Download citation
Download citation
link to html
The title ZnII complex, [Zn(C7H4FO2)2(C10H14N2O)2(H2O)2], is centrosymmetric. It contains two 4-fluoro­benzoate and two diethyl­nicotinamide ligands and two water mol­ecules, all ligands being monodentate. The four O atoms in the equatorial plane around the Zn atom form a slightly distorted square-planar arrangement, while the distorted octa­hedral coordination is completed by the two N atoms in the axial positions. In the crystal structure, O—H...O hydrogen bonds link the mol­ecules into infinite chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807045382/xu2321sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807045382/xu2321Isup2.hkl
Contains datablock I

CCDC reference: 663617

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.050
  • wR factor = 0.140
  • Data-to-parameter ratio = 15.2

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT222_ALERT_3_B Large Non-Solvent H Ueq(max)/Ueq(min) ... 4.12 Ratio
Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.40 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C14
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Zn (2) 1.91 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 4
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Transition metal complexes with biochemical molecules show interesting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982). The structure-function-coordination relationships of the arylcarboxylate ion in ZnII complexes of benzoic acid derivatives, depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of the synthesis (Nadzhafov et al., 1981; Shnulin et al., 1981; Antsyshkina et al., 1980; Amiraslanov et al., 1979; Adiwidjaja et al., 1978).

The solid-state structures of anhydrous zinc(II) carboxylates include one-dimensional (Guseinov et al., 1984; Clegg et al., 1986a), two-dimensional (Clegg et al., 1986b, 1987) and three-dimensional (Capilla & Aranda, 1979) polymeric motifs of different types, while discerete monomeric complexes with octahedral or tetrahedral coordination geometry are found if water or other donor molecules are coordinated to Zn (van Niekerk et al., 1953; Usubaliev et al., 1992).

N,N-Diethylnicotinamide (DENA) is an important respiratory stimulant. The structures of several complexes obtained by reacting divalent transition metal ions with DENA have been determined, including those of Mn(DENA)2(NCS)2 (Bigoli et al., 1973b), Zn(DENA)2(NCS)2(H2O)2 (Bigoli et al., 1973a), Zn2(DENA)2(NCS)4 (Bigoli et al., 1973c), Cd(DENA)(SCN)2 (Bigoli et al., 1972), Cu2(DENA)2(C6H5COO)4 (Hökelek et al., 1995), [Zn2(DENA)2(C7H5O3)4].2H2O (Hökelek & Necefoğlu, 1996), [Co(DENA)2(C7H5O3)2(H2O)2] (Hökelek & Necefoğlu, 1997) and [Cu(DENA)2(C7H4NO4)2(H2O)2] (Hökelek et al., 1997).

The structure determination of the title compound, (I), a zinc complex with two fluorobenzoate (FB), two diethylnicotinamide (DENA) ligands and two water molecules, was undertaken in order to determine the properties of the FB and DENA ligands and also to compare the results obtained with those reported previously.

Compound (I) is a monomeric complex, with the Zn atom on a centre of symmetry. It contains two FB, two DENA ligands and two water molecules (Fig. 1). All ligands are monodentate. The four O atoms (O1, O4, and the symmetry-related atoms, O1', O4') in the equatorial plane around the Zn atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the DENA ligands (N1, N1') in the axial positions (Table 1 and Fig. 1).

