Download citation
Download citation
link to html
In the crystal networks of N,N'-bis­(2-chloro­benzyl)-N''-(2,6-difluoro­benzo­yl)phosphor­ic triamide, C21H18Cl2F2N3O2P, (I), N-(2,6-difluoro­benzo­yl)-N',N''-bis­(4-meth­oxy­benzyl)phosphor­ic triamide, C23H24F2N3O4P, (II), and N-(2-chloro-2,2-difluoro­acetyl)-N',N''-bis­(4-methyl­phenyl)phosphor­ic tri­amide, C16H17ClF2N3O2P, (III), C=O...H-NC(O)NHP(O) and P=O...H-Namide hydrogen bonds are responsible for the aggregation of the mol­ecules. This is the opposite result from that commonly observed for carbacyl­amido­phosphates, which show a tendency for the phosphoryl group, rather than the carbonyl counterpart, to form hydrogen bonds with the NH group of the C(O)NHP(O) skeleton. This hydrogen-bond pattern leads to cyclic R22(10) motifs in (I)-(III), different from those found for all previously reported compounds of the general formula RC(O)NHP(O)[NR1R2]2 with the syn orientation of P=O versus NH [R22(8)], and also from those commonly observed for RC(O)NHP(O)[NHR1]2 [a sequence of alternate R22(8) and R22(12) motifs]. In these cases, the R22(8) and R22(12) graph sets are formed through similar kinds of hydrogen bond, i.e. a pair of P=O...H-NC(O)NHP(O) hydrogen bonds for the former and two C=O...H-Namide hydrogen bonds for the latter. This article also reviews 102 similar structures deposited in the Cambridge Structural Database and with the Inter­national Union of Crystallography, with the aim of comparing hydrogen-bond strengths in the above-mentioned cyclic motifs. This analysis shows that the strongest N-H...O hydrogen bonds exist in the R22(8) rings of some mol­ecules. The phosphoryl and carbonyl groups in each of compounds (I)-(III) are anti with respect to each other and the P atoms are in a tetra­hedral coordination environment. In the crystal structures, adjacent mol­ecules are linked via the above-mentioned hydrogen bonds in a linear arrangement, parallel to [010] for (I) and (III) and parallel to [100] for (II). Formation of the NC(O)NHP(O)-H...O=C instead of the NC(O)NHP(O)-H...O=P hydrogen bond is reflected in the higher NC(O)NHP(O)-H vibrational frequencies for these mol­ecules compared with previously reported analogous compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111019755/yp3002sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111019755/yp3002Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111019755/yp3002IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111019755/yp3002IIIsup4.hkl
Contains datablock III

CCDC references: 810693; 838169; 838170

Comment top

In a recently published paper by Toghraee et al. (2011), the patterns of hydrogen bonds were studied in the crystal packing of phosphoric triamides (PTAs) containing a C(O)NHP(O) skeleton. The authors classified this category of phosphoramide compounds into different subclasses with C(O)NHP(O)(N)2 and C(O)NHP(O)(NH)2 moieties, named as subclasses A and B, respectively. It was found that the phosphoryl group has a better donor ability than the carbonyl counterpart, so that, in all deposited CIF files in the Cambridge Structural Database (CSD, Version 5.32, November 2010 update; Allen, 2002) belonging to subclass A, only the PO···H—N hydrogen bond was observed in the crystal packing. When the PO group and N—H unit are syn with respect to one another, this type of hydrogen bond forms a hydrogen-bonded dimer [R22(8) ring; for graph-set notation, see Bernstein et al. (1995)] (Fig. 1). Moreover, for most cases of compounds in subclass B, the NH group of C(O)NHP(O) moiety is hydrogen-bonded to P(O), whereas the H atom of the NHR' unit is involved in a hydrogen-bond interaction with C(O). These interactions usually produce two different kinds of centrosymmetric cyclic motifs, viz. R22(8) and R22(12), which are altered [Alternate?] in a linear arrangement. The R22(8) motif is formed through a pair of NC(O)NHP(O)—H···OP hydrogen bonds, while the R22(12) ring is built via two CO···H—Namide hydrogen bonds (Fig. 2). Among the published structures, the CO···H—NC(O)NHP(O) interaction was found for only two examples: C6H5C(O)NHP(O)[NHCH2C6H5]2 (Gholivand et al., 2006) and C6H5C(O)NHP(O)[NHC6H11]2 (Pourayoubi, Rostami Chaijan et al., 2011a). However, the existence of the PO···HNR' interaction has been observed for four compounds as a PO[···.HNC(O)NHP(O)][···HNR'] (Gubina et al., 2009; Gholivand, Shariatinia, Mashhadi et al., 2009) and a PO[···HNR']2 hydrogen bond (Gholivand et al., 2006; Pourayoubi, Rostami Chaijan et al., 2011a), where the O atoms act as double hydrogen-bond acceptors (Steiner, 2002).

We present here the three new compounds N,N'-bis(2-chlorobenzyl)-N''-(2,6-difluorobenzoyl)phosphoric triamide, (I), N-(2,6-difluorobenzoyl)-N',N''-bis(4-methoxybenzyl)phosphoric triamide, (II), and N-(2-chloro-2,2-difluoroacetyl)-N',N''-bis(4-µethylphenyl)phosphoric triamide, (III), which show relatively rare C O···H—NC(O)NHP(O) and PO···H—Namide hydrogen bonds. In addition, we attempted to analyse the strength of the hydrogen-bonds based on their motifs, and also to find a relationship between the N—H stretching frequency and the hydrogen-bond pattern.

For compounds (I)–(III), single crystals were obtained at roonm temperature from a 1:2 mixture of CH3OH/CHCl3 for (I) and (II), and a 1:4 mixture of CH3CN/CH3OH for (III). Their molecular structures are shown in Figs. 3, 4 and 5, respectively. The P atoms exhibit a distorted tetrahedral environment, as has been noted for other phosphoric triamides and their chalco-derivatives (Rudd et al., 1996). For example, in (I), the bond angles at the P atom vary in the range 102.33 (13)–116.04 (12)°, while the P—N bond distances range from 1.616 (2) to 1.707 (2) Å (Table 1). The phosphoryl and carbonyl groups adopt an anti position in these structures, which is in agreement with all previously reported acyclic phosphoramidate compounds (Gholivand & Pourayoubi, 2004; Gholivand, Shariatinia, Mashhadi et al., 2009) containing a C(O)NHP(O)(N'H)2 skeleton. This conformation is the opposite of the orientation of P(O) and C(O) in the diazaphosphorinanes CCl3C(O)NHP(O)X (X = NHC10H6NH; Gholivand, Shariatinia, Ansar et al., 2009), 4-F-C6H5C(O)NHP(O)X [X = NHCH2C(CH3)2CH2NH; Tarahhomi et al., 2011] and CCl2HC(O)NHP(O)X [X = NHCH2C(CH3)2CH2NH; Toghraee et al., 2011] and a few examples of compounds with the formula RC(O)NHP(O)[NR1R2]2, which show a gauche orientation of PO versus CO (Toghraee et al., 2011).

The PO bond lengths are standard in (I) [1.475 (2) Å], (II) [1.4804 (12) Å] and (III) [1.473 (3) Å]. As expected, the P—Namide distances in both [All three?] compounds were found to be significantly shorter than the related P—NC(O)NHP(O) (Tables 1, 3 and 5).

In (I) and (II), the chemical natures of the N atoms in both compounds are different, so that the N atom of one benzylamide moiety exhibits a slight deviation from planarity, while the N atom of the other benzylamide group has a practically planar environment [Please check rephrasing]. In (III), the environments of all three N atoms are nearly planar. None of these N atoms acts in any hydrogen bond as an acceptor, thus exhibiting low Lewis base character. As expected, the C—NC(O)NHP(O) bonds for these structures are shorter than the other C—Namide bonds.

In the structures (I)–(III), adjacent molecules are linked via NC(O)NHP(O)—H···OC hydrogen bonds [(I): N1—H1N···O1(x, y + 1, z); (II): N1—H1N···O1(x + 1, y, z); (III): N1—H1N···O2(x, y + 1, z)] and also through two different Namide—H···OP hydrogen bonds [(I): N2—H2N···O2(x, y - 1, z) and N3—H3N···O2(x, y - 1, z); (II) N2—H2N···O2(x - 1, y, z) and N3—H3N···O2(x - 1, y, z); (III): N2—H2N···O1(x, y - 1, z) and N3—H3A···O1(x, y - 1, z)], building R22(10) rings (Fig. 6) in a linear arrangement, parallel to [010] for (I) and (III) [for example, see Fig. 7 for compound (I)] and [parallel to?] [100] for (II) (Fig. 8). This means that, in each of these structures, the phosphoryl group acts as a double-hydrogen acceptor to form a PO[···H—Namide]2 hydrogen bond.

This hydrogen-bond pattern is the opposite of that commonly observed for carbacylamidophosphates, which show a tendency for the phosphoryl group, rather than the carbonyl counterpart, to form hydrogen bonds with the more acidic NH group of the C(O)NHP(O) skeleton, whereas the NH group of the NHR' unit is hydrogen-bonded to C(O).

Exceptions to this bonding selectivity in these structures may be attributed to kinetic factors controlling the crystal growth (MacDonald & Whitesides, 1994).

A search of the CSD and recently published papers (Pourayoubi, Tarahhomi et al., 2010a,b, 2011; Pourayoubi, Rostami Chaijan et al., 2011a,b; Pourayoubi & Saneei, 2011; Pourayoubi, Toghraee & Divjakovic, 2011; Raissi Shabari et al., 2011; Tarahhomi et al., 2011; Toghraee et al., 2011) shows that the strongest N—H···O hydrogen bonds are found for PO···H—NC(O)NHP(O) hydrogen bonds, especially in the R22(8) rings of some molecules [in the case of a syn orientation of PO versus N—H which allows the building of the cyclic motif through a pair of PO···H—NC(O)NHP(O) hydrogen bonds]. A histogram of the N···O distances in these N—H···O hydrogen bonds is given in Fig. 9. The strongest (three columns on the left) and weakest (three columns on the right) hydrogen bonds are shown for N···O distances in the ranges 2.70–2.85 Å [for NC(O)NHP(O)–H···O(P) hydrogen bonds] and 2.95–3.10 Å [for Namide–H···O(C) hydrogen bonds], while in the range 2.85–2.95 Å for donor–acceptor distances both cases of hydrogen bonds are found.

In (I), besides cooperation in the N—H···O hydrogen bond, the benzamide N—H group is involved in an intramolecular N1—H1N···F1 hydrogen bond (Table 2). Further stabilization of (I) is produced via a weak C11—H11A···F2iii hydrogen bond [C11···F2iii = 3.354 (3) Å; symmetry code: (iii) -x + 1, y - 1/2, -z + 3/2] and C7 O1···F1i [O1···F1i = 2.876 (3) Å; symmetry code: (i) x, y + 1, z] and Cl2···Cl2iv [3.258 (1) Å; symmetry code: (iv) -x, -y + 2, -z + 1] intermolecular interactions.

The hydrogen-bond pattern in (II) is complicated. A pair of C15methoxy—H15A···F1iii [C15···F1iii = 3.155 (2) Å; symmetry code: (iii) -x, -y + 1, -z + 1] hydrogen bonds make an R22(30) ring, whereas a combination of one C13—H13A···O3methoxyiv [C13···O3iv = 3.390 (2) Å; symmetry code: (iv) -x, -y + 2, -z + 1], one Cmethoxy—H···F and one C3—H3B···(O2)P1v [C3···O2v = 3.293 (2) Å; symmetry code: (v) x, y + 1, z] hydrogen bonds forms R33(16) rings. Moreover, the cyclic dimer and trimer motifs are composed, respectively, via a pair of intermolecular C—H···Omethoxy hydrogen bonds to form a centrosymmetric R22(8) ring (Fig. 10). Also, an R33(27) ring (Fig. 10) is formed through a combination of intermolecular C16—H16B···O4methoxy [C16···O4vi = 3.581 (2) Å; symmetry code: (vi) -x + 1/2, y + 1/2, -z + 3/2] and C—H···(O)P hydrogen bonds. These hydrogen bonds expand the crystal structure of (II) into a three-dimensional arrangement. A weak C7O1···F1i [O1···F1i = 2.986 (2) Å; symmetry code: (i) x + 1, y, z] interaction is also found in the crystal packing. The crystal packing of (III) does not show any C—H···X (X = O, F or Cl) interactions.

In a previously reported paper by Tarahhomi et al. (2011), the effect of lowering the NC(O)NHP(O)—H vibrational frequency by strong NC(O)NHP(O)—H···OP hydrogen bonds was discussed, so a that compound with a stronger N—H···O hydrogen bond showed a lower N—H vibrational frequency. Moreover, the NC(O)NHP(O)—H stretching mode appeared at a lower frequency than that of the Namide—H.

The differences in the N—H regions in the IR spectroscopic data of (I)–(III) from those of the previously reported analogous compounds may be a result of these different hydrogen-bond patterns. For example, in the compounds 2-NO2–C6H4C(O)NHP(O)[N(C2H5)2]2 (Gholivand et al., 2010) and Cl3CC(O)NHP(O)[NHC(CH3)3]2 (Gholivand & Pourayoubi, 2004), the NC(O)NHP(O)—H stretching frequencies, which are involved in the NC(O)NHP(O)—H···O(P) hydrogen bond, appear at 3030 and 3045 cm-1, respectively, while no absorption bands are observed below 3180 cm-1 in any of (I)–(III). For example in (I), three absorption bands are revealed at 3204, 3262 and 3345 cm-1, while for (II), with hydrogen bonds with relatively similar strengths, the N—H stretching modes overlap and only one absorption band appears at 3263 cm-1. For (III), the absorption bands at 3260 and 3183 cm-1 are assigned to the N—H stretching modes.

Related literature top

For related literature, see: Allen (2002); Bernstein et al. (1995); Gholivand & Pourayoubi (2004); Gholivand et al. (2006, 2010); Gholivand, Shariatinia, Ansar, Mashhadi & Daeepour (2009); Gholivand, Shariatinia, Mashhadi, Daeepour, Farshidnasab, Mahzouni, Taheri, Amiri & Ansar (2009); Gubina et al. (2009); Iriarte et al. (2008); MacDonald & Whitesides (1994); Pourayoubi & Saneei (2011); Pourayoubi et al. (2010a, 2010b, 2011a, 2011b); Pourayoubi, Tarahhomi, Rheingold & Golen (2011); Pourayoubi, Toghraee & Divjakovic (2011); Raissi Shabari, Pourayoubi & Saneei (2011); Rudd et al. (1996); Steiner (2002); Tarahhomi et al. (2011); Toghraee et al. (2011).

Experimental top

2,6-F2–C6H3C(O)NHP(O)Cl2 and CClF2C(O)NHP(O)Cl2 were prepared according to the literature methods reported by Pourayoubi, Tarahhomi et al. (2010a) and Iriarte et al. (2008), respectively.

Compound (I) was synthesized from the reaction of 2,6-F2–C6H3C(O)NHP(O)Cl2 (0.35 g, 1.28 mmol) and 2-chlorobenzylamine (0.725 g, 5.12 mmol) in dry chloroform (30 ml). The amine was added dropwise to a solution of initial phosphorus-chlorine at 273 K. After stirring for 6 h, the solvent was evaporated, and the product was washed with distilled water and recrystallized from a 1:2 (v/v) mixture of methanol–chloroform at room temperature. Spectroscopic analysis: IR (KBr, ν, cm-1): 3345 (NH), 3262 (NH), 3204 (NH), 2925, 1668 (CO), 1623, 1470, 1426, 1287, 1236, 1205, 1127, 1090, 1049, 1041, 1011, 902, 817, 769, 753, 694, 584, 510, 578.

Compound (II) was synthesized in a similar procedure to (I) but by using 4-methoxybenzylamine (0.598 g, 4.36 mmol) instead of 2-chlorobenzylamine [2,6-F2–C6H3C(O)NHP(O)Cl2: 0.30 g, 1.09 mmol]. Single crystals suitable for X-ray crystallography were obtained after recrystallization from a 1:2 (v/v) mixture of methanol–chloroform at room temperature. Spectroscopic analysis: IR (KBr, ν, cm-1): 3263 (NH), 3003, 2958, 1668 (CO), 1623, 1589, 1515, 1466, 1441, 1303, 1253, 1197, 1078, 1042, 1007, 923, 813, 788, 764, 698, 588, 523, 478.

Compound (III) was synthesized from the reaction of CClF2C(O)NHP(O)Cl2 (0.40 g, 1.6 mmol) in dry CHCl3 and a solution of para-toluidine (0.343 g, 3.2 mmol) and triethylamine (0.324 g, 3.2 mmol) in dry CHCl3 at 273 K. After stirring for 4 h, the solvent was evaporated at room temperature. The solid product was washed with H2O. Single crystals suitable for X-ray crystallography were recrystallized from a 4:1 (v/v) mixture of methanol–acetonitrile by slow evaporation at room temperature. Spectroscopic analysis: IR (KBr, ν, cm-1): 3260 (NH), 3183 (NH), 2927, 1717 (CO), 1620, 1517, 1466, 1383, 1281, 1225, 1163, 1133, 963, 863, 813, 697.

Refinement top

For (I), (II) and (III), H atoms on N1, N2, and N3 were found in difference Fourier maps and allowed to refine with an N—H bond-length restraint of 0.85 (2) Å and with Uiso(H) = 1.2Ueq(N). The positions of H atoms bound to C atoms were calculated and refined as isotropic using an appropriate riding model; for compounds (I) and (II), bond distances were 0.95, 0.99 and 0.98 Å for CH, CH2 and CH3 groups, respectively, with riding constraints of 1.2Ueq(C) for CH and CH2 groups, and 1.5Ueq(C) for CH3 groups. For compound (III), the distance values were 0.93 and 0.96 Å for CH and CH3 groups, with Uiso(H) = 1.2 and 1.5Ueq(C), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2005) for (I), (II); SMART (Bruker, 1998) for (III). Cell refinement: SAINT (Bruker, 2005) for (I), (II); SAINT-Plus (Bruker, 1998) for (III). Data reduction: SAINT (Bruker, 2005) for (I), (II); SAINT-Plus (Bruker, 1998) for (III). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The R22(8) graph set in compounds containing a C(O)NHP(O)(N)2 skeleton and a syn orientation of PO versus NH.
[Figure 2] Fig. 2. A view of the R22(8) and R22(12) motifs in compounds containing a C(O)NHP(O)(NH)2 skeleton.
[Figure 3] Fig. 3. The molecular structure and atom-labelling scheme for (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4] Fig. 4. The molecular structure and atom-labelling scheme for (II). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 5] Fig. 5. The molecular structure and atom-labelling scheme for (III). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 6] Fig. 6. A view of the R22(10) graph set in compounds containing a C(O)NHP(O)(NH)2 skeleton.
[Figure 7] Fig. 7. A crystal packing diagram for (I). H atoms bound to C atoms have been omitted for clarity. The PO···H—Namide (marked a), C O···H—NC(O)NHP(O) (marked b) and F···H—NC(O)NHP(O) (marked c) hydrogen bonds are shown. [Colour key for the electronic version of the paper: red, black and violet dashed lines, respectively. Additionally, O atoms are red, amide N atoms are dark blue, NC(O)NHP(O) atoms are light blue, F atoms are green–yellow and H atoms are light grey.]
[Figure 8] Fig. 8. A crystal packing diagram for (II). H atoms bound to C atoms have been omitted for clarity. The PO···H—Namide (marked a) and C O···H—NC(O)NHP(O) (marked b) hydrogen bonds are shown. (Colour key for the electronic version of the paper: red and black dashed lines, respectively; the atomic colour scheme is the same as for Fig. 7.)
[Figure 9] Fig. 9. A histogram of N···O distances in N—H···O hydrogen bonds for phosphoric triamides with a C(O)NHP(O) skeleton. The data shown in the first two and last two columns (brown and red, respectively, in the electronic version of the paper) were observed for NC(O)NHP(O)—H···O and Namide—H···O hydrogen bonds, respectively. Both types of hydrogen bond were observed in the range 2.80–3.00 Å (central four columns). Only one Namide—H···O, and one NC(O)NHP(O)—H···O hydrogen bond is respectively found in the range 2.80-2.85 and 2.95–3.00 Å.
[Figure 10] Fig. 10. A partial crystal packing diagram for (II), viewed parallel to the bc plane, formed via intermolecular C—H···F and C—H···O hydrogen bonds (the N—H···O hydrogen bonds are along the a axis). H atoms involved in contacts are shown as light grey and the other H atoms have been omitted for clarity. The C15methoxy—H15A···F1iii [marked a; C15···F1iii = 3.155 (2) Å], C13—H13A···O3methoxyiv [marked b; C13···O3iv = 3.390 (2) Å], C3—H3B···(O2)P1v [marked c; C3···O2v = 3.293 (2) Å] and C16—H16B···O4methoxy [marked d; C16···O4vi = 3.581 (2) Å] hydrogen bonds are shown (colour key for the electronic version of the paper: black, orange, purple and blue dashed lines, respectively). [Symmetry codes: (iii) -x, -y + 1, -z + 1; (iv) -x, -y + 2, -z + 1; (v) x, y + 1, z; (vi) -x + 1/2, y + 1/2, -z + 3/2.]
(I) N,N'-bis(2-chlorobenzyl)-N''-(2,6- difluorobenzoyl)phosphoric triamide top
Crystal data top
C21H18Cl2F2N3O2PF(000) = 992
Mr = 484.25Dx = 1.563 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.643 (3) ÅCell parameters from 7966 reflections
b = 4.9874 (6) Åθ = 3.4–27.8°
c = 21.482 (3) ŵ = 0.44 mm1
β = 102.056 (2)°T = 100 K
V = 2058.2 (4) Å3Block, colourless
Z = 40.25 × 0.10 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4821 independent reflections
Radiation source: fine-focus sealed tube3463 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ϕ and ω scansθmax = 27.9°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 2525
Tmin = 0.899, Tmax = 0.958k = 66
25048 measured reflectionsl = 2827
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0446P)2 + 2.5057P]
where P = (Fo2 + 2Fc2)/3
4821 reflections(Δ/σ)max = 0.002
289 parametersΔρmax = 0.65 e Å3
3 restraintsΔρmin = 0.48 e Å3
Crystal data top
C21H18Cl2F2N3O2PV = 2058.2 (4) Å3
Mr = 484.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.643 (3) ŵ = 0.44 mm1
b = 4.9874 (6) ÅT = 100 K
c = 21.482 (3) Å0.25 × 0.10 × 0.10 mm
β = 102.056 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4821 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
3463 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.958Rint = 0.074
25048 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0523 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.65 e Å3
4821 reflectionsΔρmin = 0.48 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.56322 (4)0.82496 (15)0.57320 (3)0.02548 (18)
Cl20.01375 (4)0.77969 (15)0.44276 (3)0.02530 (18)
P10.27115 (4)0.74413 (14)0.50981 (3)0.01593 (17)
F10.15953 (8)0.9940 (3)0.65322 (7)0.0252 (4)
F20.32417 (9)0.3325 (4)0.73647 (8)0.0287 (4)
O10.25395 (10)0.3553 (4)0.60992 (9)0.0214 (4)
O20.27054 (10)1.0164 (4)0.48287 (9)0.0201 (4)
N10.26151 (12)0.7935 (5)0.58611 (10)0.0175 (5)
H1N0.2581 (16)0.949 (4)0.6011 (13)0.021*
N20.34085 (12)0.5706 (5)0.51076 (11)0.0184 (5)
H2N0.3346 (16)0.411 (4)0.4998 (14)0.022*
N30.20998 (12)0.5420 (5)0.47405 (11)0.0190 (5)
H3N0.2201 (16)0.383 (4)0.4815 (14)0.023*
C10.19795 (15)0.8613 (6)0.70344 (13)0.0205 (6)
C20.18783 (15)0.9231 (6)0.76331 (14)0.0252 (7)
H2A0.15581.05870.76920.030*
C30.22578 (16)0.7818 (6)0.81506 (13)0.0262 (7)
H3A0.22050.82380.85690.031*
C40.27096 (16)0.5812 (7)0.80576 (13)0.0266 (7)
H4A0.29630.48230.84080.032*
C50.27869 (15)0.5265 (6)0.74460 (13)0.0222 (6)
C60.24330 (14)0.6648 (6)0.69125 (12)0.0184 (6)
C70.25292 (14)0.5913 (6)0.62590 (12)0.0184 (6)
C80.41113 (14)0.6730 (6)0.53326 (12)0.0198 (6)
H8A0.40820.86410.54490.024*
H8B0.43620.66410.49790.024*
C90.45316 (15)0.5247 (6)0.58983 (12)0.0193 (6)
C100.52358 (15)0.5791 (6)0.61148 (13)0.0200 (6)
C110.56409 (16)0.4456 (6)0.66265 (13)0.0248 (7)
H11A0.61200.48790.67640.030*
C120.53366 (17)0.2495 (6)0.69349 (13)0.0272 (7)
H12A0.56090.15420.72820.033*
C130.46341 (16)0.1924 (6)0.67365 (13)0.0250 (7)
H13A0.44240.05990.69530.030*
C140.42361 (15)0.3286 (6)0.62220 (13)0.0217 (6)
H14A0.37550.28750.60890.026*
C150.13673 (14)0.6099 (6)0.47053 (12)0.0204 (6)
H15A0.13060.80620.46540.024*
H15B0.12340.55780.51080.024*
C160.08956 (14)0.4695 (6)0.41556 (12)0.0194 (6)
C170.01876 (15)0.5362 (6)0.39907 (13)0.0210 (6)
C180.02593 (15)0.4159 (6)0.34858 (13)0.0244 (7)
H18A0.07340.46930.33770.029*
C190.00137 (16)0.2176 (6)0.31399 (13)0.0248 (7)
H19A0.03190.13320.27940.030*
C200.06798 (15)0.1425 (6)0.32998 (13)0.0230 (6)
H20A0.08490.00520.30660.028*
C210.11285 (15)0.2674 (6)0.38021 (12)0.0198 (6)
H21A0.16030.21420.39070.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0220 (4)0.0238 (4)0.0314 (4)0.0035 (3)0.0075 (3)0.0043 (3)
Cl20.0224 (4)0.0254 (4)0.0287 (4)0.0044 (3)0.0067 (3)0.0006 (3)
P10.0173 (4)0.0149 (4)0.0156 (3)0.0005 (3)0.0034 (3)0.0001 (3)
F10.0242 (9)0.0243 (9)0.0278 (9)0.0048 (7)0.0073 (7)0.0030 (7)
F20.0291 (10)0.0288 (10)0.0281 (9)0.0104 (8)0.0059 (7)0.0044 (8)
O10.0271 (11)0.0144 (10)0.0230 (10)0.0008 (9)0.0060 (8)0.0017 (8)
O20.0232 (11)0.0159 (10)0.0214 (9)0.0007 (8)0.0048 (8)0.0002 (8)
N10.0234 (13)0.0118 (12)0.0180 (11)0.0011 (10)0.0055 (9)0.0026 (9)
N20.0192 (13)0.0122 (12)0.0232 (12)0.0004 (10)0.0027 (9)0.0036 (9)
N30.0179 (13)0.0161 (12)0.0219 (12)0.0008 (10)0.0012 (9)0.0001 (10)
C10.0194 (15)0.0175 (15)0.0250 (14)0.0014 (12)0.0055 (11)0.0000 (12)
C20.0197 (15)0.0270 (17)0.0305 (15)0.0028 (13)0.0086 (12)0.0068 (13)
C30.0281 (16)0.0341 (18)0.0182 (13)0.0066 (14)0.0088 (12)0.0065 (13)
C40.0277 (17)0.0320 (18)0.0196 (14)0.0019 (14)0.0037 (12)0.0022 (12)
C50.0205 (15)0.0209 (15)0.0252 (14)0.0008 (12)0.0049 (11)0.0003 (12)
C60.0180 (14)0.0179 (15)0.0196 (13)0.0046 (11)0.0047 (10)0.0010 (11)
C70.0136 (14)0.0200 (15)0.0207 (13)0.0021 (11)0.0019 (10)0.0012 (11)
C80.0194 (15)0.0197 (15)0.0207 (13)0.0000 (12)0.0054 (11)0.0022 (11)
C90.0212 (15)0.0194 (15)0.0177 (13)0.0017 (12)0.0049 (11)0.0045 (11)
C100.0232 (15)0.0167 (15)0.0214 (13)0.0007 (12)0.0076 (11)0.0051 (11)
C110.0211 (16)0.0252 (17)0.0255 (15)0.0045 (13)0.0011 (11)0.0070 (12)
C120.0327 (18)0.0260 (17)0.0210 (14)0.0096 (14)0.0010 (12)0.0029 (12)
C130.0313 (17)0.0235 (16)0.0210 (14)0.0035 (13)0.0072 (12)0.0021 (12)
C140.0210 (15)0.0218 (16)0.0221 (14)0.0003 (12)0.0041 (11)0.0011 (12)
C150.0187 (15)0.0231 (16)0.0191 (13)0.0004 (12)0.0033 (11)0.0004 (12)
C160.0203 (15)0.0195 (15)0.0186 (13)0.0027 (12)0.0045 (11)0.0036 (11)
C170.0216 (15)0.0181 (15)0.0240 (14)0.0002 (12)0.0065 (11)0.0025 (12)
C180.0165 (15)0.0272 (17)0.0281 (15)0.0010 (13)0.0011 (11)0.0052 (13)
C190.0266 (16)0.0251 (17)0.0208 (14)0.0057 (13)0.0004 (11)0.0026 (12)
C200.0275 (17)0.0210 (15)0.0204 (13)0.0020 (13)0.0050 (11)0.0001 (12)
C210.0204 (14)0.0200 (15)0.0196 (13)0.0013 (12)0.0052 (11)0.0045 (11)
Geometric parameters (Å, º) top
Cl1—C101.747 (3)C8—H8A0.9900
Cl2—C171.736 (3)C8—H8B0.9900
P1—O21.475 (2)C9—C101.391 (4)
P1—N21.616 (2)C9—C141.395 (4)
P1—N31.632 (2)C10—C111.385 (4)
P1—N11.707 (2)C11—C121.385 (4)
F1—C11.353 (3)C11—H11A0.9500
F2—C51.353 (3)C12—C131.386 (4)
O1—C71.227 (3)C12—H12A0.9500
N1—C71.355 (4)C13—C141.390 (4)
N1—H1N0.850 (18)C13—H13A0.9500
N2—C81.457 (4)C14—H14A0.9500
N2—H2N0.833 (18)C15—C161.512 (4)
N3—C151.465 (4)C15—H15A0.9900
N3—H3N0.826 (18)C15—H15B0.9900
C1—C21.377 (4)C16—C211.395 (4)
C1—C61.386 (4)C16—C171.402 (4)
C2—C31.394 (4)C17—C181.382 (4)
C2—H2A0.9500C18—C191.383 (4)
C3—C41.379 (4)C18—H18A0.9500
C3—H3A0.9500C19—C201.385 (4)
C4—C51.381 (4)C19—H19A0.9500
C4—H4A0.9500C20—C211.390 (4)
C5—C61.393 (4)C20—H20A0.9500
C6—C71.501 (4)C21—H21A0.9500
C8—C91.512 (4)
O2—P1—N2115.79 (12)C10—C9—C14117.3 (3)
O2—P1—N3116.04 (12)C10—C9—C8120.7 (3)
N2—P1—N3102.33 (13)C14—C9—C8122.0 (3)
O2—P1—N1104.51 (11)C11—C10—C9122.5 (3)
N2—P1—N1109.20 (12)C11—C10—Cl1118.2 (2)
N3—P1—N1108.83 (12)C9—C10—Cl1119.3 (2)
C7—N1—P1123.5 (2)C12—C11—C10119.0 (3)
C7—N1—H1N114 (2)C12—C11—H11A120.5
P1—N1—H1N122 (2)C10—C11—H11A120.5
C8—N2—P1123.93 (19)C11—C12—C13120.0 (3)
C8—N2—H2N120 (2)C11—C12—H12A120.0
P1—N2—H2N116 (2)C13—C12—H12A120.0
C15—N3—P1120.01 (19)C12—C13—C14120.2 (3)
C15—N3—H3N115 (2)C12—C13—H13A119.9
P1—N3—H3N112 (2)C14—C13—H13A119.9
F1—C1—C2118.0 (3)C13—C14—C9121.0 (3)
F1—C1—C6117.9 (2)C13—C14—H14A119.5
C2—C1—C6124.0 (3)C9—C14—H14A119.5
C1—C2—C3118.3 (3)N3—C15—C16111.6 (2)
C1—C2—H2A120.8N3—C15—H15A109.3
C3—C2—H2A120.8C16—C15—H15A109.3
C4—C3—C2120.3 (3)N3—C15—H15B109.3
C4—C3—H3A119.9C16—C15—H15B109.3
C2—C3—H3A119.9H15A—C15—H15B108.0
C3—C4—C5118.9 (3)C21—C16—C17117.0 (3)
C3—C4—H4A120.6C21—C16—C15122.8 (3)
C5—C4—H4A120.6C17—C16—C15120.1 (3)
F2—C5—C4118.1 (3)C18—C17—C16122.0 (3)
F2—C5—C6118.5 (2)C18—C17—Cl2118.9 (2)
C4—C5—C6123.4 (3)C16—C17—Cl2119.1 (2)
C1—C6—C5115.1 (2)C17—C18—C19119.8 (3)
C1—C6—C7124.1 (2)C17—C18—H18A120.1
C5—C6—C7120.7 (3)C19—C18—H18A120.1
O1—C7—N1121.7 (2)C18—C19—C20119.7 (3)
O1—C7—C6120.6 (2)C18—C19—H19A120.1
N1—C7—C6117.7 (2)C20—C19—H19A120.1
N2—C8—C9114.6 (2)C19—C20—C21120.2 (3)
N2—C8—H8A108.6C19—C20—H20A119.9
C9—C8—H8A108.6C21—C20—H20A119.9
N2—C8—H8B108.6C20—C21—C16121.3 (3)
C9—C8—H8B108.6C20—C21—H21A119.4
H8A—C8—H8B107.6C16—C21—H21A119.4
O2—P1—N1—C7173.6 (2)P1—N2—C8—C9118.4 (2)
N2—P1—N1—C761.9 (3)N2—C8—C9—C10172.1 (2)
N3—P1—N1—C749.1 (3)N2—C8—C9—C147.6 (4)
O2—P1—N2—C847.4 (2)C14—C9—C10—C110.5 (4)
N3—P1—N2—C8174.6 (2)C8—C9—C10—C11179.2 (3)
N1—P1—N2—C870.2 (2)C14—C9—C10—Cl1179.4 (2)
O2—P1—N3—C1560.8 (2)C8—C9—C10—Cl10.8 (4)
N2—P1—N3—C15172.2 (2)C9—C10—C11—C120.2 (4)
N1—P1—N3—C1556.7 (2)Cl1—C10—C11—C12179.8 (2)
F1—C1—C2—C3178.2 (3)C10—C11—C12—C131.0 (4)
C6—C1—C2—C30.6 (5)C11—C12—C13—C141.0 (4)
C1—C2—C3—C41.5 (4)C12—C13—C14—C90.2 (4)
C2—C3—C4—C51.1 (5)C10—C9—C14—C130.5 (4)
C3—C4—C5—F2178.8 (3)C8—C9—C14—C13179.2 (3)
C3—C4—C5—C60.3 (5)P1—N3—C15—C16156.82 (19)
F1—C1—C6—C5176.9 (2)N3—C15—C16—C2110.1 (4)
C2—C1—C6—C50.7 (4)N3—C15—C16—C17171.5 (2)
F1—C1—C6—C70.5 (4)C21—C16—C17—C182.5 (4)
C2—C1—C6—C7178.1 (3)C15—C16—C17—C18179.0 (3)
F2—C5—C6—C1179.7 (2)C21—C16—C17—Cl2178.2 (2)
C4—C5—C6—C11.1 (4)C15—C16—C17—Cl20.3 (4)
F2—C5—C6—C72.8 (4)C16—C17—C18—C192.0 (4)
C4—C5—C6—C7178.7 (3)Cl2—C17—C18—C19178.7 (2)
P1—N1—C7—O12.6 (4)C17—C18—C19—C200.5 (4)
P1—N1—C7—C6178.51 (19)C18—C19—C20—C210.6 (4)
C1—C6—C7—O1133.9 (3)C19—C20—C21—C160.1 (4)
C5—C6—C7—O143.4 (4)C17—C16—C21—C201.4 (4)
C1—C6—C7—N147.1 (4)C15—C16—C21—C20179.9 (3)
C5—C6—C7—N1135.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.85 (2)2.04 (2)2.858 (3)162 (3)
N1—H1N···F10.85 (2)2.44 (3)2.881 (3)113 (2)
N2—H2N···O2ii0.83 (2)2.32 (2)3.092 (3)154 (3)
N3—H3N···O2ii0.83 (2)2.08 (2)2.869 (3)161 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
(II) N-(2,6-difluorobenzoyl)-N',N''-bis(4- methoxybenzyl)phosphoric triamide top
Crystal data top
C23H24F2N3O4PF(000) = 992
Mr = 475.42Dx = 1.404 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 4.8252 (6) ÅCell parameters from 6676 reflections
b = 10.3456 (12) Åθ = 2.4–27.9°
c = 45.068 (5) ŵ = 0.17 mm1
β = 90.530 (2)°T = 100 K
V = 2249.7 (5) Å3Block, colourless
Z = 40.22 × 0.10 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5131 independent reflections
Radiation source: fine-focus sealed tube4200 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 66
Tmin = 0.963, Tmax = 0.983k = 1313
18537 measured reflectionsl = 5944
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0353P)2 + 1.3104P]
where P = (Fo2 + 2Fc2)/3
5131 reflections(Δ/σ)max = 0.020
309 parametersΔρmax = 0.41 e Å3
3 restraintsΔρmin = 0.34 e Å3
Crystal data top
C23H24F2N3O4PV = 2249.7 (5) Å3
Mr = 475.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.8252 (6) ŵ = 0.17 mm1
b = 10.3456 (12) ÅT = 100 K
c = 45.068 (5) Å0.22 × 0.10 × 0.10 mm
β = 90.530 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5131 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
4200 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.983Rint = 0.042
18537 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0423 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.41 e Å3
5131 reflectionsΔρmin = 0.34 e Å3
309 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.52732 (8)0.59705 (4)0.636114 (9)0.01463 (11)
F10.8051 (2)0.28742 (10)0.58288 (2)0.0261 (2)
F20.3388 (2)0.11618 (10)0.66522 (3)0.0357 (3)
O10.1869 (2)0.34953 (11)0.63342 (3)0.0229 (3)
O20.7990 (2)0.66351 (11)0.63678 (3)0.0197 (3)
O30.2604 (3)0.85524 (15)0.49307 (3)0.0393 (4)
O40.3356 (3)0.88688 (13)0.76831 (3)0.0330 (3)
N10.6175 (3)0.43798 (13)0.63298 (3)0.0162 (3)
H1N0.787 (3)0.4217 (18)0.6320 (4)0.019*
N20.3179 (3)0.62877 (13)0.60858 (3)0.0179 (3)
H2N0.153 (3)0.6385 (19)0.6132 (4)0.022*
N30.3392 (3)0.62370 (14)0.66491 (3)0.0183 (3)
H3N0.168 (3)0.6222 (18)0.6620 (4)0.022*
C10.7468 (4)0.18689 (16)0.60109 (4)0.0202 (3)
C20.8624 (4)0.06833 (17)0.59493 (4)0.0275 (4)
H2C0.98290.05770.57860.033*
C30.7987 (4)0.03528 (17)0.61318 (5)0.0308 (4)
H3B0.87740.11770.60940.037*
C40.6221 (4)0.01976 (17)0.63685 (5)0.0308 (4)
H4A0.57960.09060.64940.037*
C50.5089 (4)0.10008 (17)0.64185 (4)0.0242 (4)
C60.5667 (3)0.20797 (15)0.62449 (4)0.0177 (3)
C70.4380 (3)0.33775 (15)0.63064 (4)0.0170 (3)
C80.3647 (4)0.57684 (19)0.57880 (4)0.0286 (4)
H8A0.31370.48420.57840.034*
H8B0.56380.58410.57390.034*
C90.1949 (4)0.64924 (18)0.55601 (4)0.0236 (4)
C100.0055 (4)0.58474 (18)0.53816 (4)0.0262 (4)
H10A0.01800.49420.54060.031*
C110.1517 (4)0.64953 (19)0.51673 (4)0.0278 (4)
H11A0.28000.60350.50460.033*
C120.1193 (4)0.78076 (19)0.51333 (4)0.0283 (4)
C130.0704 (4)0.84769 (19)0.53114 (4)0.0318 (4)
H13A0.09330.93830.52880.038*
C140.2247 (4)0.78212 (19)0.55220 (4)0.0286 (4)
H14A0.35320.82830.56430.034*
C150.4459 (5)0.7911 (2)0.47313 (5)0.0454 (6)
H15A0.53790.85510.46040.068*
H15B0.58530.74380.48450.068*
H15C0.34180.73030.46080.068*
C160.4485 (4)0.6366 (2)0.69512 (4)0.0279 (4)
H16A0.62230.68740.69480.033*
H16B0.49160.54990.70320.033*
C170.2409 (3)0.70291 (17)0.71476 (4)0.0211 (4)
C180.1213 (4)0.82083 (17)0.70690 (4)0.0248 (4)
H18A0.17210.86140.68880.030*
C190.0710 (4)0.87936 (17)0.72517 (4)0.0265 (4)
H19A0.15270.95930.71950.032*
C200.1448 (4)0.82127 (17)0.75181 (4)0.0240 (4)
C210.0263 (4)0.70515 (18)0.75996 (4)0.0249 (4)
H21A0.07410.66550.77820.030*
C220.1636 (4)0.64649 (18)0.74125 (4)0.0256 (4)
H22A0.24220.56570.74680.031*
C230.4128 (4)0.8321 (2)0.79597 (4)0.0377 (5)
H23A0.54670.88880.80570.056*
H23B0.24790.82260.80870.056*
H23C0.49680.74700.79260.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0107 (2)0.01413 (19)0.0191 (2)0.00178 (15)0.00027 (15)0.00148 (16)
F10.0333 (6)0.0211 (5)0.0239 (5)0.0009 (4)0.0051 (4)0.0015 (4)
F20.0435 (7)0.0242 (6)0.0397 (7)0.0008 (5)0.0191 (5)0.0033 (5)
O10.0118 (6)0.0218 (6)0.0351 (7)0.0009 (5)0.0001 (5)0.0011 (5)
O20.0124 (6)0.0162 (5)0.0303 (7)0.0003 (5)0.0012 (5)0.0013 (5)
O30.0443 (9)0.0435 (8)0.0298 (7)0.0067 (7)0.0138 (6)0.0067 (6)
O40.0346 (8)0.0340 (7)0.0305 (7)0.0041 (6)0.0107 (6)0.0108 (6)
N10.0106 (6)0.0142 (6)0.0238 (7)0.0032 (5)0.0002 (5)0.0016 (5)
N20.0129 (7)0.0219 (7)0.0190 (7)0.0054 (6)0.0020 (5)0.0012 (5)
N30.0102 (7)0.0240 (7)0.0206 (7)0.0022 (6)0.0012 (5)0.0051 (6)
C10.0203 (8)0.0175 (8)0.0226 (8)0.0016 (7)0.0030 (7)0.0004 (7)
C20.0270 (10)0.0227 (9)0.0328 (10)0.0026 (7)0.0034 (8)0.0066 (8)
C30.0338 (11)0.0163 (8)0.0424 (11)0.0059 (8)0.0006 (9)0.0053 (8)
C40.0357 (11)0.0169 (9)0.0398 (11)0.0005 (8)0.0030 (9)0.0039 (8)
C50.0244 (9)0.0212 (8)0.0270 (9)0.0017 (7)0.0028 (7)0.0001 (7)
C60.0149 (8)0.0158 (8)0.0223 (8)0.0015 (6)0.0036 (6)0.0024 (6)
C70.0160 (8)0.0161 (7)0.0188 (8)0.0005 (6)0.0008 (6)0.0002 (6)
C80.0319 (10)0.0351 (10)0.0188 (9)0.0149 (8)0.0005 (7)0.0015 (7)
C90.0230 (9)0.0309 (9)0.0168 (8)0.0090 (8)0.0026 (7)0.0008 (7)
C100.0285 (10)0.0278 (9)0.0224 (9)0.0019 (8)0.0056 (7)0.0003 (7)
C110.0244 (9)0.0374 (10)0.0217 (9)0.0014 (8)0.0003 (7)0.0016 (8)
C120.0280 (10)0.0365 (11)0.0204 (9)0.0071 (8)0.0022 (7)0.0029 (8)
C130.0406 (12)0.0261 (9)0.0287 (10)0.0030 (9)0.0041 (8)0.0003 (8)
C140.0288 (10)0.0323 (10)0.0247 (9)0.0019 (8)0.0046 (8)0.0038 (8)
C150.0402 (13)0.0649 (15)0.0309 (11)0.0104 (11)0.0167 (10)0.0003 (11)
C160.0194 (9)0.0427 (11)0.0215 (9)0.0091 (8)0.0046 (7)0.0068 (8)
C170.0156 (8)0.0280 (9)0.0195 (8)0.0000 (7)0.0033 (6)0.0066 (7)
C180.0268 (10)0.0257 (9)0.0220 (9)0.0027 (7)0.0027 (7)0.0020 (7)
C190.0314 (10)0.0179 (8)0.0301 (10)0.0012 (7)0.0017 (8)0.0038 (7)
C200.0223 (9)0.0246 (9)0.0251 (9)0.0032 (7)0.0031 (7)0.0112 (7)
C210.0252 (9)0.0293 (9)0.0202 (9)0.0045 (8)0.0005 (7)0.0011 (7)
C220.0253 (9)0.0264 (9)0.0249 (9)0.0026 (8)0.0038 (7)0.0011 (7)
C230.0332 (11)0.0540 (13)0.0259 (10)0.0040 (10)0.0099 (8)0.0123 (9)
Geometric parameters (Å, º) top
P1—O21.4804 (12)C9—C101.383 (3)
P1—N31.6141 (14)C9—C141.393 (3)
P1—N21.6263 (14)C10—C111.394 (3)
P1—N11.7084 (14)C10—H10A0.9500
F1—C11.3558 (19)C11—C121.375 (3)
F2—C51.352 (2)C11—H11A0.9500
O1—C71.225 (2)C12—C131.396 (3)
O3—C121.371 (2)C13—C141.379 (3)
O3—C151.426 (3)C13—H13A0.9500
O4—C201.369 (2)C14—H14A0.9500
O4—C231.422 (2)C15—H15A0.9800
N1—C71.355 (2)C15—H15B0.9800
N1—H1N0.835 (14)C15—H15C0.9800
N2—C81.465 (2)C16—C171.508 (2)
N2—H2N0.832 (15)C16—H16A0.9900
N3—C161.461 (2)C16—H16B0.9900
N3—H3N0.833 (15)C17—C221.383 (3)
C1—C21.377 (2)C17—C181.394 (2)
C1—C61.390 (2)C18—C191.386 (2)
C2—C31.387 (3)C18—H18A0.9500
C2—H2C0.9500C19—C201.392 (3)
C3—C41.381 (3)C19—H19A0.9500
C3—H3B0.9500C20—C211.379 (3)
C4—C51.374 (3)C21—C221.391 (3)
C4—H4A0.9500C21—H21A0.9500
C5—C61.393 (2)C22—H22A0.9500
C6—C71.506 (2)C23—H23A0.9800
C8—C91.507 (2)C23—H23B0.9800
C8—H8A0.9900C23—H23C0.9800
C8—H8B0.9900
O2—P1—N3114.12 (7)C11—C10—H10A119.2
O2—P1—N2117.74 (7)C12—C11—C10119.32 (18)
N3—P1—N2103.24 (7)C12—C11—H11A120.3
O2—P1—N1102.89 (7)C10—C11—H11A120.3
N3—P1—N1112.12 (7)O3—C12—C11124.92 (18)
N2—P1—N1106.75 (7)O3—C12—C13115.04 (18)
C12—O3—C15117.58 (17)C11—C12—C13120.04 (18)
C20—O4—C23117.47 (16)C14—C13—C12119.91 (18)
C7—N1—P1125.50 (11)C14—C13—H13A120.0
C7—N1—H1N117.8 (13)C12—C13—H13A120.0
P1—N1—H1N116.7 (14)C13—C14—C9120.98 (18)
C8—N2—P1121.68 (12)C13—C14—H14A119.5
C8—N2—H2N115.6 (14)C9—C14—H14A119.5
P1—N2—H2N114.9 (13)O3—C15—H15A109.5
C16—N3—P1124.33 (12)O3—C15—H15B109.5
C16—N3—H3N119.7 (13)H15A—C15—H15B109.5
P1—N3—H3N115.6 (13)O3—C15—H15C109.5
F1—C1—C2118.34 (15)H15A—C15—H15C109.5
F1—C1—C6118.26 (14)H15B—C15—H15C109.5
C2—C1—C6123.37 (16)N3—C16—C17110.66 (14)
C1—C2—C3118.45 (17)N3—C16—H16A109.5
C1—C2—H2C120.8C17—C16—H16A109.5
C3—C2—H2C120.8N3—C16—H16B109.5
C4—C3—C2120.66 (17)C17—C16—H16B109.5
C4—C3—H3B119.7H16A—C16—H16B108.1
C2—C3—H3B119.7C22—C17—C18118.31 (16)
C5—C4—C3118.72 (17)C22—C17—C16120.04 (16)
C5—C4—H4A120.6C18—C17—C16121.65 (16)
C3—C4—H4A120.6C19—C18—C17120.63 (17)
F2—C5—C4118.95 (16)C19—C18—H18A119.7
F2—C5—C6117.72 (15)C17—C18—H18A119.7
C4—C5—C6123.30 (17)C18—C19—C20120.12 (17)
C1—C6—C5115.48 (15)C18—C19—H19A119.9
C1—C6—C7122.78 (15)C20—C19—H19A119.9
C5—C6—C7121.74 (15)O4—C20—C21124.50 (17)
O1—C7—N1123.24 (15)O4—C20—C19115.66 (16)
O1—C7—C6121.16 (15)C21—C20—C19119.83 (16)
N1—C7—C6115.60 (14)C20—C21—C22119.52 (17)
N2—C8—C9110.78 (14)C20—C21—H21A120.2
N2—C8—H8A109.5C22—C21—H21A120.2
C9—C8—H8A109.5C17—C22—C21121.57 (17)
N2—C8—H8B109.5C17—C22—H22A119.2
C9—C8—H8B109.5C21—C22—H22A119.2
H8A—C8—H8B108.1O4—C23—H23A109.5
C10—C9—C14118.20 (17)O4—C23—H23B109.5
C10—C9—C8120.57 (17)H23A—C23—H23B109.5
C14—C9—C8121.22 (17)O4—C23—H23C109.5
C9—C10—C11121.55 (18)H23A—C23—H23C109.5
C9—C10—H10A119.2H23B—C23—H23C109.5
O2—P1—N1—C7178.00 (13)N2—C8—C9—C10121.66 (18)
N3—P1—N1—C758.94 (15)N2—C8—C9—C1458.7 (2)
N2—P1—N1—C753.42 (15)C14—C9—C10—C110.3 (3)
O2—P1—N2—C874.65 (16)C8—C9—C10—C11179.35 (16)
N3—P1—N2—C8158.61 (14)C9—C10—C11—C120.4 (3)
N1—P1—N2—C840.27 (16)C15—O3—C12—C112.9 (3)
O2—P1—N3—C1636.82 (17)C15—O3—C12—C13176.60 (18)
N2—P1—N3—C16165.81 (15)C10—C11—C12—O3179.77 (17)
N1—P1—N3—C1679.65 (16)C10—C11—C12—C130.3 (3)
F1—C1—C2—C3178.75 (16)O3—C12—C13—C14179.71 (18)
C6—C1—C2—C30.8 (3)C11—C12—C13—C140.2 (3)
C1—C2—C3—C40.4 (3)C12—C13—C14—C90.1 (3)
C2—C3—C4—C50.5 (3)C10—C9—C14—C130.2 (3)
C3—C4—C5—F2179.12 (17)C8—C9—C14—C13179.46 (18)
C3—C4—C5—C61.1 (3)P1—N3—C16—C17161.36 (13)
F1—C1—C6—C5178.20 (15)N3—C16—C17—C22127.33 (18)
C2—C1—C6—C50.2 (3)N3—C16—C17—C1852.3 (2)
F1—C1—C6—C70.9 (2)C22—C17—C18—C190.3 (3)
C2—C1—C6—C7178.90 (16)C16—C17—C18—C19179.36 (16)
F2—C5—C6—C1178.79 (15)C17—C18—C19—C200.6 (3)
C4—C5—C6—C10.7 (3)C23—O4—C20—C211.1 (3)
F2—C5—C6—C72.1 (2)C23—O4—C20—C19178.82 (17)
C4—C5—C6—C7179.86 (17)C18—C19—C20—O4179.80 (16)
P1—N1—C7—O17.4 (2)C18—C19—C20—C210.1 (3)
P1—N1—C7—C6173.02 (11)O4—C20—C21—C22179.35 (17)
C1—C6—C7—O1127.57 (18)C19—C20—C21—C220.7 (3)
C5—C6—C7—O151.5 (2)C18—C17—C22—C210.6 (3)
C1—C6—C7—N152.8 (2)C16—C17—C22—C21179.76 (16)
C5—C6—C7—N1128.14 (17)C20—C21—C22—C171.1 (3)
P1—N2—C8—C9163.75 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (1)2.07 (2)2.8958 (18)169 (2)
N2—H2N···O2ii0.83 (2)2.04 (2)2.8414 (18)163 (2)
N3—H3N···O2ii0.83 (2)2.15 (2)2.9173 (18)153 (2)
C15—H15A···F1iii0.982.763.156 (2)105
C13—H13A···O3iv0.952.493.390 (3)158
C3—H3B···O2v0.952.613.293 (2)129
C16—H16B···O4vi0.992.683.581 (2)151
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x, y+2, z+1; (v) x, y1, z; (vi) x+1/2, y1/2, z+3/2.
(III) N-(2-chloro-2,2-difluoroacetyl)-N',N''-bis(4- methylphenyl)phosphoric triamide top
Crystal data top
C16H17ClF2N3O2PF(000) = 1600
Mr = 387.75Dx = 1.453 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 924 reflections
a = 21.164 (5) Åθ = 2.5–24.3°
b = 5.0011 (12) ŵ = 0.34 mm1
c = 33.635 (8) ÅT = 120 K
β = 95.149 (5)°Plate, colourless
V = 3545.7 (15) Å30.40 × 0.25 × 0.15 mm
Z = 8
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
3058 independent reflections
Radiation source: fine-focus sealed tube1614 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.111
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 2424
Tmin = 0.903, Tmax = 0.950k = 55
16802 measured reflectionsl = 3939
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0901P)2]
where P = (Fo2 + 2Fc2)/3
3058 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.54 e Å3
3 restraintsΔρmin = 0.44 e Å3
Crystal data top
C16H17ClF2N3O2PV = 3545.7 (15) Å3
Mr = 387.75Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.164 (5) ŵ = 0.34 mm1
b = 5.0011 (12) ÅT = 120 K
c = 33.635 (8) Å0.40 × 0.25 × 0.15 mm
β = 95.149 (5)°
Data collection top
Bruker SMART 1000 CCD area detector
diffractometer
3058 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
1614 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.950Rint = 0.111
16802 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0763 restraints
wR(F2) = 0.197H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.54 e Å3
3058 reflectionsΔρmin = 0.44 e Å3
237 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.07693 (9)0.1339 (5)0.50628 (5)0.0667 (7)
P11.11556 (7)0.1608 (3)0.64991 (4)0.0193 (4)
F11.17528 (16)0.4191 (6)0.51375 (9)0.0340 (9)
F21.1879 (2)0.0143 (7)0.53346 (11)0.0533 (12)
O11.13291 (19)0.5481 (7)0.58314 (11)0.0304 (10)
O21.11008 (17)0.1113 (6)0.66623 (10)0.0211 (9)
N11.1313 (2)0.1096 (8)0.60159 (13)0.0255 (11)
H11.128 (3)0.047 (6)0.5915 (15)0.031*
N21.1705 (2)0.3488 (9)0.67132 (14)0.0252 (11)
H21.155 (2)0.498 (7)0.6769 (16)0.030*
N31.0536 (2)0.3520 (8)0.64951 (13)0.0195 (10)
H31.057 (3)0.517 (4)0.6529 (15)0.023*
C11.1362 (3)0.3080 (11)0.57531 (16)0.0250 (13)
C21.1476 (3)0.2237 (11)0.53266 (16)0.0259 (14)
C31.2329 (2)0.2702 (10)0.68457 (15)0.0202 (13)
C41.2661 (3)0.4174 (12)0.71479 (16)0.0292 (14)
H41.24680.56320.72580.035*
C51.3272 (3)0.3502 (14)0.72854 (18)0.0395 (16)
H51.34890.45640.74790.047*
C61.3573 (3)0.1284 (14)0.71425 (18)0.0365 (16)
C71.3234 (3)0.0177 (13)0.68427 (18)0.0363 (16)
H71.34240.16700.67390.044*
C81.2631 (3)0.0502 (11)0.66942 (17)0.0303 (15)
H81.24230.05130.64910.036*
C91.4224 (3)0.0471 (16)0.7311 (2)0.058 (2)
H9A1.45150.19160.72820.087*
H9B1.43580.10700.71710.087*
H9C1.42160.00450.75890.087*
C100.9932 (2)0.2677 (10)0.63021 (16)0.0200 (13)
C110.9670 (3)0.4022 (11)0.59698 (17)0.0288 (14)
H110.98880.54300.58640.035*
C120.9081 (3)0.3269 (14)0.57938 (17)0.0384 (16)
H120.89010.42180.55740.046*
C130.8753 (3)0.1132 (13)0.59379 (18)0.0367 (16)
C140.9029 (3)0.0193 (12)0.62645 (19)0.0348 (16)
H140.88160.16330.63650.042*
C150.9619 (3)0.0533 (12)0.64529 (17)0.0287 (14)
H150.97960.04040.66740.034*
C160.8104 (3)0.0371 (15)0.5755 (2)0.0493 (19)
H16A0.80990.14950.56870.074*
H16B0.80020.14110.55180.074*
H16C0.77970.07090.59420.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0572 (13)0.1051 (18)0.0372 (10)0.0479 (12)0.0011 (9)0.0163 (11)
P10.0193 (8)0.0126 (7)0.0254 (8)0.0012 (6)0.0004 (6)0.0007 (7)
F10.045 (2)0.0230 (19)0.0357 (19)0.0062 (16)0.0125 (16)0.0041 (15)
F20.091 (3)0.031 (2)0.042 (2)0.024 (2)0.027 (2)0.0010 (18)
O10.045 (3)0.007 (2)0.039 (3)0.0011 (18)0.0058 (19)0.0035 (18)
O20.033 (2)0.0052 (19)0.026 (2)0.0001 (15)0.0058 (16)0.0044 (15)
N10.039 (3)0.009 (2)0.029 (3)0.001 (2)0.003 (2)0.003 (2)
N20.023 (3)0.014 (2)0.038 (3)0.005 (2)0.001 (2)0.005 (2)
N30.021 (3)0.007 (2)0.030 (3)0.000 (2)0.0009 (19)0.002 (2)
C10.026 (3)0.021 (3)0.028 (3)0.002 (3)0.004 (2)0.004 (3)
C20.032 (4)0.015 (3)0.032 (3)0.010 (3)0.009 (3)0.001 (3)
C30.013 (3)0.023 (3)0.025 (3)0.003 (2)0.003 (2)0.008 (2)
C40.026 (4)0.029 (4)0.032 (3)0.000 (3)0.001 (3)0.001 (3)
C50.033 (4)0.052 (4)0.033 (4)0.014 (3)0.003 (3)0.003 (3)
C60.019 (3)0.055 (5)0.035 (4)0.004 (3)0.000 (3)0.013 (3)
C70.029 (4)0.036 (4)0.044 (4)0.006 (3)0.009 (3)0.010 (3)
C80.026 (4)0.026 (3)0.039 (4)0.002 (3)0.004 (3)0.007 (3)
C90.030 (4)0.079 (6)0.064 (5)0.003 (4)0.003 (4)0.026 (4)
C100.017 (3)0.012 (3)0.031 (3)0.003 (2)0.002 (2)0.001 (2)
C110.025 (3)0.022 (3)0.039 (4)0.001 (3)0.005 (3)0.009 (3)
C120.032 (4)0.050 (4)0.031 (3)0.001 (3)0.005 (3)0.007 (3)
C130.029 (4)0.044 (4)0.038 (4)0.003 (3)0.009 (3)0.010 (3)
C140.022 (4)0.036 (4)0.048 (4)0.008 (3)0.008 (3)0.003 (3)
C150.027 (4)0.031 (3)0.029 (3)0.002 (3)0.008 (3)0.002 (3)
C160.024 (4)0.067 (5)0.058 (5)0.006 (3)0.007 (3)0.017 (4)
Geometric parameters (Å, º) top
Cl1—C21.729 (6)C6—C91.498 (8)
P1—O21.475 (4)C7—C81.370 (8)
P1—N21.615 (5)C7—H70.9300
P1—N31.622 (4)C8—H80.9300
P1—N11.707 (5)C9—H9A0.9600
F1—C21.330 (6)C9—H9B0.9600
F2—C21.350 (6)C9—H9C0.9600
O1—C11.233 (6)C10—C151.381 (7)
N1—C11.339 (7)C10—C111.377 (7)
N1—H10.86 (2)C11—C121.384 (8)
N2—C31.410 (7)C11—H110.9300
N2—H20.85 (2)C12—C131.385 (9)
N3—C101.443 (7)C12—H120.9300
N3—H30.84 (2)C13—C141.368 (8)
C1—C21.535 (8)C13—C161.503 (8)
C3—C81.392 (7)C14—C151.396 (8)
C3—C41.394 (7)C14—H140.9300
C4—C51.374 (8)C15—H150.9300
C4—H40.9300C16—H16A0.9600
C5—C61.387 (9)C16—H16B0.9600
C5—H50.9300C16—H16C0.9600
C6—C71.391 (8)
O2—P1—N2116.7 (2)C8—C7—C6122.4 (6)
O2—P1—N3117.1 (2)C8—C7—H7118.8
N2—P1—N3102.1 (2)C6—C7—H7118.8
O2—P1—N1104.2 (2)C7—C8—C3120.4 (6)
N2—P1—N1108.5 (2)C7—C8—H8119.8
N3—P1—N1107.9 (2)C3—C8—H8119.8
C1—N1—P1123.4 (4)C6—C9—H9A109.5
C1—N1—H1115 (4)C6—C9—H9B109.5
P1—N1—H1120 (4)H9A—C9—H9B109.5
C3—N2—P1126.5 (4)C6—C9—H9C109.5
C3—N2—H2123 (4)H9A—C9—H9C109.5
P1—N2—H2109 (4)H9B—C9—H9C109.5
C10—N3—P1120.9 (3)C15—C10—C11120.4 (5)
C10—N3—H3114 (4)C15—C10—N3119.8 (5)
P1—N3—H3122 (4)C11—C10—N3119.9 (5)
O1—C1—N1124.8 (5)C10—C11—C12119.7 (5)
O1—C1—C2118.9 (5)C10—C11—H11120.1
N1—C1—C2116.2 (5)C12—C11—H11120.1
F1—C2—F2106.0 (4)C13—C12—C11121.4 (6)
F1—C2—C1111.0 (4)C13—C12—H12119.3
F2—C2—C1110.3 (5)C11—C12—H12119.3
F1—C2—Cl1110.1 (4)C14—C13—C12117.6 (6)
F2—C2—Cl1109.0 (4)C14—C13—C16121.0 (6)
C1—C2—Cl1110.5 (4)C12—C13—C16121.3 (6)
C8—C3—C4117.7 (5)C13—C14—C15122.6 (6)
C8—C3—N2123.6 (5)C13—C14—H14118.7
C4—C3—N2118.7 (5)C15—C14—H14118.7
C5—C4—C3121.0 (6)C10—C15—C14118.3 (5)
C5—C4—H4119.5C10—C15—H15120.8
C3—C4—H4119.5C14—C15—H15120.8
C4—C5—C6121.8 (6)C13—C16—H16A109.5
C4—C5—H5119.1C13—C16—H16B109.5
C6—C5—H5119.1H16A—C16—H16B109.5
C5—C6—C7116.6 (6)C13—C16—H16C109.5
C5—C6—C9121.4 (6)H16A—C16—H16C109.5
C7—C6—C9121.9 (7)H16B—C16—H16C109.5
O2—P1—N1—C1176.1 (4)C3—C4—C5—C62.7 (9)
N2—P1—N1—C158.9 (5)C4—C5—C6—C72.2 (9)
N3—P1—N1—C151.0 (5)C4—C5—C6—C9176.3 (6)
O2—P1—N2—C341.3 (5)C5—C6—C7—C80.4 (9)
N3—P1—N2—C3170.4 (4)C9—C6—C7—C8178.0 (6)
N1—P1—N2—C375.8 (5)C6—C7—C8—C30.9 (9)
O2—P1—N3—C1055.5 (5)C4—C3—C8—C70.5 (8)
N2—P1—N3—C10175.7 (4)N2—C3—C8—C7178.7 (5)
N1—P1—N3—C1061.5 (4)P1—N3—C10—C1566.1 (6)
P1—N1—C1—O13.3 (8)P1—N3—C10—C11114.2 (5)
P1—N1—C1—C2177.4 (4)C15—C10—C11—C122.0 (8)
O1—C1—C2—F123.3 (7)N3—C10—C11—C12177.7 (5)
N1—C1—C2—F1156.1 (5)C10—C11—C12—C131.8 (9)
O1—C1—C2—F2140.4 (5)C11—C12—C13—C140.8 (9)
N1—C1—C2—F239.0 (7)C11—C12—C13—C16178.0 (6)
O1—C1—C2—Cl199.1 (5)C12—C13—C14—C150.0 (9)
N1—C1—C2—Cl181.5 (5)C16—C13—C14—C15177.1 (6)
P1—N2—C3—C823.2 (8)C11—C10—C15—C141.1 (8)
P1—N2—C3—C4156.0 (4)N3—C10—C15—C14178.6 (5)
C8—C3—C4—C51.3 (8)C13—C14—C15—C100.1 (9)
N2—C3—C4—C5179.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (2)2.05 (3)2.877 (6)163 (5)
N2—H2···O2ii0.85 (2)2.19 (3)2.986 (6)158 (5)
N3—H3···O2ii0.84 (2)2.20 (3)2.972 (5)153 (5)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC21H18Cl2F2N3O2PC23H24F2N3O4PC16H17ClF2N3O2P
Mr484.25475.42387.75
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/nMonoclinic, C2/c
Temperature (K)100100120
a, b, c (Å)19.643 (3), 4.9874 (6), 21.482 (3)4.8252 (6), 10.3456 (12), 45.068 (5)21.164 (5), 5.0011 (12), 33.635 (8)
β (°) 102.056 (2) 90.530 (2) 95.149 (5)
V3)2058.2 (4)2249.7 (5)3545.7 (15)
Z448
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.440.170.34
Crystal size (mm)0.25 × 0.10 × 0.100.22 × 0.10 × 0.100.40 × 0.25 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Bruker APEXII CCD area-detector
diffractometer
Bruker SMART 1000 CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Multi-scan
(SADABS; Sheldrick, 1998)
Multi-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.899, 0.9580.963, 0.9830.903, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
25048, 4821, 3463 18537, 5131, 4200 16802, 3058, 1614
Rint0.0740.0420.111
(sin θ/λ)max1)0.6590.6590.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.128, 1.03 0.042, 0.101, 1.05 0.076, 0.197, 1.00
No. of reflections482151313058
No. of parameters289309237
No. of restraints333
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.480.41, 0.340.54, 0.44

Computer programs: APEX2 (Bruker, 2005), SMART (Bruker, 1998), SAINT (Bruker, 2005), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Selected geometric parameters (Å, º) for (I) top
P1—O21.475 (2)O1—C71.227 (3)
P1—N21.616 (2)N1—C71.355 (4)
P1—N31.632 (2)N2—C81.457 (4)
P1—N11.707 (2)N3—C151.465 (4)
O2—P1—N2115.79 (12)N3—P1—N1108.83 (12)
O2—P1—N3116.04 (12)C7—N1—P1123.5 (2)
N2—P1—N3102.33 (13)C8—N2—P1123.93 (19)
O2—P1—N1104.51 (11)C15—N3—P1120.01 (19)
N2—P1—N1109.20 (12)O1—C7—N1121.7 (2)
O2—P1—N1—C7173.6 (2)N3—P1—N1—C749.1 (3)
N2—P1—N1—C761.9 (3)P1—N1—C7—O12.6 (4)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.850 (18)2.04 (2)2.858 (3)162 (3)
N1—H1N···F10.850 (18)2.44 (3)2.881 (3)113 (2)
N2—H2N···O2ii0.833 (18)2.32 (2)3.092 (3)154 (3)
N3—H3N···O2ii0.826 (18)2.08 (2)2.869 (3)161 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Selected geometric parameters (Å, º) for (II) top
P1—O21.4804 (12)O1—C71.225 (2)
P1—N31.6141 (14)N1—C71.355 (2)
P1—N21.6263 (14)N2—C81.465 (2)
P1—N11.7084 (14)N3—C161.461 (2)
O2—P1—N3114.12 (7)N2—P1—N1106.75 (7)
O2—P1—N2117.74 (7)C7—N1—P1125.50 (11)
N3—P1—N2103.24 (7)C8—N2—P1121.68 (12)
O2—P1—N1102.89 (7)C16—N3—P1124.33 (12)
N3—P1—N1112.12 (7)O1—C7—N1123.24 (15)
O2—P1—N1—C7178.00 (13)N2—P1—N1—C753.42 (15)
N3—P1—N1—C758.94 (15)P1—N1—C7—O17.4 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.835 (14)2.071 (15)2.8958 (18)169.4 (18)
N2—H2N···O2ii0.832 (15)2.035 (15)2.8414 (18)163.2 (18)
N3—H3N···O2ii0.833 (15)2.148 (16)2.9173 (18)153.4 (18)
C15—H15A···F1iii0.982.763.156 (2)105.1
C13—H13A···O3iv0.952.493.390 (3)158.4
C3—H3B···O2v0.952.613.293 (2)129.3
C16—H16B···O4vi0.992.683.581 (2)150.8
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x, y+2, z+1; (v) x, y1, z; (vi) x+1/2, y1/2, z+3/2.
Selected geometric parameters (Å, º) for (III) top
P1—O21.475 (4)F1—C21.330 (6)
P1—N21.615 (5)O1—C11.233 (6)
P1—N31.622 (4)N1—C11.339 (7)
P1—N11.707 (5)N2—C31.410 (7)
O2—P1—N2116.7 (2)N3—P1—N1107.9 (2)
O2—P1—N3117.1 (2)C1—N1—P1123.4 (4)
N2—P1—N3102.1 (2)C3—N2—P1126.5 (4)
O2—P1—N1104.2 (2)C10—N3—P1120.9 (3)
N2—P1—N1108.5 (2)O1—C1—N1124.8 (5)
O2—P1—N1—C1176.1 (4)N3—P1—N1—C151.0 (5)
N2—P1—N1—C158.9 (5)P1—N1—C1—O13.3 (8)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (2)2.05 (3)2.877 (6)163 (5)
N2—H2···O2ii0.85 (2)2.19 (3)2.986 (6)158 (5)
N3—H3···O2ii0.84 (2)2.20 (3)2.972 (5)153 (5)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds