Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961800219X/yo3045sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S205322961800219X/yo3045SMB_ZrCl4_b_100Ksup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S205322961800219X/yo3045SMB_ZrCl4a_a_150Ksup3.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S205322961800219X/yo3045SMB_ZrCl4_b_200Ksup4.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S205322961800219X/yo3045SMB_ZrCl4_b_250Ksup5.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S205322961800219X/yo3045SMB_ZrCl4_b_300Ksup6.hkl |
CCDC references: 1822239; 1822238; 1822237; 1822236; 1822235
For all structures, data collection: BIS (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: shelXle (Hübschle et al., 2011); software used to prepare material for publication: APEX3 (Bruker, 2016).
ZrCl4 | Dx = 2.849 Mg m−3 |
Mr = 233.02 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pca21 | Cell parameters from 2790 reflections |
a = 6.2199 (9) Å | θ = 2.8–27.9° |
b = 7.3301 (10) Å | µ = 3.82 mm−1 |
c = 11.9153 (16) Å | T = 100 K |
V = 543.25 (13) Å3 | Rectangular box, translucent colourless |
Z = 4 | 0.09 × 0.08 × 0.06 mm |
F(000) = 432 |
Bruker D8 QUEST diffractometer | 924 independent reflections |
Radiation source: sealed tube, Siemens KFFMo2K-90 | 877 reflections with I > 2σ(I) |
Curved graphite monochromator | Rint = 0.050 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 24.7°, θmin = 3.4° |
φ and ω scans | h = −7→7 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −8→8 |
Tmin = 0.63, Tmax = 0.81 | l = −14→14 |
5240 measured reflections |
Refinement on F2 | Primary atom site location: heavy-atom method |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | w = 1/[σ2(Fo2) + (0.0547P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.084 | (Δ/σ)max < 0.001 |
S = 1.07 | Δρmax = 2.08 e Å−3 |
924 reflections | Δρmin = −0.53 e Å−3 |
46 parameters | Absolute structure: Flack x determined using 394 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: −0.05 (15) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Data collections were carried out on a Bruker APEXII system equipped with graphite-monochromated Mo Kα radiation (0.71073 Å). A nitrogen-flow Oxford Cryostream-700 was used to control the temperature. Data collections were carried out in the order 100, 150, 200, 250, and 300 K on the same crystal. Data reduction and cell refinement were performed using SAINT and the APEX3 suite (Bruker, 2016). The structure was solved with SHELXT (Sheldrick, 2015a) and an absorption correction was performed with SADABS (Sheldrick, 1999). Structure refinements against F2 were carried out using the SHELXL refinement package in APEX3 (Bruker, 2016). The apparent space group for the structure at all five temperatures was suggested to be orthorhombic Pca21 by XPREP, which differs from that previously described (i.e. monoclinic, P2/c (Krebs, 1970). The refinement yielded R factors varying from 0.0345 at 100 K to 0.0534 at 300 K. |
x | y | z | Uiso*/Ueq | ||
Zr1 | 0.42265 (13) | 0.33389 (11) | 0.49994 (14) | 0.0170 (3) | |
Cl1 | 0.5727 (4) | 0.1350 (3) | 0.6288 (2) | 0.0221 (6) | |
Cl2 | 0.0920 (4) | 0.3893 (3) | 0.61382 (19) | 0.0189 (6) | |
Cl3 | 0.2781 (4) | 0.1303 (3) | 0.3723 (2) | 0.0226 (6) | |
Cl4 | 0.7506 (4) | 0.3924 (3) | 0.38424 (18) | 0.0194 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zr1 | 0.0132 (4) | 0.0184 (5) | 0.0193 (5) | 0.0001 (4) | 0.0003 (4) | 0.0003 (6) |
Cl1 | 0.0211 (13) | 0.0236 (13) | 0.0217 (13) | 0.0026 (10) | −0.0024 (10) | 0.0043 (10) |
Cl2 | 0.0150 (12) | 0.0217 (12) | 0.0200 (14) | 0.0014 (9) | 0.0012 (9) | 0.0022 (10) |
Cl3 | 0.0208 (12) | 0.0238 (12) | 0.0231 (14) | −0.0017 (10) | −0.0020 (12) | −0.0022 (10) |
Cl4 | 0.0153 (11) | 0.0219 (12) | 0.0211 (14) | −0.0019 (10) | 0.0017 (11) | −0.0009 (10) |
Zr1—Cl3 | 2.313 (3) | Zr1—Cl2i | 2.659 (3) |
Zr1—Cl1 | 2.314 (3) | Zr1—Cl4ii | 2.659 (2) |
Zr1—Cl2 | 2.497 (3) | Cl2—Zr1ii | 2.659 (3) |
Zr1—Cl4 | 2.499 (2) | Cl4—Zr1i | 2.659 (2) |
Cl3—Zr1—Cl1 | 100.75 (9) | Cl4—Zr1—Cl2i | 80.05 (7) |
Cl3—Zr1—Cl2 | 98.17 (9) | Cl3—Zr1—Cl4ii | 89.40 (9) |
Cl1—Zr1—Cl2 | 94.25 (10) | Cl1—Zr1—Cl4ii | 169.03 (11) |
Cl3—Zr1—Cl4 | 93.74 (10) | Cl2—Zr1—Cl4ii | 80.08 (7) |
Cl1—Zr1—Cl4 | 98.34 (9) | Cl4—Zr1—Cl4ii | 85.01 (7) |
Cl2—Zr1—Cl4 | 160.75 (9) | Cl2i—Zr1—Cl4ii | 81.26 (7) |
Cl3—Zr1—Cl2i | 169.16 (11) | Zr1—Cl2—Zr1ii | 99.96 (9) |
Cl1—Zr1—Cl2i | 89.00 (10) | Zr1—Cl4—Zr1i | 99.90 (9) |
Cl2—Zr1—Cl2i | 85.69 (8) |
Symmetry codes: (i) x+1/2, −y+1, z; (ii) x−1/2, −y+1, z. |
ZrCl4 | Dx = 2.829 Mg m−3 |
Mr = 233.02 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pca21 | Cell parameters from 2581 reflections |
a = 6.2311 (8) Å | θ = 2.8–27.9° |
b = 7.3497 (10) Å | µ = 3.79 mm−1 |
c = 11.9462 (15) Å | T = 150 K |
V = 547.10 (12) Å3 | Rectangular plate, translucent colourless |
Z = 4 | 0.09 × 0.08 × 0.06 mm |
F(000) = 432 |
Bruker D8 QUEST diffractometer | 906 independent reflections |
Radiation source: sealed tube, Siemens KFFMo2K-90 | 853 reflections with I > 2σ(I) |
Curved graphite monochromator | Rint = 0.051 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 24.7°, θmin = 6.5° |
φ and ω scans | h = −7→7 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −8→8 |
Tmin = 0.64, Tmax = 0.78 | l = −14→14 |
5124 measured reflections |
Refinement on F2 | Primary atom site location: heavy-atom method |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.0514P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.080 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 2.08 e Å−3 |
906 reflections | Δρmin = −0.52 e Å−3 |
46 parameters | Absolute structure: Flack x determined using 374 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: −0.03 (14) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. Data collections were carried out on a Bruker APEXII system equipped with graphite-monochromated Mo Kα radiation (0.71073 Å). A nitrogen-flow Oxford Cryostream-700 was used to control the temperature. Data collections were carried out in the order 100, 150, 200, 250, and 300 K on the same crystal. Data reduction and cell refinement were performed using SAINT and the APEX3 suite (Bruker, 2016). The structure was solved with SHELXT (Sheldrick, 2015a) and an absorption correction was performed with SADABS (Sheldrick, 1999). Structure refinements against F2 were carried out using the SHELXL refinement package in APEX3 (Bruker, 2016). The apparent space group for the structure at all five temperatures was suggested to be orthorhombic Pca21 by XPREP, which differs from that previously described (i.e. monoclinic, P2/c (Krebs, 1970). The refinement yielded R factors varying from 0.0345 at 100 K to 0.0534 at 300 K. |
x | y | z | Uiso*/Ueq | ||
Zr1 | 0.42306 (12) | 0.33410 (10) | 0.50001 (13) | 0.0191 (3) | |
Cl1 | 0.5726 (4) | 0.1359 (3) | 0.6287 (2) | 0.0265 (6) | |
Cl2 | 0.0927 (4) | 0.3896 (3) | 0.61336 (18) | 0.0211 (6) | |
Cl3 | 0.2797 (4) | 0.1309 (3) | 0.3725 (2) | 0.0276 (6) | |
Cl4 | 0.7507 (4) | 0.3926 (3) | 0.38452 (18) | 0.0229 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zr1 | 0.0150 (4) | 0.0208 (5) | 0.0213 (5) | 0.0002 (4) | 0.0005 (4) | 0.0006 (5) |
Cl1 | 0.0252 (14) | 0.0281 (13) | 0.0262 (14) | 0.0041 (10) | −0.0028 (10) | 0.0042 (11) |
Cl2 | 0.0161 (12) | 0.0250 (12) | 0.0222 (13) | 0.0024 (9) | 0.0024 (9) | 0.0035 (10) |
Cl3 | 0.0273 (12) | 0.0279 (12) | 0.0277 (14) | −0.0030 (11) | −0.0037 (13) | −0.0040 (10) |
Cl4 | 0.0184 (11) | 0.0254 (11) | 0.0247 (14) | −0.0022 (10) | 0.0018 (11) | −0.0029 (10) |
Zr1—Cl3 | 2.313 (3) | Zr1—Cl2i | 2.660 (3) |
Zr1—Cl1 | 2.314 (3) | Zr1—Cl4ii | 2.663 (2) |
Zr1—Cl2 | 2.497 (2) | Cl2—Zr1ii | 2.660 (3) |
Zr1—Cl4 | 2.501 (2) | Cl4—Zr1i | 2.663 (2) |
Cl3—Zr1—Cl1 | 100.76 (9) | Cl4—Zr1—Cl2i | 79.93 (7) |
Cl3—Zr1—Cl2 | 98.31 (9) | Cl3—Zr1—Cl4ii | 89.43 (10) |
Cl1—Zr1—Cl2 | 94.27 (9) | Cl1—Zr1—Cl4ii | 168.97 (10) |
Cl3—Zr1—Cl4 | 93.60 (10) | Cl2—Zr1—Cl4ii | 79.94 (7) |
Cl1—Zr1—Cl4 | 98.39 (9) | Cl4—Zr1—Cl4ii | 85.05 (7) |
Cl2—Zr1—Cl4 | 160.69 (9) | Cl2i—Zr1—Cl4ii | 81.27 (7) |
Cl3—Zr1—Cl2i | 169.05 (11) | Zr1—Cl2—Zr1ii | 100.15 (9) |
Cl1—Zr1—Cl2i | 88.99 (9) | Zr1—Cl4—Zr1i | 99.96 (9) |
Cl2—Zr1—Cl2i | 85.81 (8) |
Symmetry codes: (i) x+1/2, −y+1, z; (ii) x−1/2, −y+1, z. |
ZrCl4 | Dx = 2.813 Mg m−3 |
Mr = 233.02 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pca21 | Cell parameters from 2383 reflections |
a = 6.2389 (8) Å | θ = 2.8–28.4° |
b = 7.3667 (10) Å | µ = 3.77 mm−1 |
c = 11.9735 (16) Å | T = 200 K |
V = 550.30 (13) Å3 | Rectangular box, translucent colourless |
Z = 4 | 0.09 × 0.08 × 0.06 mm |
F(000) = 432 |
Bruker D8 QUEST diffractometer | 934 independent reflections |
Radiation source: sealed tube, Siemens KFFMo2K-90 | 864 reflections with I > 2σ(I) |
Curved graphite monochromator | Rint = 0.049 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 24.7°, θmin = 3.4° |
φ and ω scans | h = −7→7 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −8→8 |
Tmin = 0.64, Tmax = 0.82 | l = −14→14 |
5292 measured reflections |
Refinement on F2 | Primary atom site location: heavy-atom method |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | w = 1/[σ2(Fo2) + (0.0551P)2 + 0.3988P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.095 | (Δ/σ)max < 0.001 |
S = 1.11 | Δρmax = 2.11 e Å−3 |
934 reflections | Δρmin = −0.54 e Å−3 |
46 parameters | Absolute structure: Flack x determined using 386 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.18 (17) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Data collections were carried out on a Bruker APEXII system equipped with graphite-monochromated Mo Kα radiation (0.71073 Å). A nitrogen-flow Oxford Cryostream-700 was used to control the temperature. Data collections were carried out in the order 100, 150, 200, 250, and 300 K on the same crystal. Data reduction and cell refinement were performed using SAINT and the APEX3 suite (Bruker, 2016). The structure was solved with SHELXT (Sheldrick, 2015a) and an absorption correction was performed with SADABS (Sheldrick, 1999). Structure refinements against F2 were carried out using the SHELXL refinement package in APEX3 (Bruker, 2016). The apparent space group for the structure at all five temperatures was suggested to be orthorhombic Pca21 by XPREP, which differs from that previously described (i.e. monoclinic, P2/c (Krebs, 1970). The refinement yielded R factors varying from 0.0345 at 100 K to 0.0534 at 300 K. |
x | y | z | Uiso*/Ueq | ||
Zr1 | 0.42327 (15) | 0.33461 (12) | 0.50006 (16) | 0.0244 (3) | |
Cl1 | 0.5717 (5) | 0.1372 (4) | 0.6283 (3) | 0.0346 (8) | |
Cl2 | 0.0931 (4) | 0.3897 (4) | 0.6132 (2) | 0.0278 (7) | |
Cl3 | 0.2805 (5) | 0.1316 (4) | 0.3725 (3) | 0.0356 (7) | |
Cl4 | 0.7508 (4) | 0.3931 (4) | 0.3848 (2) | 0.0288 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zr1 | 0.0189 (5) | 0.0265 (5) | 0.0278 (6) | 0.0001 (4) | 0.0001 (5) | 0.0001 (7) |
Cl1 | 0.0329 (17) | 0.0368 (17) | 0.0340 (17) | 0.0042 (12) | −0.0045 (13) | 0.0074 (13) |
Cl2 | 0.0217 (14) | 0.0330 (15) | 0.0287 (16) | 0.0017 (11) | 0.0019 (11) | 0.0050 (12) |
Cl3 | 0.0344 (16) | 0.0359 (16) | 0.0365 (18) | −0.0042 (13) | −0.0012 (16) | −0.0048 (13) |
Cl4 | 0.0229 (13) | 0.0343 (14) | 0.0290 (16) | −0.0017 (12) | 0.0025 (13) | −0.0036 (12) |
Zr1—Cl1 | 2.309 (3) | Zr1—Cl2i | 2.661 (3) |
Zr1—Cl3 | 2.316 (3) | Zr1—Cl4ii | 2.662 (3) |
Zr1—Cl2 | 2.499 (3) | Cl2—Zr1ii | 2.661 (3) |
Zr1—Cl4 | 2.503 (3) | Cl4—Zr1i | 2.662 (3) |
Cl1—Zr1—Cl3 | 100.74 (11) | Cl4—Zr1—Cl2i | 79.87 (9) |
Cl1—Zr1—Cl2 | 94.15 (11) | Cl1—Zr1—Cl4ii | 168.98 (12) |
Cl3—Zr1—Cl2 | 98.37 (11) | Cl3—Zr1—Cl4ii | 89.38 (12) |
Cl1—Zr1—Cl4 | 98.49 (10) | Cl2—Zr1—Cl4ii | 79.94 (9) |
Cl3—Zr1—Cl4 | 93.52 (12) | Cl4—Zr1—Cl4ii | 85.10 (9) |
Cl2—Zr1—Cl4 | 160.72 (10) | Cl2i—Zr1—Cl4ii | 81.36 (8) |
Cl1—Zr1—Cl2i | 88.99 (11) | Zr1—Cl2—Zr1ii | 100.16 (11) |
Cl3—Zr1—Cl2i | 169.01 (13) | Zr1—Cl4—Zr1i | 100.02 (10) |
Cl2—Zr1—Cl2i | 85.88 (9) |
Symmetry codes: (i) x+1/2, −y+1, z; (ii) x−1/2, −y+1, z. |
Cl4Zr | Dx = 2.790 Mg m−3 |
Mr = 233.02 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pca21 | Cell parameters from 1861 reflections |
a = 6.253 (5) Å | θ = 2.8–25.8° |
b = 7.383 (6) Å | µ = 3.74 mm−1 |
c = 12.017 (9) Å | T = 250 K |
V = 554.8 (7) Å3 | Rectangualr plate, translucent colourless |
Z = 4 | 0.09 × 0.08 × 0.06 mm |
F(000) = 432 |
Bruker D8 QUEST diffractometer | 934 independent reflections |
Radiation source: sealed tube, Siemens KFFMo2K-90 | 815 reflections with I > 2σ(I) |
Curved graphite monochromator | Rint = 0.063 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 24.7°, θmin = 4.3° |
φ and ω scans | h = −7→7 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −8→8 |
Tmin = 0.63, Tmax = 0.81 | l = −14→14 |
5285 measured reflections |
Refinement on F2 | Primary atom site location: heavy-atom method |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | w = 1/[σ2(Fo2) + (0.0566P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.096 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 2.13 e Å−3 |
934 reflections | Δρmin = −0.48 e Å−3 |
46 parameters | Absolute structure: Flack x determined using 351 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.01 (15) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Data collections were carried out on a Bruker APEXII system equipped with graphite-monochromated Mo Kα radiation (0.71073 Å). A nitrogen-flow Oxford Cryostream-700 was used to control the temperature. Data collections were carried out in the order 100, 150, 200, 250, and 300 K on the same crystal. Data reduction and cell refinement were performed using SAINT and the APEX3 suite (Bruker, 2016). The structure was solved with SHELXT (Sheldrick, 2015a) and an absorption correction was performed with SADABS (Sheldrick, 1999). Structure refinements against F2 were carried out using the SHELXL refinement package in APEX3 (Bruker, 2016). The apparent space group for the structure at all five temperatures was suggested to be orthorhombic Pca21 by XPREP, which differs from that previously described (i.e. monoclinic, P2/c (Krebs, 1970). The refinement yielded R factors varying from 0.0345 at 100 K to 0.0534 at 300 K. |
x | y | z | Uiso*/Ueq | ||
Zr1 | 0.42359 (16) | 0.33495 (13) | 0.50035 (17) | 0.0260 (4) | |
Cl2 | 0.0938 (5) | 0.3902 (4) | 0.3876 (2) | 0.0303 (8) | |
Cl3 | 0.2820 (5) | 0.1329 (4) | 0.6274 (3) | 0.0408 (9) | |
Cl1 | 0.5717 (6) | 0.1375 (5) | 0.3721 (3) | 0.0395 (9) | |
Cl4 | 0.7504 (5) | 0.3927 (4) | 0.6150 (2) | 0.0321 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zr1 | 0.0210 (5) | 0.0289 (6) | 0.0282 (6) | −0.0003 (5) | −0.0002 (6) | 0.0007 (7) |
Cl2 | 0.0239 (16) | 0.0373 (17) | 0.0296 (18) | 0.0021 (13) | −0.0020 (13) | −0.0062 (14) |
Cl3 | 0.0396 (19) | 0.0415 (18) | 0.041 (2) | −0.0060 (16) | 0.0054 (19) | 0.0064 (15) |
Cl1 | 0.041 (2) | 0.0397 (19) | 0.038 (2) | 0.0059 (15) | 0.0033 (15) | −0.0104 (15) |
Cl4 | 0.0263 (15) | 0.0374 (16) | 0.032 (2) | −0.0036 (14) | −0.0052 (15) | 0.0069 (14) |
Zr1—Cl3 | 2.311 (4) | Zr1—Cl2i | 2.662 (4) |
Zr1—Cl1 | 2.315 (4) | Zr1—Cl4ii | 2.667 (3) |
Zr1—Cl2 | 2.501 (4) | Cl2—Zr1ii | 2.662 (4) |
Zr1—Cl4 | 2.501 (4) | Cl4—Zr1i | 2.667 (3) |
Cl3—Zr1—Cl1 | 100.76 (13) | Cl4—Zr1—Cl2i | 79.85 (10) |
Cl3—Zr1—Cl2 | 98.46 (13) | Cl3—Zr1—Cl4ii | 89.41 (14) |
Cl1—Zr1—Cl2 | 94.12 (13) | Cl1—Zr1—Cl4ii | 168.86 (14) |
Cl3—Zr1—Cl4 | 93.40 (14) | Cl2—Zr1—Cl4ii | 79.76 (10) |
Cl1—Zr1—Cl4 | 98.47 (12) | Cl4—Zr1—Cl4ii | 85.33 (11) |
Cl2—Zr1—Cl4 | 160.79 (11) | Cl2i—Zr1—Cl4ii | 81.41 (11) |
Cl3—Zr1—Cl2i | 168.98 (14) | Zr1—Cl2—Zr1ii | 100.26 (12) |
Cl1—Zr1—Cl2i | 88.92 (14) | Zr1—Cl4—Zr1i | 100.12 (12) |
Cl2—Zr1—Cl2i | 85.96 (11) |
Symmetry codes: (i) x+1/2, −y+1, z; (ii) x−1/2, −y+1, z. |
ZrCl4 | Dx = 2.773 Mg m−3 |
Mr = 233.02 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pca21 | Cell parameters from 1130 reflections |
a = 6.262 (9) Å | θ = 2.8–24.5° |
b = 7.402 (11) Å | µ = 3.71 mm−1 |
c = 12.039 (17) Å | T = 300 K |
V = 558.0 (14) Å3 | Rectangular box, translucent colourless |
Z = 4 | 0.09 × 0.08 × 0.06 mm |
F(000) = 432 |
Bruker D8 QUEST diffractometer | 949 independent reflections |
Radiation source: sealed tube, Siemens KFFMo2K-90 | 737 reflections with I > 2σ(I) |
Curved graphite monochromator | Rint = 0.093 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 24.7°, θmin = 3.4° |
φ and ω scans | h = −7→7 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −8→8 |
Tmin = 0.55, Tmax = 0.81 | l = −14→14 |
5334 measured reflections |
Refinement on F2 | Primary atom site location: heavy-atom method |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.053 | w = 1/[σ2(Fo2) + (0.0788P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.138 | (Δ/σ)max < 0.001 |
S = 1.02 | Δρmax = 2.59 e Å−3 |
949 reflections | Δρmin = −0.70 e Å−3 |
46 parameters | Absolute structure: Flack x determined using 284 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.0 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Data collections were carried out on a Bruker APEXII system equipped with graphite-monochromated Mo Kα radiation (0.71073 Å). A nitrogen-flow Oxford Cryostream-700 was used to control the temperature. Data collections were carried out in the order 100, 150, 200, 250, and 300 K on the same crystal. Data reduction and cell refinement were performed using SAINT and the APEX3 suite (Bruker, 2016). The structure was solved with SHELXT (Sheldrick, 2015a) and an absorption correction was performed with SADABS (Sheldrick, 1999). Structure refinements against F2 were carried out using the SHELXL refinement package in APEX3 (Bruker, 2016). The apparent space group for the structure at all five temperatures was suggested to be orthorhombic Pca21 by XPREP, which differs from that previously described (i.e. monoclinic, P2/c (Krebs, 1970). The refinement yielded R factors varying from 0.0345 at 100 K to 0.0534 at 300 K. |
x | y | z | Uiso*/Ueq | ||
Zr1 | 0.4239 (2) | 0.3354 (2) | 0.5000 (3) | 0.0356 (5) | |
Cl1 | 0.5702 (8) | 0.1380 (7) | 0.6280 (4) | 0.0515 (15) | |
Cl2 | 0.0942 (7) | 0.3905 (7) | 0.6127 (4) | 0.0391 (12) | |
Cl3 | 0.2829 (9) | 0.1339 (7) | 0.3731 (5) | 0.0536 (14) | |
Cl4 | 0.7504 (7) | 0.3930 (6) | 0.3853 (4) | 0.0407 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zr1 | 0.0273 (8) | 0.0381 (9) | 0.0413 (10) | 0.0009 (8) | 0.0001 (10) | 0.0002 (12) |
Cl1 | 0.047 (3) | 0.054 (3) | 0.053 (4) | 0.006 (3) | −0.005 (3) | 0.011 (3) |
Cl2 | 0.032 (3) | 0.046 (3) | 0.040 (3) | 0.004 (2) | 0.004 (2) | 0.007 (2) |
Cl3 | 0.054 (3) | 0.050 (3) | 0.056 (3) | −0.006 (3) | −0.004 (3) | −0.009 (3) |
Cl4 | 0.033 (2) | 0.046 (3) | 0.043 (3) | −0.004 (2) | 0.007 (2) | −0.007 (2) |
Zr1—Cl3 | 2.310 (6) | Zr1—Cl2i | 2.664 (5) |
Zr1—Cl1 | 2.313 (6) | Zr1—Cl4ii | 2.670 (5) |
Zr1—Cl4 | 2.504 (6) | Cl2—Zr1ii | 2.664 (5) |
Zr1—Cl2 | 2.504 (6) | Cl4—Zr1i | 2.670 (5) |
Cl3—Zr1—Cl1 | 100.6 (2) | Cl2—Zr1—Cl2i | 85.99 (17) |
Cl3—Zr1—Cl4 | 93.3 (2) | Cl3—Zr1—Cl4ii | 89.4 (2) |
Cl1—Zr1—Cl4 | 98.73 (19) | Cl1—Zr1—Cl4ii | 169.0 (2) |
Cl3—Zr1—Cl2 | 98.5 (2) | Cl4—Zr1—Cl4ii | 85.34 (17) |
Cl1—Zr1—Cl2 | 93.9 (2) | Cl2—Zr1—Cl4ii | 79.76 (16) |
Cl4—Zr1—Cl2 | 160.82 (17) | Cl2i—Zr1—Cl4ii | 81.54 (17) |
Cl3—Zr1—Cl2i | 169.0 (2) | Zr1—Cl2—Zr1ii | 100.26 (19) |
Cl1—Zr1—Cl2i | 89.0 (2) | Zr1—Cl4—Zr1i | 100.08 (19) |
Cl4—Zr1—Cl2i | 79.89 (16) |
Symmetry codes: (i) x+1/2, −y+1, z; (ii) x−1/2, −y+1, z. |
M = Zr (present work), Hf (Niewa & Jacobs, 1995), and Tc (Elder & Penfold, 1966). Cl···Cl is the shortest distance between two chains. top
ZrCl4 | HfCl4 | TcCl4 | |
M···M1 | 3.968 | 3.921 | 3.62 |
Avg. M—Cl(bri1) | 2.667 | 2.626 | 2.492 |
AVg. M—Cl(bri2) | 2.504 | 2.477 | 2.382 |
Avg. M—Cl(ter) | 2.312 | 2.298 | 2.242 |
Cl···Cl | 3.687 | 3.743 | 3.56 |
Present work | Krebs (1970) | |
Space group | Pca21 | P2/c |
Z | 4 | 2 |
T (K) | 300 | 293 |
a (Å) | 6.262 (9) | 6.361 (4) |
b (Å) | 7.402 (11) | 7.407 (4) |
c (Å) | 12.039 (17) | 6.256 (4) |
α/β/γ (°) | 90/90/90 | 90/109.30 (4)/90 |
V (Å3) | 558.0 (14) | 278.2 |
Avg. Zr1—Cl(ter) | 2.312 | 2.307 |
Avg. Zr1– Cl(bri2) | 2.504 | 2.498 |
Avg. Zr1—Cl(bri1) | 2.667 | 2.655 |
Zr1···Zr1ii | 3.965 (1) | 3.962 (2) |
Cl1—Zr1—Cl3 | 100.6 (2) | 100.7 (1) |
Cl1—Zr1—Cl4 | 98.73 (19) | 98.5 (1) |
Cl2—Zr1—Cl3 | 98.5 (2) | |
Cl4—Zr1—Cl2ii | 79.89 (16) | 79.5 (1) |
Cl4—Zr1ii—Cl2ii | 79.76 (16) | |
Cl2ii—Zr1—Cl4i | 81.54 (17) | 81.5 (1) |
Cl2—Zr1—Cl4 | 160.82 (17) | 160.7 (1) |
Cl1—Zr1—Cl4i | 168.9 (2) | 168.9 (1) |
Cl3—Zr1—Cl2ii | 168.9 (2) | |
Cl4—Zr1—Cl3 | 93.3 (2) | 93.8 (1) |
Cl2—Zr1—Cl1 | 93.9 (2) |
Symmetry operation: (i) x-1/2, -y+1, z; (ii) x+1/2, -y+1, z. |
300 K | 250 K | 200 K | 150 K | 100 K | |
Zr—Cl1 | 2.313 (6) | 2.315 (4) | 2.309 (3) | 2.314 (3) | 2.314 (3) |
Zr1—Cl2 | 2.504 (6) | 2.501 (4) | 2.499 (3) | 2.497 (2) | 2.497 (3) |
Zr1—Cl3 | 2.310 (6) | 2.311 (4) | 2.316 (3) | 2.313 (3) | 2.313 (3) |
Zr1—Cl4 | 2.504 (6) | 2.501 (4) | 2.503 (3) | 2.501 (2) | 2.499 (2) |
Zr1—Cl2ii | 2.664 (5) | 2.662 (4) | 2.661 (3) | 2.660 (3) | 2.659 (3) |
Zr1—Cl4i | 2.670 (5) | 2.667 (3) | 2.662 (3) | 2.663 (2) | 2.659 (2) |
Zr1 ···Zr1ii | 3.968 (5) | 3.964 (3) | 3.958 (1) | 3.957 (1) | 3.950 (1) |
Avg. Zr1—Cl(ter) | 2.312[6] | 2.313[4] | 2.313[5] | 2.314[3] | 2.314[3] |
Avg. Zr1—Cl(bri2) | 2.504[6] | 2.501[4] | 2.501[3] | 2.499[2] | 2.498[3] |
avg. Zr1—Cl(bri1) | 2.667[5] | 2.665[4] | 2.662[3] | 2.662[3] | 2.659[3] |
Cl1···Cl3* | 3.687 (9) | 3.679 (5) | 3.658 (5) | 3.647 (3) | 3.630 (3) |
Symmetry codes: (i) x-1/2, -y+1, z; (ii) x+1/2, -y+1, z; (*) -x+1/2, y, z+1/2 (interchain distance). |
300 K | 250 K | 200 K | 150 K | 100 K | |
Cl1—Zr1—Cl3 | 100.6 (2) | 100.76 (13) | 100.74 (11) | 100.76 (9) | 100.75 (9) |
Cl1—Zr1—Cl4 | 98.73 (19) | 98.47 (12) | 98.49 (10) | 98.39 (9) | 98.34 (9) |
Cl2ii—Zr1—Cl4i | 81.54 (17) | 81.41 (11) | 81.36 (8) | 81.27 (7) | 81.26 (7) |
Cl2—Zr1—Cl3 | 98.5 (2) | 98.46 (13) | 98.37 (11) | 98.31 (9) | 98.17 (9) |
Cl2—Zr1—Cl4 | 160.82 (17) | 160.79 (11) | 160.72 (10) | 160.69 (9) | 160.75 (9) |
Zr1—Cl4—Zr1ii | 100.08 (19) | 100.12 (12) | 100.02 (10) | 99.96 (9) | 99.90 (9) |
Zr1—Cl2ii—Zr1ii | 100.26 (19) | 100.26 (12) | 100.16 (11) | 100.15 (9) | 99.96 (9) |
Cl4—Zr1—Cl2ii | 79.89 (16) | 79.85 (10) | 79.87 (9) | 79.93 (7) | 80.05 (7) |
Cl4—Zr1ii—Cl2ii | 79.76 (16) | 79.76 (10) | 79.94 (9) | 79.94 (7) | 80.08 (7) |
Avg. Cl4—Zr1—Cl2 | 79.8[2] | 79.8[1] | 79.9[9] | 79.94[7] | 80.06[7] |
Symmetry codes: (i) x-1/2, -y+1, z; (ii) x+1/2, -y+1, z. |
300 K | 250 K | 200 K | 150 K | 100 K | |
a (Å) | 6.262 (9) | 6.253 (5) | 6.2389 (8) | 6.2311 (8) | 6.2199 (9) |
b (Å) | 7.402 (11) | 7.383 (6) | 7.3667 (10) | 7.3497 (10) | 7.3301 (10) |
c (Å) | 12.039 (17) | 12.017 (9) | 11.9735 (16) | 11.9462 (15) | 11.9153 (16) |
α = β = γ (°) | 90 | 90 | 90 | 90 | 90 |
V (Å3) | 558.0 (14) | 554.8 (7) | 550.30 (13) | 547.10 (12) | 543.25 (13) |
Z | 4 | 4 | 4 | 4 | 4 |
R factor | 5.33% | 3.82% | 3.76% | 3.34% | 3.45% |