The near equality of the C1—O1 [1.260 (4) Å] and C1—O2 [1.252 (4) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds, as in bis(4-hydroxybenzoato-κO)bis(nicotinamide-κN)zinc(II) (Necefoğlu et al., 2002), diaquabis[4-(dimethylamino)benzoato-κO]-(nicotinamide-κN1)cobalt(II) dihydrate (Hökelek & Necefoğlu, 2007b), tetraaquabis[4-(dimethylamino)benzoato-κO]manganese(II) dihydrate (Hökelek & Necefoğlu, 2007a), diaquabis[4-(dimethylamino)benzoato-κO]-(nicotinamide-κN1)manganese(II) dihydrate (Hökelek & Necefoğlu, 2007c), diaquabis(4-fluorobenzoato-κO)bis(nicotinamide-κN1)cobalt(II) (Çaylak, Hökelek & Necefoğlu, 2007) and diaquabis(4-chlorobenzoato-κO)bis(nicotinamide-κN)cobalt(II) (Çaylak, Hökelek, Öztürkkan & Necefoğlu, 2007). This may be due to the intramolecular O—H···O hydrogen bonding of the carboxylate O atoms (Table 2). The Zn atom is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by -0.881 (1) Å. The dihedral angle between the planar carboxylate group and the benzene ring C2—C7 is 2.80 (33)°, while that between rings C2—C7 and N1/C8—C12 is 78.40 (13)°.

As can be seen from the packing diagram (Fig. 2), the Zn atoms are located at the corners of the unit cell and the molecules of (I) are linked into infinite chains, along the a axis, by intermolecular O—H···O hydrogen bonds (Table 2). Dipole-dipole and van der Waals interactions are also effective in the molecular packing.

Related literature top

For general backgroud, see: Antolini et al. (1982); Nadzhafov et al. (1981); Shnulin et al. (1981); Antsyshkina et al. (1980); Amiraslanov et al. (1979); Adiwidjaja et al. (1978). For related literature, see: Guseinov et al. (1984); Clegg et al. (1986a,b, 1987); Capilla & Aranda (1979); van Niekerk et al. (1953); Usubaliev et al. (1992); Bigoli et al. (1972, 1973a,b,c); Hökelek et al. (1995, 1997); Hökelek & Necefoğlu (1996, 1997, 2007a,b,c); Necefoğlu et al. (2002); Çaylak, Hökelek & Necefoğlu, (2007); Çaylak, Hökelek, Öztürkkan & Necefoğlu, (2007).

Experimental top

The title compound was prepared by the reaction of Zn(NO3)2 (1.89 g, 10 mmol) in H2O (25 ml) and DENA (3.56 g, 20 mmol) in H2O (25 ml) with sodium p-fluorobenzoate (3.24 g, 20 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving colorless single crystals.

Refinement top

H atoms of water molecule were located in difference syntheses and refined isotropically [O—H = 0.960 (16) and 0.94 (2) Å and Uiso(H) = 0.062 (13) and 0.087 (18) Å2]. The remaining H atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms. The restrains on the O—H bond lengths and H—O—H bond angle of water molecule were applied.

Structure description top

Transition metal complexes with biochemical molecules show interesting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982). The structure-function-coordination relationships of the arylcarboxylate ion in ZnII complexes of benzoic acid derivatives, depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of the synthesis (Nadzhafov et al., 1981; Shnulin et al., 1981; Antsyshkina et al., 1980; Amiraslanov et al., 1979; Adiwidjaja et al., 1978).

The solid-state structures of anhydrous zinc(II) carboxylates include one-dimensional (Guseinov et al., 1984; Clegg et al., 1986a), two-dimensional (Clegg et al., 1986b, 1987) and three-dimensional (Capilla & Aranda, 1979) polymeric motifs of different types, while discerete monomeric complexes with octahedral or tetrahedral coordination geometry are found if water or other donor molecules are coordinated to Zn (van Niekerk et al., 1953; Usubaliev et al., 1992).

N,N-Diethylnicotinamide (DENA) is an important respiratory stimulant. The structures of several complexes obtained by reacting divalent transition metal ions with DENA have been determined, including those of Mn(DENA)2(NCS)2 (Bigoli et al., 1973b), Zn(DENA)2(NCS)2(H2O)2 (Bigoli et al., 1973a), Zn2(DENA)2(NCS)4 (Bigoli et al., 1973c), Cd(DENA)(SCN)2 (Bigoli et al., 1972), Cu2(DENA)2(C6H5COO)4 (Hökelek et al., 1995), [Zn2(DENA)2(C7H5O3)4].2H2O (Hökelek & Necefoğlu, 1996), [Co(DENA)2(C7H5O3)2(H2O)2] (Hökelek & Necefoğlu, 1997) and [Cu(DENA)2(C7H4NO4)2(H2O)2] (Hökelek et al., 1997).

The structure determination of the title compound, (I), a zinc complex with two fluorobenzoate (FB), two diethylnicotinamide (DENA) ligands and two water molecules, was undertaken in order to determine the properties of the FB and DENA ligands and also to compare the results obtained with those reported previously.

Compound (I) is a monomeric complex, with the Zn atom on a centre of symmetry. It contains two FB, two DENA ligands and two water molecules (Fig. 1). All ligands are monodentate. The four O atoms (O1, O4, and the symmetry-related atoms, O1', O4') in the equatorial plane around the Zn atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the DENA ligands (N1, N1') in the axial positions (Table 1 and Fig. 1).

The near equality of the C1—O1 [1.260 (4) Å] and C1—O2 [1.252 (4) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds, as in bis(4-hydroxybenzoato-κO)bis(nicotinamide-κN)zinc(II) (Necefoğlu et al., 2002), diaquabis[4-(dimethylamino)benzoato-κO]-(nicotinamide-κN1)cobalt(II) dihydrate (Hökelek & Necefoğlu, 2007b), tetraaquabis[4-(dimethylamino)benzoato-κO]manganese(II) dihydrate (Hökelek & Necefoğlu, 2007a), diaquabis[4-(dimethylamino)benzoato-κO]-(nicotinamide-κN1)manganese(II) dihydrate (Hökelek & Necefoğlu, 2007c), diaquabis(4-fluorobenzoato-κO)bis(nicotinamide-κN1)cobalt(II) (Çaylak, Hökelek & Necefoğlu, 2007) and diaquabis(4-chlorobenzoato-κO)bis(nicotinamide-κN)cobalt(II) (Çaylak, Hökelek, Öztürkkan & Necefoğlu, 2007). This may be due to the intramolecular O—H···O hydrogen bonding of the carboxylate O atoms (Table 2). The Zn atom is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by -0.881 (1) Å. The dihedral angle between the planar carboxylate group and the benzene ring C2—C7 is 2.80 (33)°, while that between rings C2—C7 and N1/C8—C12 is 78.40 (13)°.

As can be seen from the packing diagram (Fig. 2), the Zn atoms are located at the corners of the unit cell and the molecules of (I) are linked into infinite chains, along the a axis, by intermolecular O—H···O hydrogen bonds (Table 2). Dipole-dipole and van der Waals interactions are also effective in the molecular packing.

For general backgroud, see: Antolini et al. (1982); Nadzhafov et al. (1981); Shnulin et al. (1981); Antsyshkina et al. (1980); Amiraslanov et al. (1979); Adiwidjaja et al. (1978). For related literature, see: Guseinov et al. (1984); Clegg et al. (1986a,b, 1987); Capilla & Aranda (1979); van Niekerk et al. (1953); Usubaliev et al. (1992); Bigoli et al. (1972, 1973a,b,c); Hökelek et al. (1995, 1997); Hökelek & Necefoğlu (1996, 1997, 2007a,b,c); Necefoğlu et al. (2002); Çaylak, Hökelek & Necefoğlu, (2007); Çaylak, Hökelek, Öztürkkan & Necefoğlu, (2007).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. Primed atoms are generated by the symmetry operator (-x, -y, -z).
[Figure 2] Fig. 2. A partial packing diagram of (I), viewed down the a axis, showing hydrogen bonds (dashed lines) linking the molecules into chains, where b and c axes are vertical and horizontal, respectively. H atoms not involved in hydrogen bonding are omitted.
Diaquabis(N,N-diethylnicotinamide-κN)bis(4-fluorobenzoato-κO)zinc(II) top
Crystal data top
[Zn(C7H4FO2)2(C10H14N2O)2(H2O)2]Z = 1
Mr = 736.10F(000) = 384
Triclinic, P1Dx = 1.395 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4261 (2) ÅCell parameters from 25 reflections
b = 8.7188 (3) Åθ = 3.6–18.7°
c = 15.0798 (4) ŵ = 0.77 mm1
α = 98.44 (2)°T = 298 K
β = 95.73 (2)°Rod-shaped, colorless
γ = 112.94 (3)°0.25 × 0.20 × 0.15 mm
V = 876.1 (2) Å3
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
2934 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 26.3°, θmin = 2.6°
Non–profiled ω scansh = 90
Absorption correction: ψ scan
(North et al., 1968)
k = 1010
Tmin = 0.760, Tmax = 0.891l = 1818
3830 measured reflections3 standard reflections every 120 min
3547 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.089P)2 + 0.159P]
where P = (Fo2 + 2Fc2)/3
3547 reflections(Δ/σ)max < 0.001
233 parametersΔρmax = 0.88 e Å3
4 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Zn(C7H4FO2)2(C10H14N2O)2(H2O)2]γ = 112.94 (3)°
Mr = 736.10V = 876.1 (2) Å3
Triclinic, P1Z = 1
a = 7.4261 (2) ÅMo Kα radiation
b = 8.7188 (3) ŵ = 0.77 mm1
c = 15.0798 (4) ÅT = 298 K
α = 98.44 (2)°0.25 × 0.20 × 0.15 mm
β = 95.73 (2)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
2934 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.038
Tmin = 0.760, Tmax = 0.8913 standard reflections every 120 min
3830 measured reflections intensity decay: 1%
3547 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0504 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.88 e Å3
3547 reflectionsΔρmin = 0.77 e Å3
233 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.00000.00000.00000.0333 (2)
F0.3354 (5)0.3270 (5)0.4677 (2)0.0928 (11)
O10.0243 (4)0.1622 (3)0.11031 (16)0.0395 (6)
O20.2370 (4)0.2052 (4)0.2136 (2)0.0531 (7)
O30.7298 (4)0.2781 (4)0.12884 (19)0.0521 (7)
O40.2728 (4)0.0115 (4)0.06928 (18)0.0435 (6)
H410.277 (7)0.080 (5)0.1259 (18)0.062 (13)*
H420.274 (9)0.089 (4)0.083 (3)0.087 (18)*
N10.1816 (4)0.2150 (3)0.05431 (19)0.0344 (6)
N20.6281 (5)0.3228 (4)0.2636 (2)0.0480 (8)
C10.0665 (5)0.1978 (4)0.1908 (2)0.0347 (7)
C20.0416 (5)0.2319 (4)0.2653 (2)0.0355 (7)
C30.2285 (5)0.2311 (4)0.2447 (2)0.0398 (8)
H30.28710.20870.18410.048*
C40.3288 (6)0.2630 (5)0.3124 (3)0.0494 (9)
H40.45370.26280.29840.059*
C50.2385 (7)0.2948 (6)0.4006 (3)0.0572 (11)
C60.0556 (7)0.2952 (6)0.4250 (3)0.0577 (11)
H60.00040.31610.48590.069*
C70.0434 (6)0.2635 (5)0.3561 (3)0.0452 (9)
H70.16800.26350.37090.054*
C80.1608 (5)0.3607 (4)0.0438 (2)0.0369 (7)
H80.06370.37060.01190.044*
C90.2759 (6)0.4980 (5)0.0779 (3)0.0416 (8)
H90.25780.59840.06860.050*
C100.4202 (5)0.4829 (4)0.1265 (2)0.0384 (8)
H100.49910.57270.15110.046*
C110.4439 (5)0.3320 (4)0.1375 (2)0.0332 (7)
C120.3234 (5)0.2019 (4)0.0995 (2)0.0342 (7)
H120.34140.10140.10550.041*
C130.6110 (5)0.3076 (4)0.1774 (2)0.0365 (7)
C140.4823 (8)0.3458 (7)0.3274 (3)0.0639 (12)
H14A0.55140.42020.36630.077*
H14B0.41190.40050.29330.077*
C150.3370 (10)0.1828 (10)0.3848 (6)0.113 (2)
H15A0.40330.13610.42510.169*
H15B0.23550.20220.41980.169*
H15C0.27790.10450.34670.169*
C160.8024 (7)0.3107 (6)0.2978 (3)0.0619 (12)
H16A0.91720.36790.24970.074*
H16B0.82790.37050.34770.074*
C170.7806 (9)0.1333 (7)0.3299 (5)0.0887 (19)
H17A0.76770.07600.27970.133*
H17B0.89570.13590.35470.133*
H17C0.66450.07390.37610.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0261 (3)0.0353 (3)0.0398 (3)0.0099 (2)0.0119 (2)0.0154 (2)
F0.082 (2)0.142 (3)0.0599 (17)0.052 (2)0.0345 (15)0.0057 (18)
O10.0392 (13)0.0389 (13)0.0424 (14)0.0150 (10)0.0128 (11)0.0134 (11)
O20.0343 (14)0.0615 (18)0.0589 (17)0.0182 (12)0.0058 (12)0.0041 (14)
O30.0423 (15)0.0706 (19)0.0576 (16)0.0322 (14)0.0140 (12)0.0263 (14)
O40.0346 (13)0.0499 (15)0.0525 (16)0.0207 (11)0.0099 (11)0.0184 (13)
N10.0293 (13)0.0333 (14)0.0412 (15)0.0102 (11)0.0102 (11)0.0138 (12)
N20.0486 (18)0.058 (2)0.0491 (18)0.0274 (16)0.0231 (15)0.0205 (15)
C10.0307 (16)0.0255 (15)0.0461 (19)0.0071 (12)0.0091 (14)0.0126 (13)
C20.0335 (17)0.0282 (16)0.0415 (18)0.0081 (13)0.0077 (14)0.0095 (13)
C30.0375 (18)0.0386 (18)0.0405 (18)0.0125 (15)0.0047 (15)0.0101 (15)
C40.041 (2)0.053 (2)0.056 (2)0.0203 (17)0.0120 (17)0.0104 (18)
C50.056 (2)0.067 (3)0.049 (2)0.024 (2)0.0216 (19)0.009 (2)
C60.060 (3)0.074 (3)0.034 (2)0.024 (2)0.0063 (18)0.0082 (19)
C70.0373 (18)0.049 (2)0.046 (2)0.0143 (16)0.0046 (15)0.0098 (17)
C80.0306 (16)0.0391 (18)0.0432 (18)0.0143 (14)0.0117 (14)0.0109 (14)
C90.0448 (19)0.0360 (18)0.052 (2)0.0210 (15)0.0143 (16)0.0170 (15)
C100.0365 (17)0.0334 (17)0.0461 (19)0.0104 (14)0.0125 (15)0.0180 (15)
C110.0281 (15)0.0360 (17)0.0346 (16)0.0100 (13)0.0071 (13)0.0122 (13)
C120.0304 (16)0.0314 (16)0.0425 (18)0.0115 (13)0.0123 (13)0.0121 (13)
C130.0314 (16)0.0343 (17)0.0448 (19)0.0106 (13)0.0126 (14)0.0154 (14)
C140.077 (3)0.080 (3)0.050 (2)0.042 (3)0.022 (2)0.024 (2)
C150.072 (4)0.111 (6)0.143 (7)0.028 (4)0.004 (4)0.021 (5)
C160.061 (3)0.065 (3)0.076 (3)0.029 (2)0.042 (2)0.032 (2)
C170.095 (4)0.074 (4)0.125 (5)0.049 (3)0.061 (4)0.034 (3)
Geometric parameters (Å, º) top
Zn—O12.090 (2)C6—H60.9300
Zn—O1i2.090 (2)C7—C61.387 (6)
Zn—O42.143 (2)C7—H70.9300
Zn—O4i2.143 (2)C8—H80.9300
Zn—N1i2.169 (3)C9—C81.378 (5)
Zn—N12.169 (3)C9—C101.393 (5)
F—C51.357 (5)C9—H90.9300
O1—C11.260 (4)C10—H100.9300
O2—C11.252 (4)C11—C101.383 (5)
O3—C131.218 (4)C11—C121.385 (4)
O4—H410.960 (16)C11—C131.504 (5)
O4—H420.94 (2)C12—H120.9300
N1—C81.327 (4)C14—C151.480 (8)
N1—C121.341 (4)C14—H14A0.9700
N2—C131.340 (5)C14—H14B0.9700
N2—C141.468 (6)C15—H15A0.9600
N2—C161.476 (5)C15—H15B0.9600
C2—C11.504 (5)C15—H15C0.9600
C2—C31.388 (5)C16—C171.490 (7)
C3—H30.9300C16—H16A0.9700
C2—C71.390 (5)C16—H16B0.9700
C3—C41.380 (5)C17—H17A0.9600
C4—H40.9300C17—H17B0.9600
C4—C51.366 (6)C17—H17C0.9600
C5—C61.370 (7)
O1—Zn—O1i180.00 (14)C6—C7—H7119.6
O1—Zn—O491.98 (10)C2—C7—H7119.6
O1i—Zn—O488.02 (10)N1—C8—C9123.3 (3)
O1—Zn—O4i88.02 (10)N1—C8—H8118.4
O1i—Zn—O4i91.98 (10)C9—C8—H8118.4
O4—Zn—O4i180.00 (15)C8—C9—C10118.5 (3)
O1—Zn—N1i88.83 (10)C8—C9—H9120.7
O1i—Zn—N1i91.17 (10)C10—C9—H9120.7
O4—Zn—N1i93.46 (10)C11—C10—C9118.8 (3)
O4i—Zn—N1i86.54 (10)C11—C10—H10120.6
O1—Zn—N191.17 (10)C9—C10—H10120.6
O1i—Zn—N188.83 (10)C10—C11—C12118.6 (3)
O4—Zn—N186.54 (10)C10—C11—C13123.8 (3)
O4i—Zn—N193.46 (10)C12—C11—C13117.0 (3)
N1i—Zn—N1180.00 (15)N1—C12—C11122.7 (3)
C1—O1—Zn126.6 (2)N1—C12—H12118.6
Zn—O4—H4197 (3)C11—C12—H12118.6
Zn—O4—H42118 (4)O3—C13—N2122.0 (3)
H41—O4—H42106 (3)O3—C13—C11118.3 (3)
C8—N1—C12118.1 (3)N2—C13—C11119.7 (3)
C8—N1—Zn122.9 (2)N2—C14—C15112.4 (5)
C12—N1—Zn118.9 (2)N2—C14—H14A109.1
C13—N2—C14124.5 (3)C15—C14—H14A109.1
C13—N2—C16117.9 (3)N2—C14—H14B109.1
C14—N2—C16117.6 (3)C15—C14—H14B109.1
O2—C1—O1125.5 (3)H14A—C14—H14B107.8
O2—C1—C2117.8 (3)C14—C15—H15A109.5
O1—C1—C2116.7 (3)C14—C15—H15B109.5
C3—C2—C7118.8 (3)H15A—C15—H15B109.5
C3—C2—C1120.7 (3)C14—C15—H15C109.5
C7—C2—C1120.5 (3)H15A—C15—H15C109.5
C4—C3—C2121.3 (3)H15B—C15—H15C109.5
C4—C3—H3119.4N2—C16—C17114.4 (4)
C2—C3—H3119.4N2—C16—H16A108.7
C5—C4—C3117.8 (4)C17—C16—H16A108.7
C5—C4—H4121.1N2—C16—H16B108.7
C3—C4—H4121.1C17—C16—H16B108.7
F—C5—C4118.3 (4)H16A—C16—H16B107.6
F—C5—C6118.2 (4)C16—C17—H17A109.5
C4—C5—C6123.6 (4)C16—C17—H17B109.5
C5—C6—C7117.9 (4)H17A—C17—H17B109.5
C5—C6—H6121.1C16—C17—H17C109.5
C7—C6—H6121.1H17A—C17—H17C109.5
C6—C7—C2120.7 (4)H17B—C17—H17C109.5
O4—Zn—O1—C117.4 (3)C14—N2—C16—C1795.3 (5)
O4i—Zn—O1—C1162.6 (3)C3—C2—C1—O2177.9 (3)
N1i—Zn—O1—C176.0 (3)C7—C2—C1—O22.5 (5)
N1—Zn—O1—C1104.0 (3)C3—C2—C1—O12.8 (5)
O1—Zn—N1—C831.8 (3)C7—C2—C1—O1176.7 (3)
O1i—Zn—N1—C8148.2 (3)C7—C2—C3—C40.7 (5)
O4—Zn—N1—C8123.7 (3)C1—C2—C3—C4179.7 (3)
O4i—Zn—N1—C856.3 (3)C3—C2—C7—C60.5 (6)
O1—Zn—N1—C12147.2 (3)C1—C2—C7—C6179.9 (4)
O1i—Zn—N1—C1232.8 (3)C2—C3—C4—C50.2 (6)
O4—Zn—N1—C1255.3 (3)C3—C4—C5—F179.7 (4)
O4i—Zn—N1—C12124.7 (3)C3—C4—C5—C60.6 (7)
Zn—O1—C1—O231.6 (5)F—C5—C6—C7179.5 (4)
Zn—O1—C1—C2147.5 (2)C4—C5—C6—C70.8 (7)
C12—N1—C8—C90.7 (5)C2—C7—C6—C50.2 (7)
Zn—N1—C8—C9179.8 (3)C10—C9—C8—N10.6 (6)
C8—N1—C12—C111.9 (5)C8—C9—C10—C110.9 (5)
Zn—N1—C12—C11179.0 (2)C12—C11—C10—C90.1 (5)
C14—N2—C13—O3175.3 (4)C13—C11—C10—C9171.5 (3)
C16—N2—C13—O32.8 (6)C10—C11—C12—N11.6 (5)
C14—N2—C13—C116.4 (6)C13—C11—C12—N1173.6 (3)
C16—N2—C13—C11175.5 (3)C10—C11—C13—O3115.7 (4)
C13—N2—C14—C1594.3 (5)C12—C11—C13—O355.8 (5)
C16—N2—C14—C1583.8 (6)C10—C11—C13—N262.7 (5)
C13—N2—C16—C1782.9 (6)C12—C11—C13—N2125.8 (4)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O20.96 (3)1.71 (4)2.654 (4)167 (4)
O4—H42···O3ii0.93 (4)1.87 (4)2.795 (4)171 (4)
Symmetry code: (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C7H4FO2)2(C10H14N2O)2(H2O)2]
Mr736.10
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.4261 (2), 8.7188 (3), 15.0798 (4)
α, β, γ (°)98.44 (2), 95.73 (2), 112.94 (3)
V3)876.1 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.760, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
3830, 3547, 2934
Rint0.038
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.140, 1.08
No. of reflections3547
No. of parameters233
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.88, 0.77

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Zn—O12.090 (2)Zn—N12.169 (3)
Zn—O42.143 (2)
O1—Zn—O491.98 (10)O4—Zn—N186.54 (10)
O1—Zn—N191.17 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O20.96 (3)1.71 (4)2.654 (4)167 (4)
O4—H42···O3i0.93 (4)1.87 (4)2.795 (4)171 (4)
Symmetry code: (i) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds