Download citation
Download citation
link to html
Re-investigation of [NiCl2(PPh3)2]·2CH2Cl2 at 120 K yielded much more accurate geometric parameters than the earlier room temperature study and confirmed the main conclusion of the latter: the Ni-P and Ni-Cl bonds in this centrosymmetric square-planar complex [2.2439 (5) and 2.1672 (5) Å] are significantly shorter than in the tetrahedral solvent-free [NiCl2(PPh3)2].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801008741/ya6032sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801008741/ya6032Isup2.hkl
Contains datablock I

CCDC reference: 170744

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.029
  • wR factor = 0.074
  • Data-to-parameter ratio = 17.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

In a solvent-free crystal, [NiCl2(PPh3)2], (I), adopts a tetrahedral coordination of the Ni atom (Garton et al., 1963; Bruins Slot et al., 1984; Corain et al., 1985; Brammer & Stevens, 1989) and a green–blue colour. However, the [NiCl2(PPh3)2].2ClCH2CH2Cl solvate, (II), is deep-red and shows a trans square-planar coordination (Corain et al., 1985) with both Ni—P and Ni—Cl bonds significantly shorter than in (I). The same coordination was found in the [NiCl2(PPh3)2].2CH2Cl2 solvate, (III), the pseudo-polymorph of (II), but the precision of the room-temperature crystallographic study of (III) (Sletten & Kovacs, 1993) was not very high (R = 0.107).

Presently, we redetermined the structure of (III) at 120 K, which appeared essentially the same as at room temperature. The unit cell and the arrangement of the complex molecules bear a close semblance to those of (II). The Ni atom is located at an inversion centre and hence has a rigorously planar trans-coordination (Fig. 1). Thus, (II) and (III) can be described as allogons of (I). The Ni—P and Ni—Cl bond distances we found in (III), 2.2439 (4) and 2.1672 (4) Å, practically coincide with those reported by Sletten & Kovacs (1993) (2.241 and 2.164 Å), as well as with the corresponding distances in (II), viz. 2.242 (3) and 2.155 (3) Å (Corain et al., 1985). The most accurate study (at 94 K) of the tetrahedral allogon (Brammer & Stevens, 1989) gave the distances Ni—P = 2.3180 (2) and Ni—Cl = 2.2075 (2) Å, longer than in (III) by 0.07 and 0.04 Å, respectively. The P—C bond lengths change contrary to the Ni—P, averaging 1.827 (4) Å in (III) against 1.816 (4) Å in the tetrahedral allogon, in accordance with the view that nickel d-electrons are back-donated into the σ*(P—C) orbitals rather than into the pure d-orbitals of the phosphorus atoms (Xiao et al., 1983; Marynick, 1984). Shorter P—C distances in (III) at room temperature, averaging 1.815 (9) Å, are obviously a spurious effect of thermal motion.

Experimental top

Green–mauve (I) was dissolved in CH2Cl2. After 48 h at 253 K, an orange–red precipitate of (III) formed, including crystals of X-ray quality. On drying in vacuo, (III) recovered the green colour of the starting (I).

Refinement top

Csp3—H bond distances vary from 0.92 (3) to 0.98 (4) Å and Csp2—H distances from 0.90 (2) to 0.99 (2) Å.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Bruker, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecules of [NiCl2(PPh3)2] and CH2Cl2 in (III). Displacement ellipsoids are drawn at the 50% probability level.
trans-Dichloro-bis(triphenylphosphine)nickel(II) bis(dichloromethane) solvate top
Crystal data top
[NiCl2(C18H15P)2]·2CH2Cl2Dx = 1.480 Mg m3
Mr = 824.00Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 879 reflections
a = 22.970 (6) Åθ = 12.0–23.4°
b = 20.005 (4) ŵ = 1.07 mm1
c = 8.048 (2) ÅT = 120 K
V = 3698.2 (15) Å3Prism, red
Z = 40.7 × 0.25 × 0.2 mm
F(000) = 1688
Data collection top
SMART 1K CCD area-detector
diffractometer
4885 independent reflections
Radiation source: fine-focus sealed tube4081 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 8 pixels mm-1θmax = 29.0°, θmin = 1.8°
ω scansh = 3124
Absorption correction: integration
(XPREP SHELXTL; Bruker, 1998), Rint = 0.049 before correction
k = 2526
Tmin = 0.659, Tmax = 0.821l = 107
26505 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: difference Fourier map
wR(F2) = 0.074All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0309P)2 + 2.4862P]
where P = (Fo2 + 2Fc2)/3
4885 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[NiCl2(C18H15P)2]·2CH2Cl2V = 3698.2 (15) Å3
Mr = 824.00Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 22.970 (6) ŵ = 1.07 mm1
b = 20.005 (4) ÅT = 120 K
c = 8.048 (2) Å0.7 × 0.25 × 0.2 mm
Data collection top
SMART 1K CCD area-detector
diffractometer
4885 independent reflections
Absorption correction: integration
(XPREP SHELXTL; Bruker, 1998), Rint = 0.049 before correction
4081 reflections with I > 2σ(I)
Tmin = 0.659, Tmax = 0.821Rint = 0.040
26505 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.074All H-atom parameters refined
S = 1.07Δρmax = 0.44 e Å3
4885 reflectionsΔρmin = 0.30 e Å3
282 parameters
Special details top

Experimental. The data collection nominally covered over a hemisphere of reciprocal space, by a combination of 4 sets of ω scans; each set at different ϕ and/or 2θ angles and each scan (10 sec exposure) covering 0.3° in ω. Crystal to detector distance 4.51 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.50000.50000.50000.01498 (7)
P0.564300 (16)0.437742 (19)0.35820 (5)0.01467 (8)
Cl10.548257 (17)0.591541 (18)0.45793 (5)0.02135 (9)
Cl20.71862 (2)0.63825 (3)0.63057 (7)0.03979 (12)
Cl30.66591 (2)0.76007 (3)0.76531 (8)0.04354 (13)
C100.65491 (10)0.67585 (13)0.7102 (4)0.0477 (6)
H1010.6262 (14)0.6727 (15)0.631 (4)0.063 (9)*
H1020.6413 (16)0.6511 (18)0.807 (5)0.091 (12)*
C110.52750 (7)0.38249 (7)0.21219 (19)0.0165 (3)
C120.53980 (7)0.31465 (8)0.1976 (2)0.0197 (3)
H120.5664 (9)0.2953 (10)0.266 (3)0.021 (5)*
C130.51017 (8)0.27589 (9)0.0801 (2)0.0243 (3)
H130.5176 (10)0.2300 (11)0.076 (3)0.030 (6)*
C140.46947 (8)0.30499 (9)0.0247 (2)0.0249 (3)
H140.4499 (10)0.2796 (11)0.108 (3)0.032 (6)*
C150.45682 (8)0.37287 (9)0.0106 (2)0.0242 (3)
H150.4304 (10)0.3922 (11)0.079 (3)0.034 (6)*
C160.48517 (7)0.41118 (8)0.1086 (2)0.0209 (3)
H160.4766 (9)0.4551 (10)0.116 (3)0.022 (5)*
C210.61974 (7)0.47845 (7)0.2296 (2)0.0167 (3)
C220.66208 (7)0.51838 (8)0.3063 (2)0.0209 (3)
H220.6627 (10)0.5244 (11)0.429 (3)0.030 (6)*
C230.70479 (8)0.54994 (9)0.2119 (2)0.0253 (4)
H230.7328 (10)0.5756 (11)0.263 (3)0.032 (6)*
C240.70590 (8)0.54185 (9)0.0402 (2)0.0273 (4)
H240.7351 (9)0.5645 (10)0.025 (3)0.026 (5)*
C250.66425 (8)0.50231 (9)0.0371 (2)0.0272 (4)
H250.6655 (11)0.4968 (12)0.154 (3)0.044 (7)*
C260.62124 (7)0.47080 (8)0.0569 (2)0.0212 (3)
H260.5951 (9)0.4454 (11)0.003 (3)0.026 (5)*
C310.60851 (7)0.38543 (7)0.49536 (19)0.0164 (3)
C320.59301 (7)0.37657 (8)0.6622 (2)0.0203 (3)
H320.5592 (10)0.3958 (11)0.699 (3)0.029 (6)*
C330.62776 (8)0.33755 (9)0.7664 (2)0.0235 (3)
H330.6152 (10)0.3315 (11)0.879 (3)0.031 (6)*
C340.67835 (8)0.30822 (8)0.7057 (2)0.0237 (3)
H340.7012 (10)0.2827 (11)0.777 (3)0.036 (6)*
C350.69411 (7)0.31688 (8)0.5407 (2)0.0230 (3)
H350.7284 (10)0.2983 (11)0.502 (3)0.031 (6)*
C360.65944 (7)0.35517 (8)0.4355 (2)0.0204 (3)
H360.6704 (10)0.3618 (11)0.327 (3)0.030 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.01408 (13)0.01319 (12)0.01767 (13)0.00012 (9)0.00158 (10)0.00086 (10)
P0.01393 (17)0.01419 (17)0.01588 (17)0.00000 (13)0.00085 (14)0.00050 (14)
Cl10.02029 (18)0.01647 (17)0.02729 (19)0.00295 (13)0.00544 (15)0.00209 (14)
Cl20.0369 (3)0.0470 (3)0.0354 (3)0.0013 (2)0.0066 (2)0.0022 (2)
Cl30.0318 (2)0.0474 (3)0.0514 (3)0.0068 (2)0.0037 (2)0.0128 (2)
C100.0285 (11)0.0454 (13)0.0693 (17)0.0101 (9)0.0025 (11)0.0083 (12)
C110.0164 (7)0.0167 (7)0.0164 (7)0.0022 (5)0.0009 (6)0.0007 (5)
C120.0202 (7)0.0189 (7)0.0199 (7)0.0014 (6)0.0002 (6)0.0004 (6)
C130.0297 (9)0.0177 (7)0.0256 (8)0.0012 (6)0.0007 (7)0.0044 (6)
C140.0234 (8)0.0296 (9)0.0217 (8)0.0045 (7)0.0012 (6)0.0074 (7)
C150.0207 (8)0.0308 (9)0.0211 (8)0.0011 (7)0.0025 (6)0.0014 (7)
C160.0209 (8)0.0188 (7)0.0231 (8)0.0013 (6)0.0022 (6)0.0013 (6)
C210.0144 (7)0.0151 (7)0.0204 (7)0.0019 (5)0.0022 (6)0.0016 (6)
C220.0182 (7)0.0212 (7)0.0233 (8)0.0007 (6)0.0004 (6)0.0001 (6)
C230.0181 (8)0.0246 (8)0.0333 (9)0.0043 (6)0.0017 (7)0.0003 (7)
C240.0217 (8)0.0267 (8)0.0335 (9)0.0024 (7)0.0091 (7)0.0062 (7)
C250.0292 (9)0.0299 (9)0.0225 (8)0.0016 (7)0.0068 (7)0.0020 (7)
C260.0213 (8)0.0206 (7)0.0216 (8)0.0007 (6)0.0020 (6)0.0007 (6)
C310.0168 (7)0.0143 (6)0.0181 (7)0.0015 (5)0.0020 (6)0.0007 (5)
C320.0201 (8)0.0210 (7)0.0199 (8)0.0000 (6)0.0012 (6)0.0003 (6)
C330.0282 (9)0.0241 (8)0.0183 (8)0.0033 (6)0.0006 (7)0.0030 (6)
C340.0237 (8)0.0196 (7)0.0279 (8)0.0008 (6)0.0072 (7)0.0035 (6)
C350.0192 (8)0.0212 (8)0.0286 (9)0.0034 (6)0.0020 (7)0.0006 (6)
C360.0207 (8)0.0209 (7)0.0197 (8)0.0006 (6)0.0010 (6)0.0002 (6)
Geometric parameters (Å, º) top
Ni—Cl12.1672 (5)C21—C261.399 (2)
Ni—Cl1i2.1672 (5)C21—C221.402 (2)
Ni—Pi2.2439 (5)C22—C231.392 (2)
Ni—P2.2439 (5)C22—H220.99 (2)
P—C111.8212 (16)C23—C241.391 (3)
P—C311.8289 (16)C23—H230.92 (2)
P—C211.8318 (16)C24—C251.388 (3)
Cl2—C101.766 (3)C24—H240.96 (2)
Cl3—C101.760 (3)C25—C261.395 (2)
C10—H1010.92 (3)C25—H250.95 (3)
C10—H1020.98 (4)C26—H260.90 (2)
C11—C121.391 (2)C31—C321.400 (2)
C11—C161.404 (2)C31—C361.402 (2)
C12—C131.400 (2)C32—C331.396 (2)
C12—H120.91 (2)C32—H320.92 (2)
C13—C141.387 (3)C33—C341.390 (3)
C13—H130.93 (2)C33—H330.96 (2)
C14—C151.393 (3)C34—C351.387 (3)
C14—H140.95 (2)C34—H340.93 (2)
C15—C161.390 (2)C35—C361.392 (2)
C15—H150.91 (2)C35—H350.93 (2)
C16—H160.90 (2)C36—H360.92 (2)
Cl1—Ni—Cl1i180.0C26—C21—C22118.86 (15)
Cl1—Ni—Pi86.97 (2)C26—C21—P122.01 (12)
Cl1i—Ni—Pi93.03 (2)C22—C21—P119.13 (12)
Cl1—Ni—P93.03 (2)C23—C22—C21120.46 (16)
Cl1i—Ni—P86.97 (2)C23—C22—H22118.5 (13)
Pi—Ni—P180.0C21—C22—H22121.1 (13)
C11—P—C31107.45 (7)C24—C23—C22120.14 (17)
C11—P—C21103.17 (7)C24—C23—H23119.6 (15)
C31—P—C21102.09 (7)C22—C23—H23120.3 (15)
C11—P—Ni111.07 (5)C25—C24—C23119.89 (16)
C31—P—Ni112.09 (5)C25—C24—H24120.1 (13)
C21—P—Ni119.88 (5)C23—C24—H24120.0 (13)
Cl3—C10—Cl2112.34 (12)C24—C25—C26120.19 (17)
Cl3—C10—H101110.0 (19)C24—C25—H25119.3 (15)
Cl2—C10—H101108.3 (19)C26—C25—H25120.5 (15)
Cl3—C10—H102109 (2)C25—C26—C21120.46 (16)
Cl2—C10—H102110 (2)C25—C26—H26117.8 (14)
H101—C10—H102107 (3)C21—C26—H26121.7 (14)
C12—C11—C16119.30 (14)C32—C31—C36119.12 (15)
C12—C11—P123.52 (12)C32—C31—P120.66 (12)
C16—C11—P117.17 (12)C36—C31—P120.20 (12)
C11—C12—C13119.92 (15)C33—C32—C31120.09 (15)
C11—C12—H12120.0 (12)C33—C32—H32121.5 (14)
C13—C12—H12120.0 (12)C31—C32—H32118.4 (14)
C14—C13—C12120.40 (16)C34—C33—C32120.19 (16)
C14—C13—H13120.8 (14)C34—C33—H33122.0 (14)
C12—C13—H13118.8 (14)C32—C33—H33117.8 (14)
C13—C14—C15120.02 (16)C35—C34—C33120.09 (16)
C13—C14—H14121.4 (14)C35—C34—H34120.7 (15)
C15—C14—H14118.6 (14)C33—C34—H34119.2 (15)
C16—C15—C14119.72 (16)C34—C35—C36120.11 (16)
C16—C15—H15119.9 (15)C34—C35—H35119.8 (14)
C14—C15—H15120.3 (15)C36—C35—H35120.0 (14)
C15—C16—C11120.61 (15)C35—C36—C31120.40 (16)
C15—C16—H16118.6 (13)C35—C36—H36120.1 (14)
C11—C16—H16120.7 (13)C31—C36—H36119.5 (14)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[NiCl2(C18H15P)2]·2CH2Cl2
Mr824.00
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)22.970 (6), 20.005 (4), 8.048 (2)
V3)3698.2 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.7 × 0.25 × 0.2
Data collection
DiffractometerSMART 1K CCD area-detector
diffractometer
Absorption correctionIntegration
(XPREP SHELXTL; Bruker, 1998), Rint = 0.049 before correction
Tmin, Tmax0.659, 0.821
No. of measured, independent and
observed [I > 2σ(I)] reflections
26505, 4885, 4081
Rint0.040
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.07
No. of reflections4885
No. of parameters282
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.44, 0.30

Computer programs: SMART (Bruker, 1999), SMART, SAINT (Bruker, 1999), SHELXTL (Bruker, 1998), SHELXTL.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds