The true identity of the diethyl ether adduct of tungsten(IV) chloride, WCl4(Et2O)x, has been in doubt since 1985. Initially postulated as the bis-adduct, WCl4(Et2O)2, questions arose when elemental analyses were more in line with a mono-ether adduct, viz. WCl4(Et2O). It was proposed that this was due to the thermal instability of the bis-adduct. Here, we report the room-temperature X-ray crystal structure and Hirshfeld surface characteristics of trans-tetrachloridobis(diethyl ether)tungsten(IV), trans-WCl4(Et2O)2 or trans-[WCl4(C4H10O)2]. The compound crystallizes, with half of the molecule in the asymmetric unit, in the centrosymmetric space group P21/n. The W—O distance is 2.070 (2) Å, while the W—Cl distances are 2.3586 (10) and 2.3554 (10) Å.
Supporting information
CCDC reference: 2054886
Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).
trans-Tetrachloridobis(diethyl ether-
κO)tungsten(IV)
top
Crystal data top
[WCl4(C4H10O)2] | F(000) = 452 |
Mr = 473.89 | Dx = 2.083 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5962 (3) Å | Cell parameters from 2974 reflections |
b = 11.4871 (4) Å | θ = 2.9–29.6° |
c = 9.0245 (4) Å | µ = 8.33 mm−1 |
β = 106.339 (4)° | T = 297 K |
V = 755.66 (5) Å3 | Block, clear dark yellow |
Z = 2 | 0.26 × 0.15 × 0.08 mm |
Data collection top
XtaLAB Mini II diffractometer | 2198 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source | 1587 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 30.7°, θmin = 3.0° |
ω scans | h = −10→10 |
Absorption correction: analytical (CrysAlis PRO; Rigaku OD, 2019) | k = −16→15 |
Tmin = 0.514, Tmax = 0.771 | l = −12→12 |
5730 measured reflections | |
Refinement top
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.026 | w = 1/[σ2(Fo2) + (0.0201P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.058 | (Δ/σ)max < 0.001 |
S = 1.01 | Δρmax = 0.97 e Å−3 |
2198 reflections | Δρmin = −0.84 e Å−3 |
73 parameters | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0042 (3) |
Primary atom site location: dual | |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
W1 | 0.500000 | 0.500000 | 0.500000 | 0.02813 (8) | |
Cl1 | 0.50132 (15) | 0.62664 (9) | 0.29459 (12) | 0.0478 (3) | |
Cl2 | 0.18755 (13) | 0.46261 (10) | 0.37950 (14) | 0.0499 (3) | |
O1 | 0.5713 (3) | 0.36274 (19) | 0.3799 (3) | 0.0351 (6) | |
C3 | 0.4782 (5) | 0.2489 (3) | 0.3603 (4) | 0.0432 (9) | |
H3A | 0.431735 | 0.231808 | 0.250967 | 0.052* | |
H3B | 0.374195 | 0.252988 | 0.402553 | 0.052* | |
C1 | 0.7191 (5) | 0.3719 (3) | 0.3027 (4) | 0.0416 (9) | |
H1A | 0.809652 | 0.311634 | 0.342222 | 0.050* | |
H1B | 0.779554 | 0.446707 | 0.327048 | 0.050* | |
C2 | 0.6467 (5) | 0.3597 (4) | 0.1311 (5) | 0.0625 (13) | |
H2A | 0.741798 | 0.378525 | 0.084061 | 0.094* | |
H2B | 0.545042 | 0.411744 | 0.093420 | 0.094* | |
H2C | 0.606815 | 0.281033 | 0.105847 | 0.094* | |
C4 | 0.6026 (5) | 0.1521 (3) | 0.4381 (5) | 0.0640 (13) | |
H4A | 0.699018 | 0.142437 | 0.389573 | 0.096* | |
H4B | 0.533600 | 0.081207 | 0.429453 | 0.096* | |
H4C | 0.654820 | 0.170806 | 0.545233 | 0.096* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
W1 | 0.02576 (11) | 0.03029 (12) | 0.02982 (12) | −0.00172 (8) | 0.01026 (8) | 0.00141 (10) |
Cl1 | 0.0638 (7) | 0.0434 (6) | 0.0416 (6) | 0.0016 (5) | 0.0236 (5) | 0.0107 (5) |
Cl2 | 0.0297 (4) | 0.0603 (6) | 0.0569 (7) | −0.0043 (4) | 0.0074 (5) | −0.0078 (6) |
O1 | 0.0341 (13) | 0.0310 (13) | 0.0466 (16) | −0.0052 (10) | 0.0218 (12) | −0.0061 (12) |
C3 | 0.045 (2) | 0.035 (2) | 0.052 (3) | −0.0119 (17) | 0.016 (2) | −0.008 (2) |
C1 | 0.036 (2) | 0.044 (2) | 0.053 (3) | 0.0007 (16) | 0.0257 (19) | −0.002 (2) |
C2 | 0.069 (3) | 0.073 (3) | 0.053 (3) | 0.006 (2) | 0.029 (3) | −0.003 (3) |
C4 | 0.082 (3) | 0.035 (2) | 0.075 (3) | 0.001 (2) | 0.021 (3) | 0.004 (2) |
Geometric parameters (Å, º) top
W1—Cl1i | 2.3586 (10) | C3—C4 | 1.500 (5) |
W1—Cl1 | 2.3586 (10) | C1—H1A | 0.9700 |
W1—Cl2i | 2.3554 (10) | C1—H1B | 0.9700 |
W1—Cl2 | 2.3554 (10) | C1—C2 | 1.497 (4) |
W1—O1i | 2.070 (2) | C2—H2A | 0.9600 |
W1—O1 | 2.070 (2) | C2—H2B | 0.9600 |
O1—C1 | 1.482 (3) | C2—H2C | 0.9600 |
O1—C3 | 1.473 (4) | C4—H4A | 0.9600 |
C3—H3A | 0.9700 | C4—H4B | 0.9600 |
C3—H3B | 0.9700 | C4—H4C | 0.9600 |
| | | |
Cl1—W1—Cl1i | 180.0 | H3A—C3—H3B | 107.8 |
Cl2—W1—Cl1i | 91.37 (4) | C4—C3—H3A | 109.1 |
Cl2i—W1—Cl1 | 91.37 (4) | C4—C3—H3B | 109.1 |
Cl2i—W1—Cl1i | 88.63 (4) | O1—C1—H1A | 109.2 |
Cl2—W1—Cl1 | 88.63 (4) | O1—C1—H1B | 109.2 |
Cl2i—W1—Cl2 | 180.0 | O1—C1—C2 | 111.9 (3) |
O1i—W1—Cl1i | 89.92 (7) | H1A—C1—H1B | 107.9 |
O1—W1—Cl1 | 89.92 (7) | C2—C1—H1A | 109.2 |
O1i—W1—Cl1 | 90.08 (7) | C2—C1—H1B | 109.2 |
O1—W1—Cl1i | 90.08 (7) | C1—C2—H2A | 109.5 |
O1—W1—Cl2i | 90.16 (7) | C1—C2—H2B | 109.5 |
O1i—W1—Cl2 | 90.16 (7) | C1—C2—H2C | 109.5 |
O1—W1—Cl2 | 89.84 (7) | H2A—C2—H2B | 109.5 |
O1i—W1—Cl2i | 89.84 (7) | H2A—C2—H2C | 109.5 |
O1—W1—O1i | 180.0 | H2B—C2—H2C | 109.5 |
C3—O1—W1 | 123.46 (18) | C3—C4—H4A | 109.5 |
C3—O1—C1 | 114.1 (2) | C3—C4—H4B | 109.5 |
C1—O1—W1 | 122.43 (19) | C3—C4—H4C | 109.5 |
O1—C3—H3A | 109.1 | H4A—C4—H4B | 109.5 |
O1—C3—H3B | 109.1 | H4A—C4—H4C | 109.5 |
O1—C3—C4 | 112.6 (3) | H4B—C4—H4C | 109.5 |
| | | |
W1—O1—C3—C4 | −115.4 (3) | C3—O1—C1—C2 | 63.1 (4) |
W1—O1—C1—C2 | −115.7 (3) | C1—O1—C3—C4 | 65.8 (4) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Comparative W—L and W—Cl bond lengths (Å) of WCl4(Et2O)2 and
analogous complexes The ligand represented by `py' is pyridine. Naming
conventions from each publication have been preserved.
[What does the superscript `I' represent?] topWCl4(Et2O)2 | WCl4(py)2 (Brenčič et al., 1979) | WCl4(CH3CN)2 (Manteghetti et al., 1999) | WCl4(Et2S)2 (Dierkes et al., 1995) |
W1—Cl1 2.3586 (10) | W—Cl 2.347 (1) | W—Cl1 2.351 (6) | W1—Cl1 2.343 (6) |
W1—Cl2 2.3554 (10) | | W—Cl2I 2.329 (5) | W1—Cl2 2.321 (3) |
| | | W2—Cl3 2.335 (6) |
| | | W2—Cl4 2.326 (3) |
W1—O1 2.070 (2) | W—N 2.181 (4) | W—N 2.084 (8) | W1—S1 2.517 (3) |
| | | W2—S2 2.516 (3) |