Download citation
Download citation
link to html
Despite the large number of reported crystalline structures of coordination complexes bearing pyridines as ligands, the relevance of π–π inter­actions among these hereroaromatic systems in the stabilization of their supra­molecular structures and properties is not very well documented in the recent literature. The title compound, [CoCl2(C5H6N2)2], was obtained as bright-blue crystals suitable for single-crystal X-ray diffraction analysis from the reaction of 4-amino­pyridine with cobalt(II) chloride in ethanol. The new complex was fully characterized by a variety of spectroscopic techniques and single-crystal X-ray diffraction. The crystal structure showed a tetra­hedral complex stabilized mainly by bidimensional motifs constructed by π–π inter­actions with large horizontal displacements between the 4-amino­pyridine units, and N—H...Cl hydrogen bonds. Other short contacts, such as C—H...Cl inter­actions, complete the three-dimensional arrangement. The supra­molecular investigation was extended by statistical studies using the Cambridge Structural Database and a Hirshfeld surface analysis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617004880/yo3026sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617004880/yo3026Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229617004880/yo3026sup3.pdf
Additional figures

CCDC reference: 1540857

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009).

Bis(4-aminopyridine-κN1)dichloridocobalt(II) top
Crystal data top
[CoCl2(C5H6N2)2]F(000) = 638
Mr = 316.98Dx = 1.603 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 8.9262 (9) ÅCell parameters from 655 reflections
b = 9.9679 (10) Åθ = 4.3–23.4°
c = 14.9683 (13) ŵ = 1.66 mm1
β = 101.825 (10)°T = 293 K
V = 1303.6 (2) Å3Prism, blue
Z = 40.63 × 0.12 × 0.05 mm
Data collection top
Xcalibur, Eos, Gemini
diffractometer
1515 independent reflections
Radiation source: Enhance (Mo) X-ray Source790 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
Detector resolution: 16.1158 pixels mm-1θmax = 28.8°, θmin = 3.8°
ω scansh = 1112
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1112
Tmin = 0.349, Tmax = 1.000l = 1920
4351 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0291P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1515 reflectionsΔρmax = 0.48 e Å3
81 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.50000.57032 (10)0.75000.0445 (4)0.973 (5)
Cl10.28833 (18)0.43946 (15)0.71750 (9)0.0653 (7)0.977 (6)
N10.5120 (5)0.6761 (4)0.6377 (3)0.0492 (12)
N20.4901 (7)0.8335 (4)0.3784 (3)0.0805 (18)
H2A0.54010.79640.34160.097*
H2B0.43430.90290.36120.097*
C50.4266 (6)0.7858 (5)0.6082 (4)0.0510 (14)
H50.37050.82500.64730.061*
C10.5911 (7)0.6233 (5)0.5793 (4)0.0603 (17)
H10.65270.54920.59830.072*
C20.5866 (8)0.6718 (6)0.4937 (4)0.0663 (18)
H20.64300.62980.45590.080*
C30.4990 (7)0.7829 (5)0.4627 (3)0.0559 (15)
C40.4186 (6)0.8418 (5)0.5245 (3)0.0537 (15)
H40.36040.91870.50810.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0407 (7)0.0566 (8)0.0380 (6)0.0000.0122 (4)0.000
Cl10.0595 (11)0.0848 (12)0.0534 (9)0.0247 (9)0.0156 (7)0.0028 (7)
N10.053 (3)0.051 (3)0.048 (2)0.009 (2)0.021 (2)0.007 (2)
N20.127 (5)0.067 (3)0.047 (3)0.005 (3)0.019 (3)0.009 (2)
C50.043 (3)0.055 (3)0.059 (3)0.005 (3)0.021 (3)0.007 (3)
C10.074 (4)0.055 (4)0.060 (3)0.007 (3)0.034 (3)0.005 (3)
C20.093 (5)0.055 (4)0.061 (4)0.000 (3)0.041 (4)0.006 (3)
C30.070 (4)0.055 (3)0.045 (3)0.018 (3)0.017 (3)0.002 (3)
C40.052 (4)0.054 (3)0.054 (3)0.001 (3)0.007 (3)0.005 (3)
Geometric parameters (Å, º) top
Co1—Cl1i2.2652 (15)C5—H50.9300
Co1—Cl12.2653 (15)C5—C41.360 (7)
Co1—N12.006 (4)C1—H10.9300
Co1—N1i2.006 (4)C1—C21.363 (7)
N1—C51.354 (6)C2—H20.9300
N1—C11.339 (6)C2—C31.380 (7)
N2—H2A0.8600C3—C41.410 (7)
N2—H2B0.8600C4—H40.9300
N2—C31.346 (6)
Cl1i—Co1—Cl1109.68 (9)C4—C5—H5118.3
N1—Co1—Cl1i107.29 (13)N1—C1—H1118.1
N1—Co1—Cl1107.96 (13)N1—C1—C2123.8 (5)
N1i—Co1—Cl1i107.96 (13)C2—C1—H1118.1
N1i—Co1—Cl1107.29 (14)C1—C2—H2119.8
N1—Co1—N1i116.6 (2)C1—C2—C3120.4 (5)
C5—N1—Co1125.1 (3)C3—C2—H2119.8
C1—N1—Co1117.8 (4)N2—C3—C2122.4 (5)
C1—N1—C5116.2 (4)N2—C3—C4121.3 (6)
H2A—N2—H2B120.0C2—C3—C4116.3 (5)
C3—N2—H2A120.0C5—C4—C3119.8 (5)
C3—N2—H2B120.0C5—C4—H4120.1
N1—C5—H5118.3C3—C4—H4120.1
N1—C5—C4123.4 (5)
Co1—N1—C5—C4168.6 (4)C5—N1—C1—C21.5 (9)
Co1—N1—C1—C2168.0 (5)C1—N1—C5—C40.1 (8)
N1—C5—C4—C31.7 (8)C1—C2—C3—N2179.4 (5)
N1—C1—C2—C31.0 (10)C1—C2—C3—C40.9 (9)
N2—C3—C4—C5178.1 (5)C2—C3—C4—C52.1 (8)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cl1ii0.93 (1)2.93 (1)3.644 (6)176 (1)
C2—H2···Cl1iii0.93 (1)2.87 (1)3.727 (6)154 (1)
N2—H2b···Cl1iv0.86 (1)2.62 (1)3.447 (6)163 (1)
Symmetry codes: (ii) x+1/2, y+1/2, z+3/2; (iii) x+1, y+1, z+1; (iv) x+1/2, y+3/2, z+1.
ππ interactions top
Cg1 is the centroid of pyridine ring, CCD is the centre-to-centre distance (distance between ring centroids), DA is the dihedral angle, SA is the slippage angle (angle subtended by the intercentroid vector to the plane normal), IPD is the interplanar distance (distance from one plane to the neighbouring centroid) and R is the normal distance between the planes of the interacting rings.
DimerRing 1···Ring 2CCD (Å)R (Å)DA (°)SA (°)IPD (Å)
ACg1···Cg14.523 (4)3.377 (5)0.0341.703.009
BCg1···Cg14.833 (4)3.098 (5)0.0050.123.326
CCg1···Cg14.924 (4)3.057 (5)0.0051.603.976
Symmetry code: -x+1/2, -y+3/2, -x+1. [To what does this symmetry code apply?]
Structural comparison (Å) of different aminopyridine–metal complexes top
CompoundInteractions
N—H···ClC—H···ClCl···Clππ
CoCl2(4-aminopyridine)2, (I)2.6152.869/2.9304.523
CoCl2[4-(dimethylamino)pyridine]22.789/2.825
ZnCl2(4-amino-2-chloropyridine)22.9282.7113.371
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds