12)
Geometric parameters (Å, º) top
Cu1—O11.9689 (12)C8—C91.516 (2)
Cu1—O4i1.9839 (13)C8—H8A0.9700
Cu1—N11.9914 (16)C8—H8B0.9700
Cu1—N22.0547 (14)C10—C91.513 (2)
O2—C71.247 (2)C9—H9A0.9700
O1—C71.274 (2)C9—H9B0.9700
O4—C101.277 (2)C3—C41.506 (3)
O3—C101.229 (2)C3—H3A0.9700
O8—H8WA0.877 (18)C3—H3B0.9700
O8—H8WB0.902 (17)C2—C11.505 (3)
O6—H6WA0.847 (17)C2—H2A0.9700
O6—H6WB0.865 (18)C2—H2B0.9700
N2—C51.490 (2)C5—C61.523 (3)
N2—C31.494 (2)C5—H5A0.9700
N2—C21.496 (2)C5—H5B0.9700
O7—H7WB0.91 (2)C4—H4A0.9600
O7—H7WA0.885 (18)C4—H4B0.9600
N1—C11.472 (2)C4—H4C0.9600
N1—H7A0.84 (2)C1—H1A0.9700
N1—H7B0.88 (3)C1—H1B0.9700
O5—H5WA0.79 (3)C6—H6A0.9600
O5—H5WB0.85 (3)C6—H6B0.9600
C8—C71.510 (2)C6—H6C0.9600
O1—Cu1—O4i88.45 (5)C10—C9—H9B108.8
O1—Cu1—N1163.90 (6)C8—C9—H9B108.8
O4i—Cu1—N191.76 (6)H9A—C9—H9B107.7
O1—Cu1—N297.13 (5)N2—C3—C4114.32 (17)
O4i—Cu1—N2166.84 (6)N2—C3—H3A108.7
N1—Cu1—N286.18 (6)C4—C3—H3A108.7
C7—O1—Cu1104.60 (10)N2—C3—H3B108.7
C10—O4—Cu1ii106.76 (11)C4—C3—H3B108.7
H8WA—O8—H8WB116 (3)H3A—C3—H3B107.6
H6WA—O6—H6WB102 (2)N2—C2—C1110.27 (15)
C5—N2—C3112.06 (15)N2—C2—H2A109.6
C5—N2—C2109.96 (14)C1—C2—H2A109.6
C3—N2—C2109.50 (14)N2—C2—H2B109.6
C5—N2—Cu1113.15 (11)C1—C2—H2B109.6
C3—N2—Cu1107.65 (11)H2A—C2—H2B108.1
C2—N2—Cu1104.19 (10)N2—C5—C6115.26 (17)
H7WB—O7—H7WA101 (5)N2—C5—H5A108.5
C1—N1—Cu1110.11 (12)C6—C5—H5A108.5
C1—N1—H7A108.2 (16)N2—C5—H5B108.5
Cu1—N1—H7A105.0 (16)C6—C5—H5B108.5
C1—N1—H7B112.5 (16)H5A—C5—H5B107.5
Cu1—N1—H7B106.4 (15)C3—C4—H4A109.5
H7A—N1—H7B114 (2)C3—C4—H4B109.5
H5WA—O5—H5WB105 (3)H4A—C4—H4B109.5
C7—C8—C9113.13 (14)C3—C4—H4C109.5
C7—C8—H8A109.0H4A—C4—H4C109.5
C9—C8—H8A109.0H4B—C4—H4C109.5
C7—C8—H8B109.0N1—C1—C2108.50 (15)
C9—C8—H8B109.0N1—C1—H1A110.0
H8A—C8—H8B107.8C2—C1—H1A110.0
O3—C10—O4121.96 (17)N1—C1—H1B110.0
O3—C10—C9121.95 (16)C2—C1—H1B110.0
O4—C10—C9116.07 (15)H1A—C1—H1B108.4
O2—C7—O1122.06 (15)C5—C6—H6A109.5
O2—C7—C8121.10 (15)C5—C6—H6B109.5
O1—C7—C8116.81 (14)H6A—C6—H6B109.5
C10—C9—C8113.84 (14)C5—C6—H6C109.5
C10—C9—H9A108.8H6A—C6—H6C109.5
C8—C9—H9A108.8H6B—C6—H6C109.5
Cu1ii—O4—C10—O33.0 (2)C2—N2—C3—C4177.19 (18)
Cu1ii—O4—C10—C9175.82 (11)Cu1—N2—C3—C470.13 (19)
Cu1—O1—C7—O25.97 (19)C5—N2—C2—C1163.71 (16)
Cu1—O1—C7—C8171.91 (12)C3—N2—C2—C172.75 (19)
C9—C8—C7—O226.7 (2)Cu1—N2—C2—C142.16 (17)
C9—C8—C7—O1155.35 (15)C3—N2—C5—C660.3 (2)
O3—C10—C9—C814.5 (2)C2—N2—C5—C661.8 (2)
O4—C10—C9—C8166.67 (14)Cu1—N2—C5—C6177.80 (15)
C7—C8—C9—C1065.18 (19)Cu1—N1—C1—C232.42 (19)
C5—N2—C3—C454.9 (2)N2—C2—C1—N150.7 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6WA···O10.85 (2)2.02 (2)2.857 (2)171 (3)
O6—H6WB···O70.87 (2)1.99 (2)2.832 (2)166 (3)
O7—H7WB···O80.91 (2)1.99 (4)2.831 (3)153 (7)
O7—H7WA···O30.89 (2)1.96 (2)2.831 (2)167 (3)
O5—H5WB···O40.85 (3)1.91 (3)2.763 (2)174 (3)
C8—H8A···O60.972.923.628 (2)130
C8—H8A···O70.972.923.763 (2)146
C5—H5A···O10.972.593.032 (2)108
C4—H4C···O10.962.943.554 (3)123
C8—H8B···O5iii0.972.703.434 (2)133
C3—H3A···O8iv0.972.763.665 (3)155
C2—H2A···O8iv0.972.883.793 (3)156
O5—H5WA···O2v0.79 (3)2.05 (3)2.847 (2)178 (3)
C5—H5B···O5v0.972.673.568 (3)155
C2—H2B···O5v0.972.713.603 (3)153
C4—H4A···O8i0.962.883.774 (3)156
C4—H4C···O3i0.962.743.517 (3)138
C1—H1B···O6vi0.972.673.418 (3)134
C6—H6C···O6vii0.962.993.698 (3)132
C6—H6C···O7vii0.962.973.863 (3)155
N1—H7A···O2viii0.84 (2)2.34 (3)3.162 (2)166 (2)
N1—H7B···O5viii0.88 (3)2.10 (3)2.941 (3)160 (2)
O8—H8WA···O6ix0.88 (2)2.19 (4)2.795 (2)125 (4)
O8—H8WB···O7x0.90 (2)1.92 (2)2.824 (3)178 (3)
Symmetry codes: (i) x, y+1, z; (iii) x+1, y+1/2, z1/2; (iv) x+2, y+1/2, z+1/2; (v) x+1, y1, z; (vi) x, y+1/2, z+1/2; (vii) x, y1/2, z+1/2; (viii) x+1, y, z; (ix) x+2, y, z; (x) x+2, y1, z.
Selected bond lengths (Å, angles (°) and torsion angles (°) top
Bond lengthsX-ray diffractionDFT/B3LYP/LANL2DZ
O1—C71.274 (2)1.28284
O2—C71.247 (3)1.31512
C1—N11.472 (2)1.49230
C2—N21.496 (3)1.50855
O3—C101.229 (2)1.27610
O4—C101.276 (2)1.32630
Cu1—O22.580 (1)2.57521
Cu1—O11.969 (1)2.00313
Cu1—N11.992 (2)2.06144
Cu1—N22.055 (1)2.09431
AnglesX-ray diffractionDFT/B3LYP/LANL2DZ
O1—C7—O2122.03 (2)121.72427
C2—C1—N1108.51 (2)108.87686
C3—N2—C5112.06 (2)113.10186
O2—Cu1—O156.09 (2)57.81888
O1—Cu1—N197.12 (6)88.90818
O1—Cu1—N2163.90 (6)162.15716
N1—Cu1—N286.17 (7)86.34605
Torsion anglesX-ray diffractionDFT/B3LYP/LANL2DZ
O1—C7—C8—C9155.33 (2)146.52283
O4—C10—C9—C8166.67 (2)-167.39413
N1—C1—C2—N250.7 (2)50.94894
Total-zero-point energy, entropy, heat capacity, rotational constants and dipole moments for the optimized structure of the title complex top
Parameters
Total energy (a.u.)-1760.98246481
Zero-point vibrational energy (kcal mol-1)310.26438
Entropy (cal mol-1 K-1)243.329
Heat capacity at constant volume (CV, cal mol-1 K-1)136.992
Rotational constants (GHz)
A0.20936
B0.08864
C0.08131
Dipole Moment (Debye)
µx-5.9357
µy0.9709
µz3.5282
µtop6.9730
Vibration frequencies of water (cm-1) top
AssignmentExperimental (Kbr)Calculated (B3LYP)
νasO—H234753781
νasO—H234433620
νasO—H234113578
νasO—H233903517
νsO—H232523478
νsO—H232253286
νsO—H231362994
νsO—H230292943
αO—H216831736
αO—H216071641
αO—H215891626
αO—H215591605
Vibrational modes: ν = stretching and α = scissoring; abbreviations: s = symmetric and as = asymmetric.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds