Download citation
Download citation
link to html
Only a few cyclo­octa­tetra­ene dianion (COT) π-complexes of lanthanides have been crystallographically characterized. This first single-crystal X-ray diffraction characterization of a scandium(III) COT chloride complex, namely di-μ-chlorido-bis­[(η8-cyclo­octa­tetra­ene)(tetra­hydro­furan-κO)scandium(III)], [Sc2(C8H8)2Cl2(C4H8O)2] or [Sc(COT)Cl(THF)]2 (THF is tetrahydrofuran), (1), reveals a dimeric mol­ecular structure with symmetric chloride bridges [average Sc—Cl = 2.5972 (7) Å] and a η8-bound COT ligand. The COT ring is planar, with an average C—C bond length of 1.399 (3) Å. The Sc—C bond lengths range from 2.417 (2) to 2.438 (2) Å [average 2.427 (2) Å]. Direct comparison of (1) with the known lanthanide (Ln) analogues (La, Ce, Pr, Nd, and Sm) illustrates the effect of metal-ion (M) size on mol­ecular structure. Overall, the M—Cl, M—O, and M—C bond lengths in (1) are the shortest in the series. In addition, only one THF mol­ecule completes the coordination environment of the small ScIII ion, in contrast to the previously reported dinuclear Ln–COT–Cl complexes, which all have two bound THF mol­ecules per metal atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617005678/yp3133sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617005678/yp3133Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229617005678/yp3133sup3.pdf
FT-IR and 1H NMR spectra for (1)

CCDC reference: 1543965

Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: XSHELL (Bruker, 2016); software used to prepare material for publication: APEX3 (Bruker, 2016), XPREP (Bruker, 2016) and XCIF (Bruker, 2016).

Di-µ-chlorido-bis[(η8-cyclooctatetraene)(tetrahydrofuran-κO)scandium(III)] top
Crystal data top
[Sc2(C8H8)2Cl2(C4H8O)2]F(000) = 536
Mr = 513.31Dx = 1.484 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.3324 (5) ÅCell parameters from 3993 reflections
b = 10.7540 (7) Åθ = 3.0–29.2°
c = 12.2892 (7) ŵ = 0.84 mm1
β = 111.349 (2)°T = 100 K
V = 1148.72 (12) Å3Rod, yellow
Z = 20.18 × 0.05 × 0.04 mm
Data collection top
Bruker D8 Venture PHOTON 100 CMOS
diffractometer
3102 independent reflections
Radiation source: fine-focus sealed tube2298 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω and phi scansθmax = 29.2°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1212
Tmin = 0.896, Tmax = 1k = 1414
11306 measured reflectionsl = 1613
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0197P)2 + 1.0743P]
where P = (Fo2 + 2Fc2)/3
3102 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.42 e Å3
104 restraintsΔρmin = 0.41 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sc10.59247 (5)0.46855 (4)0.38141 (4)0.00863 (11)
Cl10.67613 (6)0.49376 (5)0.60615 (5)0.01179 (13)
O10.59829 (18)0.67545 (14)0.39236 (14)0.0126 (3)
C10.4578 (3)0.3109 (2)0.2380 (2)0.0167 (5)
H10.3589020.2740990.2037180.020*
C20.5510 (3)0.2478 (2)0.3384 (2)0.0180 (5)
H20.4999830.1795360.3575490.022*
C30.7030 (3)0.2624 (2)0.4174 (2)0.0183 (5)
H30.7300510.2026590.4784510.022*
C40.8234 (3)0.3436 (2)0.4274 (2)0.0202 (6)
H40.9138910.3251400.4926050.024*
C50.8420 (3)0.4461 (2)0.3637 (2)0.0211 (6)
H50.9424820.4804550.3956180.025*
C60.7481 (3)0.5101 (2)0.2643 (2)0.0216 (5)
H60.7998820.5774570.2445630.026*
C70.5955 (3)0.4981 (2)0.1868 (2)0.0209 (5)
H70.5670580.5604700.1280980.025*
C80.4755 (3)0.4155 (2)0.1761 (2)0.0190 (5)
H80.3844490.4348100.1116210.023*
C90.4927 (3)0.7582 (2)0.3077 (2)0.0158 (5)
H9A0.3864670.7249640.2803680.019*
H9B0.5235810.7703040.2394320.019*
C100.7328 (3)0.7508 (2)0.4516 (2)0.0187 (5)
H10A0.7985950.7574420.4042930.022*
H10B0.7940870.7147320.5286280.022*
C110.6686 (3)0.8778 (2)0.4658 (2)0.0183 (5)
H11A0.7309840.9455320.4509090.022*
H11B0.6672900.8876860.5454930.022*
C120.5041 (3)0.8791 (2)0.3741 (2)0.0199 (5)
H12A0.4270670.8818760.4120750.024*
H12B0.4883700.9516080.3213470.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sc10.0100 (2)0.0083 (2)0.0087 (2)0.00018 (17)0.00469 (16)0.00100 (17)
Cl10.0098 (2)0.0161 (3)0.0096 (3)0.0007 (2)0.0036 (2)0.0012 (2)
O10.0116 (8)0.0091 (8)0.0152 (9)0.0013 (6)0.0027 (7)0.0010 (6)
C10.0114 (11)0.0180 (12)0.0216 (14)0.0043 (9)0.0072 (10)0.0111 (10)
C20.0269 (13)0.0091 (11)0.0252 (14)0.0024 (10)0.0181 (11)0.0049 (10)
C30.0292 (13)0.0133 (12)0.0148 (13)0.0114 (10)0.0109 (10)0.0025 (10)
C40.0135 (12)0.0299 (14)0.0145 (13)0.0105 (10)0.0017 (10)0.0066 (10)
C50.0104 (11)0.0305 (15)0.0256 (14)0.0074 (10)0.0104 (10)0.0169 (11)
C60.0348 (13)0.0176 (13)0.0258 (14)0.0106 (11)0.0270 (11)0.0076 (10)
C70.0410 (15)0.0147 (12)0.0119 (12)0.0054 (11)0.0154 (11)0.0029 (10)
C80.0208 (13)0.0232 (13)0.0083 (12)0.0086 (10)0.0004 (10)0.0048 (10)
C90.0150 (12)0.0132 (12)0.0185 (13)0.0018 (10)0.0052 (10)0.0037 (9)
C100.0152 (12)0.0142 (12)0.0238 (14)0.0063 (10)0.0037 (10)0.0024 (10)
C110.0268 (14)0.0131 (12)0.0197 (14)0.0068 (10)0.0140 (11)0.0050 (10)
C120.0250 (13)0.0121 (12)0.0275 (15)0.0024 (10)0.0154 (11)0.0006 (10)
Geometric parameters (Å, º) top
Sc1—C12.438 (2)C4—C51.398 (4)
Sc1—C22.432 (2)C4—H40.9500
Sc1—C32.417 (2)C5—C61.398 (4)
Sc1—C42.425 (2)C5—H50.9500
Sc1—C52.428 (2)C6—C71.401 (4)
Sc1—C62.430 (2)C6—H60.9500
Sc1—C72.422 (2)C7—C81.398 (4)
Sc1—C82.424 (2)C7—H70.9500
Sc1—O12.2285 (15)C8—H80.9500
Sc1—Cl12.5963 (7)C9—C121.519 (3)
Sc1—Cl1i2.5980 (7)C9—H9A0.9900
O1—C101.448 (3)C9—H9B0.9900
O1—C91.449 (3)C10—C111.527 (3)
C1—C21.399 (3)C10—H10A0.9900
C1—C81.401 (3)C10—H10B0.9900
C1—H10.9500C11—C121.538 (3)
C2—C31.406 (3)C11—H11A0.9900
C2—H20.9500C11—H11B0.9900
C3—C41.393 (4)C12—H12A0.9900
C3—H30.9500C12—H12B0.9900
O1—Sc1—C3154.86 (8)C1—C2—Sc173.55 (14)
O1—Sc1—C785.41 (7)C3—C2—Sc172.55 (14)
C3—Sc1—C798.22 (8)C1—C2—H2112.7
O1—Sc1—C8106.84 (7)C3—C2—H2112.7
C3—Sc1—C888.56 (8)Sc1—C2—H2139.0
C7—Sc1—C833.52 (8)C4—C3—C2135.2 (2)
O1—Sc1—C4122.61 (8)C4—C3—Sc173.62 (14)
C3—Sc1—C433.43 (9)C2—C3—Sc173.75 (14)
C7—Sc1—C488.50 (9)C4—C3—H3112.4
C8—Sc1—C497.89 (8)C2—C3—H3112.4
O1—Sc1—C595.83 (8)Sc1—C3—H3137.6
C3—Sc1—C564.26 (9)C3—C4—C5134.8 (2)
C7—Sc1—C564.42 (9)C3—C4—Sc172.95 (14)
C8—Sc1—C588.08 (8)C5—C4—Sc173.38 (14)
C4—Sc1—C533.49 (9)C3—C4—H4112.6
O1—Sc1—C681.12 (7)C5—C4—H4112.6
C3—Sc1—C688.25 (9)Sc1—C4—H4138.9
C7—Sc1—C633.57 (9)C6—C5—C4135.3 (2)
C8—Sc1—C664.31 (9)C6—C5—Sc173.33 (14)
C4—Sc1—C664.38 (9)C4—C5—Sc173.13 (14)
C5—Sc1—C633.45 (9)C6—C5—H5112.3
O1—Sc1—C2170.42 (8)C4—C5—H5112.3
C3—Sc1—C233.70 (8)Sc1—C5—H5139.4
C7—Sc1—C288.37 (8)C5—C6—C7135.0 (2)
C8—Sc1—C264.43 (9)C5—C6—Sc173.22 (14)
C4—Sc1—C264.38 (9)C7—C6—Sc172.92 (14)
C5—Sc1—C288.01 (8)C5—C6—H6112.5
C6—Sc1—C297.63 (8)C7—C6—H6112.5
O1—Sc1—C1137.10 (7)Sc1—C6—H6139.5
C3—Sc1—C164.40 (8)C8—C7—C6134.8 (2)
C7—Sc1—C164.28 (9)C8—C7—Sc173.32 (14)
C8—Sc1—C133.49 (8)C6—C7—Sc173.51 (14)
C4—Sc1—C187.93 (8)C8—C7—H7112.6
C5—Sc1—C197.18 (8)C6—C7—H7112.6
C6—Sc1—C187.80 (8)Sc1—C7—H7137.9
C2—Sc1—C133.39 (8)C7—C8—C1135.0 (2)
O1—Sc1—Cl180.81 (4)C7—C8—Sc173.16 (14)
C3—Sc1—Cl187.61 (6)C1—C8—Sc173.80 (14)
C7—Sc1—Cl1158.32 (7)C7—C8—H8112.5
C8—Sc1—Cl1168.15 (7)C1—C8—H8112.5
C4—Sc1—Cl184.98 (6)Sc1—C8—H8138.1
C5—Sc1—Cl1100.32 (6)O1—C9—C12104.09 (18)
C6—Sc1—Cl1126.73 (7)O1—C9—H9A110.9
C2—Sc1—Cl1107.19 (6)C12—C9—H9A110.9
C1—Sc1—Cl1135.85 (6)O1—C9—H9B110.9
O1—Sc1—Cl1i81.00 (4)C12—C9—H9B110.9
C3—Sc1—Cl1i119.28 (6)H9A—C9—H9B109.0
C7—Sc1—Cl1i113.32 (7)O1—C10—C11104.70 (19)
C8—Sc1—Cl1i91.11 (6)O1—C10—H10A110.8
C4—Sc1—Cl1i150.14 (7)C11—C10—H10A110.8
C5—Sc1—Cl1i176.35 (7)O1—C10—H10B110.8
C6—Sc1—Cl1i143.50 (7)C11—C10—H10B110.8
C2—Sc1—Cl1i94.84 (6)H10A—C10—H10B108.9
C1—Sc1—Cl1i84.05 (6)C10—C11—C12104.65 (19)
Cl1—Sc1—Cl1i81.03 (2)C10—C11—H11A110.8
Sc1—Cl1—Sc1i98.97 (2)C12—C11—H11A110.8
C10—O1—C9104.84 (16)C10—C11—H11B110.8
C10—O1—Sc1125.92 (13)C12—C11—H11B110.8
C9—O1—Sc1125.06 (13)H11A—C11—H11B108.9
C2—C1—C8135.2 (2)C9—C12—C11104.01 (19)
C2—C1—Sc173.06 (14)C9—C12—H12A111.0
C8—C1—Sc172.71 (14)C11—C12—H12A111.0
C2—C1—H1112.4C9—C12—H12B111.0
C8—C1—H1112.4C11—C12—H12B111.0
Sc1—C1—H1140.6H12A—C12—H12B109.0
C1—C2—C3134.6 (2)
C8—C1—C2—C31.6 (5)Sc1—C6—C7—C844.3 (3)
Sc1—C1—C2—C343.1 (3)C5—C6—C7—Sc142.8 (3)
C8—C1—C2—Sc141.6 (3)C6—C7—C8—C10.1 (5)
C1—C2—C3—C41.2 (5)Sc1—C7—C8—C144.3 (3)
Sc1—C2—C3—C444.7 (3)C6—C7—C8—Sc144.4 (3)
C1—C2—C3—Sc143.4 (3)C2—C1—C8—C72.4 (5)
C2—C3—C4—C51.3 (5)Sc1—C1—C8—C744.1 (3)
Sc1—C3—C4—C543.4 (3)C2—C1—C8—Sc141.7 (3)
C2—C3—C4—Sc144.7 (3)C10—O1—C9—C1242.6 (2)
C3—C4—C5—C60.4 (5)Sc1—O1—C9—C12159.41 (14)
Sc1—C4—C5—C642.9 (3)C9—O1—C10—C1139.2 (2)
C3—C4—C5—Sc143.3 (3)Sc1—O1—C10—C11163.06 (14)
C4—C5—C6—C70.1 (5)O1—C10—C11—C1220.2 (3)
Sc1—C5—C6—C742.7 (3)O1—C9—C12—C1128.5 (2)
C4—C5—C6—Sc142.8 (3)C10—C11—C12—C95.0 (3)
C5—C6—C7—C81.5 (5)
Symmetry code: (i) x+1, y+1, z+1.
Least-squares plane calculations for the cyclooctatetraene ring in (1) top
Individual atomDistance from weighted least-squares plane
C1-0.0161 (18)
C2-0.0024 (19)
C30.0137 (18)
C40.0013 (19)
C5-0.0096 (19)
C6-0.0059 (19)
C70.0120 (19)
C80.0071 (18)
The equation for the least-squares planes in the monoclinic coordinates is of the form -5.213 (5)x + 6.461 (5)y + 9.044 (5)z - 1.791 (4) = 0.
Major bond lengths in (1) (Å) versus those in analogous lanthanide complexes, [Ln(C8H8)Cl2(THF)2]2 (Ln = Sm, Nd, Pr, and Ce) top
M—Cl*M—O*M—C*C—C*
(1)2.5972 (7)2.2285 (15)2.427 (2)1.399 (3)
Sm2.8470 (8)2.526 (2)2.646 (4)1.401 (5)
Nd2.878 (2)2.557 (3)2.685 (7)1.393 (4)
Pr2.886 (2)2.572 (4)2.693 (8)1.392 (4)
Ce2.895 (2)2.583 (4)2.710 (7)1.395 (4)
* average
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds