research papers\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoJOURNAL OF
SYNCHROTRON
RADIATION
ISSN: 1600-5775

Structure determination of two metal-organic complexes from high-resolution synchrotron powder diffraction data

CROSSMARK_Color_square_no_text.svg

aLaboratory for Crystallography, Institute of Molecular Chemistry, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018WV Amsterdam, The Netherlands, bLaboratory for Inorganic Chemistry, Institute of Molecular Chemistry, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018WV Amsterdam, The Netherlands, and cFaculty of Exact Sciences, Division Chemistry (OAC), Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
*Correspondence e-mail: kgoubitz@science.uva.nl

(Received 23 January 2001; accepted 20 August 2001)

The crystal structures of [1,2-bis(2,6-diisopropylphenylimino)acenaphthene-N,N′]carbonylchlororhodium(I) (1) and [N,N′-ethylene-bis(3-methylsalicylideneiminato)-O,N,N′,O′](tetrahydrofurfuryl)-cobalt(II) (2) have been determined from high-resolution synchrotron X-ray powder diffraction data. Compound 1 is the first neutral Rh complex, in contrast with findings in the literature, containing a bidentate nitrogen ligand, and compound 2 is the first three-dimensional structure of a (five-coordinated) tetrahydrofurfuryl­cobalt(III) complex. Grid-search and Rietveld refinement have been used to determine and refine the structures, respectively. Crystals of 1 are orthorhombic, space group Pbca, Z = 8, with cell parameters a = 21.729 (2), b = 27.376 (3), c = 11.580 (1) Å. Crystals of 2 are monoclinic, space group P21/n, Z = 4, a = 16.6701 (6), b = 9.4170 (4), c = 13.7088 (7) Å and β = 96.520 (3)°. Chemical diagrams for the two compounds are given. Soft restraints were applied during Rietveld refinement; for 1 converging to Rp = 8.4%, Rw = 11.0%, GoF = 2.3, and for 2 converging to Rp = 8.5%, Rw = 11.4%, GoF = 7.6.

1. Introduction.

The structure determinations presented in this paper are part of a series of attempts to determine crystal structures from X-ray powder diffraction data (Helmholdt et al., 1998[Helmholdt, R. B., Sonneveld, E. J. & Schenk, H. (1998). Z. Kristallogr. 213, 596-598.]; Goubitz et al., 1999[Goubitz, K., Sonneveld, E. J., Chernyshev, V. V., Yatsenko, A. V., Zhukov, S. G., Reiss, C. A. & Schenk, H. (1999). Z. Kristallogr. 214, 469-474.], 2001[Goubitz, K., Čapková, P., Melánová, K., Molleman, W. & Schenk, H. (2001). Acta Cryst. B57, 178-183.]; van Langevelde et al., 1999[Langevelde, A. J. van, Capková, P., Sonneveld, E. J., Schenk, H., Trchova, M. & Ilavsky, M. (1999). J. Synchrotron Rad. 6, 1035-1043.]; Dova et al., 2001[Dova, E., Stassen, A. F., Driessen, R. A. J., Sonneveld, E., Goubitz, K., Peschar, R., Haasnoot, J. G., Reedijk, J. & Schenk, H. (2001). Acta Cryst. B57, 531-538.]). The determination of crystal structures from single-crystal data has become a standard routine during the last decades provided it is possible to grow suitable crystals. If only powder is available then structure determination is certainly by no means a standard procedure. In the last decade a number of research groups have attempted to tackle this problem and a couple of program packages exist nowadays [e.g. POWSIM (Jansen et al., 1992a[Jansen, J., Peschar, R. & Schenk, H. (1992a). J. Appl. Cryst. 25, 231-236.],b[Jansen, J., Peschar, R. & Schenk, H. (1992b). J. Appl. Cryst. 25, 237-243.], 1993[Jansen, J., Peschar, R. & Schenk, H. (1993). Z. Kristallogr. 206, 33-43.]), SIRPOW (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435-436.], 1995[Altomare, A., Burla, M. C., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G. & Polidori, G. (1995). J. Appl. Cryst. 28, 842-846.])]. The main problem in structure determination is the number of reflections with reliable intensity that can be extracted from a powder diffractogram. Particularly for lower symmetries (up to orthorhombic) and larger structures, the overlap of reflections often prevents the extraction of reliable intensities, especially at higher θ values. Standard ab initio determination procedures are hampered because data sets obtained from powder data are far from complete. The grid-search technique (Chernyshev & Schenk, 1998[Chernyshev, V. V. & Schenk, H. (1998). Z. Kristallogr. 213, 1-3.]) used here can overcome this problem for molecules with known conformation. Only the lower angle part of the diffractogram, where overlap of reflections is less severe, is needed to obtain a reliable estimate of the position and the orientation of the molecule within the asymmetric unit. Variation of proper torsion angles can result in a more reliable structural model that can be used as a starting point in a refinement procedure.

2. Chemical background.

Compound 1 is a Rh complex containing a bidentate nitrogen ligand. These complexes are of great interest because of their catalytic activity in several types of reaction such as hydroformylation (Saus et al., 1983[Saus, A., Nhu Phu, T., Mirbach, M. J. & Mirbach, F. M. (1983). J. Mol. Catal. 18, 117-125.]; Garcia et al., 1985[Garcia, V., Garralda, M. A. & Ibarlucea, L. (1985). Trans. Met. Chem. 10, 288-291.]; Clauti et al., 1986[Clauti, G., Zassinovich, G. & Mestroni, G. (1986). Inorg. Chim. Acta, 112, 103-106.]; Bayón et al., 1991[Bayón, J. C., Esteban, P. & Real, J. (1991). J. Organomet. Chem. 403, 393-399.]; Botteghi & Paganelli, 1993[Botteghi, C. & Paganelli, S. (1993). J. Organomet. Chem. 451, C18-C21.]), hydrogenation (Mestroni et al., 1977[Mestroni, G., Zassinovich, G. & Camus, A. (1977). J. Organomet. Chem. 140, 63-72.]; Pasternak et al., 1976[Pasternak, H., Glowiak, T. & Pruchnik, F. (1976). Inorg. Chim. Acta, 19, 11-14.]; Pasternak & Pruchnik, 1976[Pasternak, H. & Pruchnik, F. (1976). Inorg. Nucl. Chem. Lett. 12, 591.]; Zassinovich et al., 1976[Zassinovich, G., Mestroni, G. & Camus, A. (1976). Inorg. Nucl. Chem. Lett. 12, 865.], 1977[Zassinovich, G., Mestroni, G. & Camus, A. (1977). J. Mol. Catal. 2, 63-64.], 1987[Zassinovich, G., Mestroni, G. & Camus, A. (1987). J. Mol. Catal. 42, 81.]) and hydrogen transfer (Gillard et al., 1975[Gillard, R. D., Harrison, K. & Mather, I. H. (1975). J. Chem. Soc. Dalton Trans. pp. 133-140.]). These complexes are also known for their electrocatalytic capability in the reduction of carbon dioxide (Bollinger et al., 1988[Bollinger, C. M., Story, N., Sullivan, B. P. & Meyer, T. J. (1988). Inorg. Chem. 27, 4582-4587.]). Compound 1 was prepared by reacting [Rh(CO)2(Cl)]2 with 2,6-diisopropylbis-(phenylimino)acenaphtene in dichloromethane. Details of the synthesis will be published elsewhere (Mahabiersing et al., 2001[Mahabiersing, M. C., Hartl, F. & Spek, A. L. (2001). To be published.]).

Organocobalt(III)salen complexes like 2 can be used as model compounds for coenzyme B12 (5′-deoxyadenosylcobalamin). Similar to the coenzyme, the Co—C bond of (alkyl)Co(salen) complexes can be cleaved homolytically by heat or light to create a cobalt(II) complex and an alkyl radical. Co—C bond homolysis is the first step in a number of B12-dependent enzymatic 1,2-rearrangement reactions (Halpern, 1985[Halpern, J. (1985). Science, 227, 869-875.]). The thus generated 5′-deoxyadenosyl radical abstracts an H atom from the substrate, after which a 1,2-migration occurs.

Structural investigations of the coenzyme and models thereof have provided valuable information on the relative weakness of the organometallic bond at the coenzyme (Toscano & Marzilli, 1984[Toscano, P. J. & Marzilli, L. G. (1984). Prog. Inorg. Chem. 31, 105.]). A notable feature in the crystal structure of the coenzyme is the large Co—C—C angle of 125°. Since the tetrahydrofurfuryl ligand structurally resembles the 5′-deoxyadenosyl group, comparison of structural information on tetrahydrofurfurylcobalt(III) complexes with that of the coenzyme may show interesting similarities or differences. Tetrahydrofurfurylbromide was prepared according to a published procedure (Smith, 1955[Smith, L. H. (1955). Org. Synth. Collect. 3, 793.]). (Tetrahydrofurfuryl)Co(3-mesalen) was synthesized by using the procedure for (n-butyl)Co(salen) (van Arkel et al., 1993[Arkel, B. van, van der Baan, J. L., Balt, S., Bickelhaupt, F., de Bolster, M. W. G., Kingma, I. E., Klumpp, G. W., Moos, J. W. E. & Spek, A. L. (1993). J. Chem. Soc. Perkin Trans 1, pp. 3023-3032.]).

3. Experimental

X-ray powder diffraction photographs of these samples were taken using an Enraf–Nonius FR 552 Guinier Johansson camera (Enraf–Nonius, Delft, The Netherlands) equipped with a Johansson monochromator (Roberts & Parrish, 1962[Roberts, B. W. & Parrish, W. (1962). International Tables for Crystallography, Vol. III, edited by C. H. MacGillavry & G. D. Rieck, pp. 73-88. Birmingham: Kynoch Press.]) using Cu Kα1 radiation, λ = 1.54060 Å. The samples were prepared by pressing the powder into a thin layer onto Mylar foil. To improve particle statistics the sample holder was rotated in the specimen plane. For indexing of the patterns the accurate positions of as many lines as possible were collected by reading out the Guinier photographs with an optical instrument. Using a Johansson LS-18 microdensitometer the Guinier photographs were digitized from 4.0 to 84.2° 2θ in steps of 0.01° 2θ. Cell parameters and (possible) space groups were determined using the program ITO (Visser, 1969[Visser, J. W. (1969). J. Appl. Cryst. 2, 89-95.]).

X-ray powder diffraction patterns of both compounds were measured at the high-resolution powder diffraction station BM16 (Fitch, 1996[Fitch, A. N. (1996). Mater. Sci. Forum, 228, 219-222.]) at the European Synchrotron Radiation Facility (ESRF, Grenoble, France) with λ = 0.65296 Å for 1 and λ = 0.65052 Å for 2. The wavelength was calibrated by measuring 11 peaks from NIST Si standard 640b (lattice parameter certified as 5.43094 Å). These peaks were fitted with a pseudo-Voigt profile function to obtain peak positions, accounting for asymmetry using the Finger–Cox–Jephcoat correction, and then fitting the wavelength and instrumental zero point to these positions via least squares. For data collection a capillary with a diameter of 1.5 mm was filled with powder and rotated during exposure. Continuous scans were made from 0.0 to 25.0° 2θ for 1 and 0.0 to 30.0° 2θ for 2 with 0.5° 2θ min−1 and a sampling time of 50 ms. After data collection the scans were binned at 0.005° 2θ.

All data collections were performed at room temperature.

4. Structure solution and refinement

To obtain reflection intensities a full-pattern decomposition (FPD) procedure using the program MRIA (Zlokazov & Chernyshev, 1992[Zlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst. 25, 447-451.]) was performed: the high-resolution synchrotron powder diffraction patterns were fitted employing a split-type pseudo-Voigt peak profile function (Toraya, 1986[Toraya, H. (1986). J. Appl. Cryst. 19, 440-447.]). Some details of the FPD procedure are listed in Table 2.

Initial models of both compounds were built from similar complexes searched for in the Cambridge Structural Database (CSD) (Allen & Kennard, 1993[Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.]) and the necessary changes were made using the program package Cerius2 (Molecular Simulations Inc., 1995[Molecular Simulations Inc. (1995). Cerius2. Molecular Simulations Inc., Burlington, USA.]). Compound 1 (Fig. 1[link]) could be built from the CSD entry WETGIL (van Asselt et al., 1994[Asselt, R. van, Elsevier, C. J., Smeets, W. J. J., Spek, A. L. & Benedix, R. (1994). Recl Trav. Chim. Pays-Bas, 113, 88-98.]); replacing Pd by Rh and the CH3 group by CO yielded the desired model, which was used in the grid-search procedure. For 2 the CSD entry ESALCP (Haller & Enemark, 1978[Haller, K. J. & Enemark, J. H. (1978). Acta Cryst. B34, 102-109.]) was used and by using Cerius2 the molecule was completed with the tetrahydrofurfuryl moiety. This model was optimized using some cycles of energy minimization.

[Figure 1]
Figure 1
Chemical diagram of 1.

To position the molecule in the asymmetric part of the unit cell, the initial models were used in the grid-search procedure (Chernyshev & Schenk, 1998[Chernyshev, V. V. & Schenk, H. (1998). Z. Kristallogr. 213, 1-3.]) performed by the program MRIA, using 50 low-angle Xobs [Xobs and R(X) are defined in expressions (1) and (2) of Chernyshev & Schenk (1998[Chernyshev, V. V. & Schenk, H. (1998). Z. Kristallogr. 213, 1-3.])] values extracted from the patterns after the FPD procedure. The model was translated and rotated through the asymmetric unit. The initial grid increments were 0.6 Å for molecule translations along a, b and c, and 30° for the three rotations around φ, ψ and κ angles. The minima found in this way were examined in more detail by gradually lowering the incremental steps in translation to 0.1 Å and in rotation to 0.5°, resulting in R(X) values of 37.2 and 45.6%, respectively. For 2 the model was further refined by using a script that automatically varied two torsion angles τ1 and τ2 (Fig. 2[link]) in steps of 5° each and that updated the input for the grid search. This resulted in a minimum R(X) value of 35.1%.

[Figure 2]
Figure 2
Chemical diagram of 2 (the torsion angles varied are indicated by arrows).

The bond-restrained Rietveld refinement (RR) was performed using the same program suite MRIA. For both patterns the split-type pseudo-Voigt peak profile function (Toraya, 1986[Toraya, H. (1986). J. Appl. Cryst. 19, 440-447.]) was used. The preferred orientation was refined using the symmetrized harmonics expansion method (Ahtee et al., 1989[Ahtee, M., Nurmela, M., Suortti, P. & Järvinen, M. (1989). J. Appl. Cryst. 22, 261-268.]; Järvinen, 1993[Järvinen, M. (1993). J. Appl. Cryst. 26, 525-531.]).

In order to retain chemically realistic models a bond-restrained RR as described by Baerlocher (1993[Baerlocher, C. (1993). The Rietveld Method, edited by R. A. Young, pp. 187-196. Oxford University Press.]) was applied to all interatomic distances up to 3.0 Å (with σ = 1% of the ideal distance). The weight cw (Baerlocher, 1993[Baerlocher, C. (1993). The Rietveld Method, edited by R. A. Young, pp. 187-196. Oxford University Press.], p. 188) that weighs the residual function of the restraints SR versus the Rietveld residual SY was gradually reduced from 209.4 to 1.0 for 1 and from 46.5 to 0.2 for 2.

During the refinement the Uiso values of identical atom types were coupled. The relevant crystal data and the results of the refinements are presented in Tables 1[link] and 2[link], respectively; selected bond distances and angles are listed in Tables 3[link] and 4[link].1 Plots of the observed and calculated X-ray diffraction patterns and difference plots after RR and PLUTON (Spek, 1990[Spek, A. L. (1990). Acta Cryst. A46, C-34.]) plots of both compounds are depicted in Figs. 3[link][link][link]–6[link].

Table 1
Crystallographic data for compounds 1 and 2

  1 2
Formula C37H40N2OClRh C23H27N2O3Co
Space Group Pbca P21/n
a (Å) 21.729 (2) 16.6701 (6)
b (Å) 27.376 (3) 9.4170 (4)
c (Å) 11.579 (1) 13.7088 (7)
β(°)   96.520 (3)
V3) 6888 (2) 2138.1 (2)
Z 8 4
Wavelength (Å) 0.65296 0.65051
Dx (g cm−3) 1.29 1.35
F(000) (electrons) 2768 920

Table 2
Details of the bond-restrained Rietveld refinement

Rp = Σ|yobsycalc|/Σyobs. Rwp = Σw(yobsycalc)/Σwyobs. The second line for GoF, Rp and Rwp indicates the results of the FPD procedure.

  1 2
M20 25.1 14.0
2θ region (°) 2.5–25.0 0.01–30.00
Number of datapoints 4500 5999
Number of reflections 1102 1182
Number of restraints 377 276
     
Number of variables    
  Structural    
    Lattice 3 4
    Positional 126 87
    Thermal 5 4
  Other    
    Texture 9 15
    Profile 19 19
    Background 12 12
    Zero shift 1 1
GoF 2.5 7.6
  2.3 8.0
Rp (%) 8.4 8.5
  7.7 8.6
Rwp (%) 11.1 11.4
  10.3 11.8

Table 3
Selected distances (Å) and angles (°) for 1

Rh—Cl 2.25 (3) Rh—N2 2.06 (3)
Rh—N1 2.06 (3) Rh—C13 1.99 (4)
 
Cl—Rh—N1 174.0 (10) N1—Rh1—N2 80.0 (10)
Cl—Rh—N2 94.3 (9) N1—Rh1—C13 94.3 (11)
Cl—Rh—C13 91.5 (10) N2—Rh1—C13 174.2 (12)

Table 4
Selected distances (Å) and angles (°) for 2

Co—O1 1.84 (4) Co—N2 1.94 (6)
Co—O2 1.94 (5) Co—C19 2.04 (6)
Co—N1 1.86 (7)    
       
O1—Co—O2 88 (2) O2—Co—N2 92 (3)
O1—Co—N1 96 (2) O2—Co—C19 84 (3)
O1—Co—N2 178 (2) N1—Co—N2 84 (3)
O1—Co—C19 90 (2) N1—Co—C19 94 (3)
O2—Co—N1 175 (2) N2—Co—C19 93 (2)
[Figure 3]
Figure 3
Bond-restrained RR of 1. The upper curve illustrates the observed data, the middle curve illustrates the calculated data, while the lower curve shows the difference between the observed and calculated data. Markers of all reflections are included at the bottom.
[Figure 4]
Figure 4
Bond-restrained RR of 2. The upper curve illustrates the observed data, the middle curve illustrates the calculated data, while the lower curve shows the difference between the observed and calculated data. Markers of all reflections are included at the bottom
[Figure 5]
Figure 5
PLUTON plot of 1 after bond-restrained RR.
[Figure 6]
Figure 6
PLUTON plot of 2 after bond-restrained RR.

5. Discussion

5.1. Structural features of 1

After the RR, inspection of the observed and calculated pattern revealed some residual intensity. The shoulder at 4.3° and the single peak at 4.7° and other peaks in the difference pattern are considerably broader than the peaks belonging to Bragg reflections, suggesting some impurity in the sample. This could also explain the rather high peak in the difference pattern at 3.4°, because that peak has the same shape as the peaks mentioned before (Fig. 7[link]). The same applies to some other peaks in the low-angle region of the difference pattern. During the Guinier measurements these same peaks were present in the first photograph, but photographs taken from the same sample a couple of hours later no longer showed these peaks. This suggests the presence of a solvent that, under the vacuum conditions in the Guinier–Johansson camera, (slowly) evaporated. The capillary used for measuring the synchrotron data was filled and closed immediately, so evaporation of possible solvent could be prevented.

[Figure 7]
Figure 7
Lower-angle part of the diffraction pattern of 1 (see §5.1[link])

The bond distances and angles are similar to those found in comparable complexes in the literature. All aromatic rings are planar and the coordination of the Rh atom is a regular octahedron.

Meanwhile, from 1, a single-crystal structure has also been determined (Mahabiersing et al., 2001[Mahabiersing, M. C., Hartl, F. & Spek, A. L. (2001). To be published.]). In that structure a solvent molecule (acetone) is present and the crystals are tetragonal with space group I41/a. Matching identical atoms of both structures led to an r.m.s. of 0.44 Å, the largest differences occurring in the diisopropylphenyl moieties (not taking those into account in the match led to an r.m.s. value of 0.10 Å). This is further evidence that the methods described in this paper lead to correctly determined and refined stuctures.

5.2. Structural features of 2

Compound 2 could only be refined by employing a very small damping factor (0.005) to avoid destroying the geometry of the molecule during refinement. Examination of the sample and the powder pattern revealed that this powder was of poor quality (maybe due to the crystallinity and/or particle size) and hardly any significant diffraction signal was present at diffraction angles beyond 20° 2θ; this may have caused the difficulties encountered during refinement. It is also noticeable that the full width at half-maximum of 1 is considerably smaller (minimum 0.014) than that of 2 (minimum 0.038). Attempting to refine 2 without the heavy damping was not successful; the only atoms that could be refined were the Co atom and the five atoms directly bonded to it, and every attempt to decrease the bond restraints or to release the other atomic positions failed; this RR converged to RP = 10.3%.

Compound 2 is comparable with other Co-(salen) complexes from the literature. The equatorial atoms which are directly connected to the Co atom show some tetrahedral distortion which, in combination with the N,N′-ethylene bridge, lead to a slight deviation from planarity of both aromatic rings. This tetrahedral distortion was also observed in cobaloximes by De Ridder et al. (1996[De Ridder, D. J. A., Zangrandeo, E. & Bürgi, H.-B. (1996). J. Mol. Struct. 374, 63-83.], and references therein). The tetrahydrofurfuryl moiety is almost perpendicular to the rest of the molecule.

Supporting information


Computing details top

For both compounds, cell refinement: UnitCell; data reduction: MRIA; program(s) used to solve structure: MRIA; program(s) used to refine structure: MRIA; molecular graphics: CHEMDRAW and PLATON.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
(Compound_1) chloro-CO-(bis(2,6-di-isoprpopylpheylimino)acenaphtene-N,N')-rhodium top
Crystal data top
C37H40ClN2ORhV = 6888 (2) Å3
Mr = 667.07Z = 8
Orthorhombic, PbcaSynchrotron radiation, λ = 0.65296 Å
Hall symbol: -p 2ac 2abµ = 0.6 mm1
a = 21.729 (2) ÅT = 293 K
b = 27.376 (3) Åcylinder, ? × 0.7 mm mm
c = 11.579 (1) Å
Data collection top
ESRF BM16
diffractometer
Data collection mode: transmission
Radiation source: synchrotronScan method: continuous
Specimen mounting: capillary2θmin = 2.500°, 2θmax = 25.00°, 2θstep = 0.005°
Refinement top
Rp = 8.4175 parameters
Rwp = 11.138 restraints
Rexp = ?Calculated and kept fixed
χ2 = 6.250
4500 data pointsBackground function: polynomal
Profile function: split-type pseudo-VoigtPreferred orientation correction: 'Ahtee and Jarvinen'
Crystal data top
C37H40ClN2ORhV = 6888 (2) Å3
Mr = 667.07Z = 8
Orthorhombic, PbcaSynchrotron radiation, λ = 0.65296 Å
a = 21.729 (2) ŵ = 0.6 mm1
b = 27.376 (3) ÅT = 293 K
c = 11.579 (1) Åcylinder, ? × 0.7 mm mm
Data collection top
ESRF BM16
diffractometer
Scan method: continuous
Specimen mounting: capillary2θmin = 2.500°, 2θmax = 25.00°, 2θstep = 0.005°
Data collection mode: transmission
Refinement top
Rp = 8.44500 data points
Rwp = 11.1175 parameters
Rexp = ?38 restraints
χ2 = 6.250Calculated and kept fixed
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Rh10.5684 (6)0.3673 (4)0.5327 (10)*
Cl10.4653 (12)0.3676 (9)0.5116 (18)*
N10.6610 (10)0.3707 (8)0.5681 (19)*
N20.5655 (10)0.3838 (8)0.705 (2)*
C10.6703 (10)0.3808 (9)0.6734 (18)*
C20.7244 (10)0.3815 (11)0.7402 (17)*
C30.7880 (12)0.3750 (10)0.7166 (16)*
C40.8308 (11)0.373 (2)0.817 (3)*
C50.8095 (12)0.380 (3)0.928 (3)*
C60.7467 (12)0.398 (4)0.946 (3)*
C70.7179 (12)0.400 (3)1.056 (2)*
C80.6529 (14)0.400 (2)1.067 (2)*
C90.6151 (9)0.3976 (9)0.971 (2)*
C100.6424 (9)0.3921 (10)0.862 (2)*
C110.6204 (10)0.3875 (9)0.746 (2)*
C120.7058 (9)0.3892 (14)0.854 (2)*
C130.5804 (12)0.3525 (11)0.366 (3)*
O130.5851 (13)0.3448 (11)0.278 (3)*
C140.7077 (11)0.3555 (6)0.4867 (18)*
C150.7234 (12)0.3054 (8)0.476 (2)*
C160.7707 (13)0.2902 (8)0.400 (2)*
C180.7842 (13)0.3743 (8)0.340 (2)*
C190.7381 (12)0.3904 (8)0.417 (2)*
C200.6896 (11)0.2656 (8)0.549 (2)*
C210.7335 (12)0.2405 (8)0.630 (2)*
C220.6568 (10)0.2288 (8)0.471 (2)*
C230.7212 (12)0.4459 (9)0.425 (2)*
C240.7764 (13)0.4753 (8)0.467 (2)*
C250.6980 (11)0.4648 (8)0.311 (2)*
C260.5108 (10)0.3813 (6)0.775 (2)*
C270.4782 (12)0.4246 (8)0.802 (2)*
C280.4273 (12)0.4218 (8)0.878 (3)*
C290.4099 (14)0.3770 (8)0.929 (3)*
C170.8011 (15)0.3254 (8)0.335 (3)*
C300.4385 (12)0.3338 (8)0.894 (3)*
C310.4897 (12)0.3352 (7)0.819 (2)*
C320.4987 (12)0.4744 (9)0.752 (2)*
C330.4493 (14)0.4978 (9)0.675 (2)*
C340.5171 (11)0.5094 (8)0.852 (2)*
C350.5223 (12)0.2876 (8)0.788 (2)*
C360.4807 (12)0.2510 (8)0.726 (2)*
C370.5498 (11)0.2642 (8)0.898 (2)*
H10.802730.369770.63452*
H20.875530.372550.79426*
H30.839920.385670.98991*
H40.746190.396941.12774*
H50.635660.404591.14665*
H60.569710.400080.97761*
H70.779190.254850.38967*
H80.832110.314030.27445*
H90.806560.398620.28890*
H100.656340.283270.59441*
H110.766400.224610.58515*
H120.751160.265740.68351*
H130.711010.215510.67785*
H140.624410.246200.42087*
H150.686200.212090.41974*
H160.633300.203500.51744*
H170.688860.448850.48102*
H180.790580.462760.54411*
H190.813270.470300.41072*
H200.768020.510430.47085*
H210.731950.459690.24681*
H220.661500.445960.28395*
H230.689100.500120.31176*
H240.401270.451590.89068*
H250.367190.374420.96421*
H260.422200.301310.91827*
H270.535780.468700.70549*
H280.439860.475220.61058*
H290.410070.501980.72382*
H300.462040.529970.64681*
H310.479900.513340.90543*
H320.550860.493590.89863*
H330.529870.541120.82320*
H340.559030.296020.73582*
H350.446260.243120.77591*
H360.467600.266010.65177*
H370.504850.219970.70692*
H380.581170.288540.93443*
H390.517780.257520.95441*
H400.574130.233870.88007*
Geometric parameters (Å, º) top
Rh1—C131.99 (3)C21—H131.01 (2)
Rh1—N22.04 (3)C22—H150.99 (2)
Rh1—N12.06 (2)C22—H161.01 (2)
Rh1—Cl12.26 (3)C22—H141.03 (2)
N1—C11.27 (3)C23—H170.96 (3)
N1—C141.45 (3)C23—C251.50 (4)
N2—C111.29 (3)C23—C241.52 (4)
N2—C261.44 (3)C24—H200.98 (2)
C1—C111.38 (3)C24—H181.00 (2)
C1—C21.41 (3)C24—H191.04 (3)
C2—C121.40 (3)C25—H230.99 (2)
C2—C31.42 (3)C25—H221.00 (2)
C3—H11.01 (2)C25—H211.06 (3)
C3—C41.49 (4)C26—C271.41 (3)
C4—H21.01 (3)C26—C311.43 (3)
C4—C51.38 (4)C27—C281.41 (4)
C5—H30.98 (3)C27—C321.55 (3)
C5—C61.46 (6)C28—H241.00 (2)
C6—C121.40 (4)C28—C291.42 (4)
C6—C71.43 (4)C29—H251.01 (3)
C7—H41.03 (3)C29—C301.40 (3)
C7—C81.42 (4)C17—H81.02 (3)
C8—H51.00 (3)C30—H261.00 (2)
C8—C91.39 (4)C30—C311.41 (4)
C9—H60.99 (2)C31—C351.53 (3)
C9—C101.40 (3)C32—H270.98 (3)
C10—C121.38 (3)C32—C331.53 (4)
C10—C111.44 (3)C32—C341.55 (4)
C13—O131.04 (4)C33—H300.98 (2)
C14—C191.41 (3)C33—H280.99 (2)
C14—C151.42 (3)C33—H291.03 (3)
C15—C161.42 (4)C34—H330.97 (2)
C15—C201.56 (3)C34—H321.01 (2)
C16—H70.99 (2)C34—H311.02 (3)
C16—C171.39 (4)C35—H341.02 (3)
C18—H91.02 (2)C35—C361.52 (3)
C18—C171.39 (3)C35—C371.55 (4)
C18—C191.41 (4)C36—H350.97 (2)
C19—C231.57 (3)C36—H361.00 (2)
C20—H101.01 (2)C36—H371.02 (2)
C20—C211.50 (3)C37—H390.98 (2)
C20—C221.53 (3)C37—H401.00 (2)
C21—H110.98 (2)C37—H381.04 (2)
C21—H121.01 (2)
C37···H14i1.67 (2)C14···C213.60 (3)
C22···H381.76 (2)C2···C93.60 (3)
C25···H172.02 (3)C6···C113.60 (4)
C4···H32.04 (3)C20···C373.60 (3)
C24···H172.04 (3)C26···C373.60 (3)
C20···H122.05 (3)O13···C143.61 (4)
C20···H112.05 (2)C14···C243.61 (3)
C35···H352.06 (2)C3···C103.62 (3)
C35···H362.06 (3)C26···C343.62 (3)
C19···H172.06 (2)C14···C253.62 (3)
C22···H102.06 (2)C13···C193.63 (4)
C27···H272.07 (3)C9···C273.64 (3)
C34···H272.07 (3)C22···C353.64 (3)
C33···H272.07 (3)C14···C223.64 (3)
C7···H52.07 (3)C26···C333.65 (3)
C30···H252.07 (3)C3···C153.65 (3)
C32···H282.07 (3)C3···C193.65 (3)
C37···H342.08 (3)C11···C143.66 (3)
C17···H92.08 (2)C7···C183.66 (4)
C10···H62.08 (2)C12···C22i3.66 (4)
C20···H132.08 (2)C1···C263.66 (3)
C16···H82.08 (3)C9···C313.67 (3)
C31···H342.08 (2)C26···C363.67 (3)
C8···H62.08 (3)C3···C113.67 (3)
C31···H262.08 (3)C1···C93.68 (3)
C21···H102.09 (2)C3···C303.69 (4)
C23···H222.09 (3)C2···C153.70 (3)
C15···H102.09 (3)C2···C73.70 (3)
C17···H72.09 (2)C10···C313.70 (3)
C29···H262.09 (2)Cl1···C313.70 (4)
C9···H52.09 (2)C8···C22i3.70 (6)
C32···H292.09 (3)Cl1···C273.72 (4)
C23···H182.09 (3)C5···C103.72 (3)
C18···H82.10 (2)C10···C273.74 (3)
C28···H252.10 (3)N2···C283.75 (4)
C15···H72.10 (2)C4···C273.76 (4)
C27···H242.10 (3)C2···C193.76 (3)
C20···H152.10 (2)N1···C183.76 (4)
C23···H232.10 (2)C4···C73.77 (4)
C29···H242.10 (2)N2···C303.78 (4)
C35···H392.10 (3)N1···C163.78 (3)
C32···H302.10 (3)C5···C83.80 (4)
C36···H342.10 (2)C8···C113.80 (3)
C23···H202.11 (2)Rh1···C353.80 (3)
C3···H22.11 (2)Cl1···O133.81 (4)
C35···H372.11 (2)N1···O133.81 (4)
C6···H42.11 (3)C18···C293.82 (4)
C23···H212.11 (3)Rh1···C153.83 (3)
C32···H322.11 (3)C29···C353.83 (4)
C23···H192.11 (3)Rh1···C313.83 (3)
C32···H312.11 (3)C20···C173.84 (4)
C19···H92.12 (3)Rh1···C203.84 (3)
C32···H332.12 (2)C28···C343.85 (4)
C6···H32.12 (3)C1···C43.87 (3)
C20···H142.12 (3)C23···C173.87 (3)
C2···H12.12 (2)C27···C353.87 (3)
C5···H22.12 (3)O13···C353.88 (4)
C20···H162.13 (2)C29···C173.88 (5)
C35···H382.13 (3)C29···C323.88 (4)
C35···H402.14 (2)C19···C203.89 (3)
C8···H42.15 (3)C15···C233.89 (3)
C4···H12.20 (3)C31···C323.89 (3)
C11···C122.24 (3)C9···O133.90 (4)
C1···C122.24 (3)C7···C22i3.90 (7)
C2···C112.27 (3)O13···C193.90 (4)
N1···C112.29 (3)C8···C243.91 (6)
C1···C102.29 (3)C13···C363.91 (4)
C2···C102.29 (3)O13···C153.93 (4)
N2···C12.31 (3)C4···C313.93 (4)
C7···C122.37 (4)C2···C203.94 (3)
C8···C102.39 (3)Rh1···C373.95 (2)
C9···C122.40 (3)C12···C243.95 (4)
C1···C142.41 (3)C7···C21i3.96 (7)
C11···C262.41 (3)N1···C213.96 (3)
C15···C172.42 (4)C13···C223.96 (4)
C5···C122.42 (3)C10···C353.97 (3)
C16···C182.42 (3)C13···C203.97 (4)
C3···C122.43 (3)Rh1···C193.97 (3)
C28···C302.43 (3)C9···C343.97 (3)
C14···C182.43 (4)N2···C343.98 (3)
C26···C282.43 (3)N2···C373.98 (3)
N1···C22.44 (3)N1···C243.98 (3)
C19···C172.44 (4)C3···C243.99 (3)
C29···C312.44 (4)C3···C214.00 (3)
C7···C92.44 (3)C6···C22i4.00 (10)
C15···C192.45 (3)Rh1···C274.00 (3)
C4···C62.45 (5)C9···C374.01 (3)
C26···C302.46 (3)N1···C254.01 (3)
C14···C162.46 (3)C24···C284.02 (4)
C27···C292.47 (4)C8···C134.02 (4)
C27···C312.47 (3)N2···C334.03 (3)
C6···C102.47 (4)N2···C134.03 (4)
C2···C62.47 (4)N1···C224.04 (3)
N2···C272.47 (3)C13···C234.05 (4)
C6···C82.48 (4)C13···C254.05 (4)
N1···C192.48 (3)Cl1···C334.05 (3)
N1···C152.48 (3)C2···C234.05 (3)
C22···C372.48 (3)C10···C324.06 (3)
N2···C102.49 (3)C4···C264.06 (3)
C2···C42.49 (3)C10···C374.06 (3)
N2···C312.49 (3)Cl1···C364.06 (3)
C24···C252.50 (4)N1···C264.06 (3)
C21···C222.50 (3)N2···C144.07 (3)
C3···C52.50 (4)Cl1···C354.07 (3)
C36···C372.51 (3)C2···C214.07 (4)
C31···C372.51 (3)N2···C364.08 (3)
C15···C212.52 (3)Cl1···C324.10 (3)
C19···C252.53 (3)C11···C374.10 (3)
C30···C352.54 (4)C1···C214.11 (3)
C19···C242.54 (3)C36···C374.12 (4)
C27···C342.54 (3)O13···C254.12 (4)
C33···C342.54 (4)C2···C84.13 (3)
C5···C72.54 (4)C18···C214.13 (3)
C31···C362.55 (3)C24···C294.13 (4)
C15···C222.55 (3)C1···C134.14 (4)
C16···C202.55 (4)C13···C354.14 (4)
C27···C332.56 (3)C19···C294.15 (4)
C28···C322.57 (4)C7···O134.15 (5)
C26···C322.58 (3)Rh1···C234.15 (3)
C26···C352.58 (3)C9···C324.15 (3)
C18···C232.58 (3)C3···C234.16 (3)
C14···C202.59 (3)C3···C204.16 (3)
C14···C232.59 (3)C4···C104.16 (3)
C1···C32.61 (3)Rh1···C324.16 (3)
C9···C112.62 (3)Rh1···C24.17 (2)
N1···N22.64 (3)C23···C334.18 (4)
C8···C122.74 (4)C13···C334.18 (4)
Rh1···C112.77 (2)O13···C224.19 (4)
Rh1···C12.77 (2)C7···C114.19 (3)
C4···C122.78 (3)C11···C22i4.19 (3)
C7···C102.79 (3)Rh1···C104.20 (3)
C15···C182.79 (3)C9···C354.20 (3)
C14···C172.81 (4)C9···C244.20 (3)
C28···C312.81 (3)C11···C344.20 (3)
C26···C292.83 (4)C1···C244.21 (3)
C27···C302.84 (3)C10···C344.21 (3)
C16···C192.84 (3)C7···C194.21 (4)
C2···C52.86 (4)C10···C244.21 (4)
C3···C62.87 (4)C15···C214.21 (3)
C6···C92.87 (3)C7···C174.22 (5)
N2···C322.92 (3)C1···C54.22 (4)
N1···C202.95 (3)C2···C244.23 (3)
N1···C232.95 (3)C6···C254.23 (10)
N2···C352.95 (3)N1···C174.26 (4)
N1···C132.97 (4)Cl1···C374.26 (3)
Rh1···O133.03 (3)N2···C294.27 (4)
C2···C143.04 (3)C4···C334.27 (5)
Cl1···C133.05 (4)C9···C284.27 (3)
C10···C263.05 (3)C3···C74.27 (3)
C30···C373.08 (3)C5···C94.28 (3)
C16···C213.09 (4)C2···C22i4.29 (3)
Rh1···C143.09 (3)C8···C21i4.29 (6)
Rh1···C263.10 (3)Cl1···N14.30 (3)
C13···C143.10 (4)Rh1···C224.31 (3)
C16···C223.10 (3)C9···C304.31 (3)
C28···C343.11 (3)C11···C204.31 (3)
C30···C363.12 (4)C1···C354.31 (3)
C18···C253.12 (3)C29···C344.32 (4)
C18···C243.13 (3)C8···C184.32 (4)
C3···C293.14 (4)C16···C294.32 (4)
Cl1···N23.15 (3)C15···C374.32 (3)
C28···C333.17 (4)C6···C234.33 (11)
C3···C143.23 (3)Rh1···C364.34 (3)
C8···O133.23 (5)O13···C214.34 (4)
Cl1···C263.23 (3)C28···C354.34 (3)
C9···C263.24 (3)C12···C264.34 (3)
N1···C33.25 (3)C17···C304.34 (4)
C13···C373.28 (4)C24···C254.35 (4)
C1···C153.28 (3)C29···C374.35 (3)
N2···C93.29 (3)C18···C204.35 (3)
C11···C313.29 (3)C3···C164.35 (3)
C11···C273.32 (3)C9···C344.35 (3)
C1···C193.32 (3)C3···C274.36 (4)
C21···C17i3.32 (4)C12···C144.36 (3)
C4···C293.33 (5)C3···C184.36 (3)
C16···C213.34 (4)Cl1···C114.36 (3)
C4···C283.35 (4)C6···C21i4.36 (10)
C25···C333.36 (4)C5···C21i4.37 (6)
O13···C373.38 (4)O13···C224.37 (4)
C3···C283.46 (4)C21···C22i4.38 (3)
C7···C253.47 (5)C21···C174.38 (4)
Cl1···C53.47 (4)C30···C324.39 (3)
C8···C253.48 (5)O13···C234.39 (4)
N2···C23.48 (3)C22···C174.40 (4)
N1···C103.48 (3)C5···C244.40 (7)
C1···C203.49 (3)C27···C344.40 (4)
N1···C123.49 (3)C29···C344.40 (3)
C11···C353.50 (3)C22···C314.40 (3)
C6···C243.51 (11)C16···C234.41 (3)
N2···C123.51 (3)O13···C334.41 (4)
O13···C363.52 (4)C24···C174.41 (3)
Cl1···C43.54 (4)Rh1···C334.42 (3)
C34···C343.55 (4)C25···C174.43 (3)
C4···C303.55 (4)Cl1···C304.56 (4)
C10···C22i3.56 (4)Cl1···C284.56 (4)
C11···C323.56 (3)Cl1···C364.64 (3)
C1···C233.56 (3)Rh1···C254.65 (3)
C7···C243.57 (7)Cl1···C334.66 (3)
C9···C22i3.58 (3)Rh1···C334.71 (3)
C1···C63.59 (4)Rh1···C124.81 (2)
C13···C153.60 (4)
C13—Rh1—N2174.2 (12)H16—C22—H14106 (2)
C13—Rh1—N194.3 (11)H16—C22—C20112 (2)
C13—Rh1—Cl191.4 (10)H14—C22—C20110 (2)
N2—Rh1—N180.0 (10)H17—C23—C25108 (2)
N2—Rh1—Cl194.2 (9)H17—C23—C24108 (2)
N1—Rh1—Cl1174.0 (10)H17—C23—C19107 (2)
C1—N1—C14125 (2)C25—C23—C24111 (2)
C1—N1—Rh1111.0 (17)C25—C23—C19111 (2)
C14—N1—Rh1122.9 (16)C24—C23—C19110 (2)
C11—N2—C26124 (2)H20—C24—H18111 (2)
C11—N2—Rh1110.3 (17)H20—C24—H19107 (2)
C26—N2—Rh1124.6 (17)H20—C24—C23113 (2)
N1—C1—C11119 (2)H18—C24—H19106 (2)
N1—C1—C2132 (2)H18—C24—C23110 (2)
C11—C1—C2108.6 (19)H19—C24—C23110 (2)
C12—C2—C1106.3 (19)H23—C25—H22111 (2)
C12—C2—C3118.8 (18)H23—C25—H21106 (2)
C1—C2—C3134.8 (19)H23—C25—C23114 (2)
H1—C3—C2120 (2)H22—C25—H21105 (2)
H1—C3—C4122 (2)H22—C25—C23112 (2)
C2—C3—C4117.5 (18)H21—C25—C23110 (2)
H2—C4—C5125 (3)C27—C26—C31120 (2)
H2—C4—C3114 (3)C27—C26—N2119.6 (18)
C5—C4—C3121 (2)C31—C26—N2120.2 (18)
H3—C5—C4118 (3)C28—C27—C26119 (2)
H3—C5—C6118 (4)C28—C27—C32120 (2)
C4—C5—C6119 (3)C26—C27—C32121 (2)
C12—C6—C7114 (3)H24—C28—C27119 (2)
C12—C6—C5115 (5)H24—C28—C29119 (3)
C7—C6—C5123 (4)C27—C28—C29121 (2)
H4—C7—C8121 (2)H25—C29—C30118 (2)
H4—C7—C6117 (3)H25—C29—C28118 (2)
C8—C7—C6121 (2)C30—C29—C28119 (3)
H5—C8—C9122 (3)H8—C17—C18120 (3)
H5—C8—C7117 (3)H8—C17—C16118 (2)
C9—C8—C7121 (2)C18—C17—C16121 (3)
H6—C9—C8121 (2)H26—C30—C29121 (3)
H6—C9—C10120 (2)H26—C30—C31119 (2)
C8—C9—C10119 (2)C29—C30—C31121 (2)
C12—C10—C9119 (2)C30—C31—C26119 (2)
C12—C10—C11105.2 (19)C30—C31—C35119 (2)
C9—C10—C11135.5 (19)C26—C31—C35121 (2)
N2—C11—C1119 (2)H27—C32—C33109 (2)
N2—C11—C10131 (2)H27—C32—C27108 (2)
C1—C11—C10108.7 (18)H27—C32—C34107 (2)
C10—C12—C2111 (2)C33—C32—C27113 (2)
C10—C12—C6125 (2)C33—C32—C34111 (2)
C2—C12—C6124 (2)C27—C32—C34110 (2)
O13—C13—Rh1178 (3)H30—C33—H28112 (2)
C19—C14—C15120 (2)H30—C33—H29109 (2)
C19—C14—N1120.2 (17)H30—C33—C32112 (2)
C15—C14—N1120 (2)H28—C33—H29108 (3)
C14—C15—C16121 (2)H28—C33—C32109 (2)
C14—C15—C20121 (2)H29—C33—C32108 (2)
C16—C15—C20118.2 (19)H33—C34—H32111 (2)
H7—C16—C17121 (3)H33—C34—H31110 (2)
H7—C16—C15120 (2)H33—C34—C32112 (2)
C17—C16—C15119 (2)H32—C34—H31107 (2)
H9—C18—C17118 (3)H32—C34—C32109 (2)
H9—C18—C19120 (2)H31—C34—C32108 (2)
C17—C18—C19121 (2)H34—C35—C36110 (2)
C18—C19—C14119 (2)H34—C35—C31108 (2)
C18—C19—C23120 (2)H34—C35—C37106 (2)
C14—C19—C23121 (2)C36—C35—C31113 (2)
H10—C20—C21110 (2)C36—C35—C37109.8 (18)
H10—C20—C22107 (2)C31—C35—C37110 (2)
H10—C20—C15106.4 (18)H35—C36—H36113 (2)
C21—C20—C22111.1 (18)H35—C36—H37110 (2)
C21—C20—C15111 (2)H35—C36—C35109 (2)
C22—C20—C15111 (2)H36—C36—H37107 (2)
H11—C21—H12111 (2)H36—C36—C35108 (2)
H11—C21—H13110 (2)H37—C36—C35110 (2)
H11—C21—C20110 (2)H39—C37—H40111 (2)
H12—C21—H13108 (2)H39—C37—H38108 (2)
H12—C21—C20108.2 (19)H39—C37—C35111 (2)
H13—C21—C20110 (2)H40—C37—H38105 (2)
H15—C22—H16109 (2)H40—C37—C35112 (2)
H15—C22—H14108 (2)H38—C37—C35108.9 (19)
H15—C22—C20111 (2)
Cl1—Rh1—N1—C116 (11)H9—C18—C17—H86 (5)
Cl1—Rh1—N1—C14174 (9)C14—C19—C23—C24117 (3)
N2—Rh1—N1—C10.0 (18)C14—C19—C23—C25119 (3)
N2—Rh1—N1—C14170.6 (18)C14—C19—C23—H170 (3)
C13—Rh1—N1—C1179 (2)C18—C19—C23—C2463 (3)
C13—Rh1—N1—C1410 (2)C18—C19—C23—C2561 (3)
Cl1—Rh1—N2—C11178.7 (18)C18—C19—C23—H17179 (2)
Cl1—Rh1—N2—C2613.7 (19)C15—C20—C21—H1160 (3)
N1—Rh1—N2—C110.3 (18)C15—C20—C21—H1261 (3)
N1—Rh1—N2—C26168.0 (19)C15—C20—C21—H13178 (2)
C13—Rh1—N2—C119 (13)C22—C20—C21—H1164 (3)
C13—Rh1—N2—C26177 (12)C22—C20—C21—H12175 (2)
Cl1—Rh1—C13—O136 (91)C22—C20—C21—H1357 (3)
N1—Rh1—C13—O13172 (91)H10—C20—C21—H11178 (2)
N2—Rh1—C13—O13163 (84)H10—C20—C21—H1257 (3)
Rh1—N1—C1—C2172 (3)H10—C20—C21—H1361 (3)
Rh1—N1—C1—C110 (3)C15—C20—C22—H1460 (3)
C14—N1—C1—C21 (4)C15—C20—C22—H1560 (3)
C14—N1—C1—C11170 (2)C15—C20—C22—H16178 (2)
Rh1—N1—C14—C1582 (3)C21—C20—C22—H14176 (2)
Rh1—N1—C14—C1998 (2)C21—C20—C22—H1564 (3)
C1—N1—C14—C1587 (3)C21—C20—C22—H1658 (3)
C1—N1—C14—C1993 (3)H10—C20—C22—H1455 (3)
Rh1—N2—C11—C10 (3)H10—C20—C22—H15175 (2)
Rh1—N2—C11—C10171 (2)H10—C20—C22—H1662 (3)
C26—N2—C11—C1168 (2)C19—C23—C24—H1857 (3)
C26—N2—C11—C103 (4)C19—C23—C24—H1959 (3)
Rh1—N2—C26—C27101 (2)C19—C23—C24—H20178 (2)
Rh1—N2—C26—C3180 (3)C25—C23—C24—H18178 (2)
C11—N2—C26—C2793 (3)C25—C23—C24—H1965 (3)
C11—N2—C26—C3187 (3)C25—C23—C24—H2054 (3)
N1—C1—C2—C35 (6)H17—C23—C24—H1859 (3)
N1—C1—C2—C12172 (3)H17—C23—C24—H19175 (2)
C11—C1—C2—C3177 (3)H17—C23—C24—H2065 (3)
C11—C1—C2—C120 (3)C19—C23—C25—H2159 (3)
N1—C1—C11—N20 (4)C19—C23—C25—H2257 (3)
N1—C1—C11—C10173 (2)C19—C23—C25—H23177 (2)
C2—C1—C11—N2174 (2)C24—C23—C25—H2165 (3)
C2—C1—C11—C100 (3)C24—C23—C25—H22179 (2)
C1—C2—C3—C4173 (4)C24—C23—C25—H2353 (3)
C1—C2—C3—H13 (5)H17—C23—C25—H21176 (2)
C12—C2—C3—C44 (5)H17—C23—C25—H2260 (3)
C12—C2—C3—H1179 (3)H17—C23—C25—H2366 (3)
C1—C2—C12—C6172 (6)N2—C26—C27—C28176 (2)
C1—C2—C12—C101 (4)N2—C26—C27—C323 (4)
C3—C2—C12—C610 (7)C31—C26—C27—C284 (4)
C3—C2—C12—C10177 (3)C31—C26—C27—C32177 (2)
C2—C3—C4—C53 (7)N2—C26—C31—C30176 (2)
C2—C3—C4—H2173 (4)N2—C26—C31—C353 (4)
H1—C3—C4—C5179 (5)C27—C26—C31—C304 (4)
H1—C3—C4—H210 (6)C27—C26—C31—C35178 (2)
C3—C4—C5—C612 (*)C26—C27—C28—C292 (4)
C3—C4—C5—H3167 (5)C26—C27—C28—H24174 (3)
H2—C4—C5—C6158 (7)C32—C27—C28—C29176 (3)
H2—C4—C5—H32 (11)C32—C27—C28—H248 (4)
C4—C5—C6—C7171 (7)C26—C27—C32—C33118 (3)
C4—C5—C6—C1224 (11)C26—C27—C32—C34118 (3)
H3—C5—C6—C733 (13)C26—C27—C32—H272 (4)
H3—C5—C6—C12180 (6)C28—C27—C32—C3363 (3)
C5—C6—C7—C8157 (7)C28—C27—C32—C3461 (3)
C5—C6—C7—H416 (13)C28—C27—C32—H27177 (3)
C12—C6—C7—C89 (12)C27—C28—C29—C308 (5)
C12—C6—C7—H4163 (7)C27—C28—C29—H25163 (3)
C5—C6—C12—C224 (10)H24—C28—C29—C30168 (3)
C5—C6—C12—C10164 (5)H24—C28—C29—H2513 (5)
C7—C6—C12—C2174 (6)C28—C29—C30—C318 (5)
C7—C6—C12—C1014 (11)C28—C29—C30—H26169 (3)
C6—C7—C8—C91 (10)H25—C29—C30—C31163 (3)
C6—C7—C8—H5175 (7)H25—C29—C30—H2614 (5)
H4—C7—C8—C9171 (6)C29—C30—C31—C262 (4)
H4—C7—C8—H513 (*)C29—C30—C31—C35176 (3)
C7—C8—C9—C104 (7)H26—C30—C31—C26175 (3)
C7—C8—C9—H6176 (5)H26—C30—C31—C356 (4)
H5—C8—C9—C10179 (4)C26—C31—C35—C36121 (3)
H5—C8—C9—H60 (7)C26—C31—C35—C37116 (3)
C8—C9—C10—C11179 (4)C26—C31—C35—H341 (4)
C8—C9—C10—C120 (5)C30—C31—C35—C3661 (3)
H6—C9—C10—C112 (5)C30—C31—C35—C3762 (3)
H6—C9—C10—C12180 (3)C30—C31—C35—H34177 (2)
C9—C10—C11—N25 (5)C27—C32—C33—H2859 (3)
C9—C10—C11—C1177 (3)C27—C32—C33—H2958 (3)
C12—C10—C11—N2174 (3)C27—C32—C33—H30177 (2)
C12—C10—C11—C11 (3)C34—C32—C33—H28178 (2)
C9—C10—C12—C2177 (3)C34—C32—C33—H2965 (3)
C9—C10—C12—C610 (7)C34—C32—C33—H3054 (3)
C11—C10—C12—C22 (4)H27—C32—C33—H2860 (3)
C11—C10—C12—C6171 (6)H27—C32—C33—H29177 (2)
N1—C14—C15—C16178 (2)H27—C32—C33—H3063 (3)
N1—C14—C15—C202 (3)C27—C32—C34—H3159 (3)
C19—C14—C15—C162 (4)C27—C32—C34—H3257 (3)
C19—C14—C15—C20178 (2)C27—C32—C34—H33180 (2)
N1—C14—C19—C18179 (2)C33—C32—C34—H3166 (3)
N1—C14—C19—C231 (4)C33—C32—C34—H32178 (2)
C15—C14—C19—C180 (4)C33—C32—C34—H3355 (3)
C15—C14—C19—C23179 (2)H27—C32—C34—H31175 (2)
C14—C15—C16—C170 (4)H27—C32—C34—H3259 (3)
C14—C15—C16—H7176 (2)H27—C32—C34—H3364 (3)
C20—C15—C16—C17180 (3)C31—C35—C36—H3560 (3)
C20—C15—C16—H75 (4)C31—C35—C36—H3663 (3)
C14—C15—C20—C21117 (2)C31—C35—C36—H37179 (2)
C14—C15—C20—C22119 (2)C37—C35—C36—H3564 (3)
C14—C15—C20—H103 (3)C37—C35—C36—H36174 (2)
C16—C15—C20—C2163 (3)C37—C35—C36—H3757 (3)
C16—C15—C20—C2261 (3)H34—C35—C36—H35180 (2)
C16—C15—C20—H10177 (2)H34—C35—C36—H3658 (3)
C15—C16—C17—C182 (4)H34—C35—C36—H3759 (3)
C15—C16—C17—H8174 (3)C31—C35—C37—H3860 (3)
H7—C16—C17—C18173 (3)C31—C35—C37—H3959 (3)
H7—C16—C17—H80 (5)C31—C35—C37—H40176 (2)
C17—C18—C19—C142 (4)C36—C35—C37—H38175 (2)
C17—C18—C19—C23178 (3)C36—C35—C37—H3966 (3)
H9—C18—C19—C14179 (2)C36—C35—C37—H4059 (3)
H9—C18—C19—C230 (4)H34—C35—C37—H3857 (3)
C19—C18—C17—C164 (5)H34—C35—C37—H39175 (2)
C19—C18—C17—H8176 (3)H34—C35—C37—H4060 (3)
H9—C18—C17—C16178 (3)
Symmetry code: (i) x, y+1/2, z+1/2.
(Compound_2) tetrahydrofurfuryl-(N,N'-ethylene-bis(3-methyl-salicylideneiminato –N,N',O,O')-cobalt top
Crystal data top
C23H27CoN2O3β = 96.520 (3)°
Mr = 438.41V = 2138.1 (2) Å3
Monoclinic, P21/nZ = 4
Hall symbol: -p 2ynSynchrotron radiation, λ = 0.65051 Å
a = 16.6701 (6) ŵ = 0.8 mm1
b = 9.4170 (4) ÅT = 293 K
c = 13.7088 (7) Åcylinder, ? × 0.7 mm mm
Data collection top
ESRF BM16
diffractometer
Data collection mode: transmission
Radiation source: synchrotronScan method: continuous
Specimen mounting: capillary2θmin = 0.010°, 2θmax = 30.00°, 2θstep = 0.005°
Refinement top
Rp = 8.5142 parameters
Rwp = 11.4Calculated and kept fixed
Rexp = ?
χ2 = 57.760Background function: polynomal
5999 data pointsPreferred orientation correction: 'Ahtee and Jarvinen'
Profile function: split-type pseudo-Voigt
Crystal data top
C23H27CoN2O3V = 2138.1 (2) Å3
Mr = 438.41Z = 4
Monoclinic, P21/nSynchrotron radiation, λ = 0.65051 Å
a = 16.6701 (6) ŵ = 0.8 mm1
b = 9.4170 (4) ÅT = 293 K
c = 13.7088 (7) Åcylinder, ? × 0.7 mm mm
β = 96.520 (3)°
Data collection top
ESRF BM16
diffractometer
Scan method: continuous
Specimen mounting: capillary2θmin = 0.010°, 2θmax = 30.00°, 2θstep = 0.005°
Data collection mode: transmission
Refinement top
Rp = 8.55999 data points
Rwp = 11.4142 parameters
Rexp = ?Calculated and kept fixed
χ2 = 57.760
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzBiso*/Beq
Co0.5091 (7)0.6512 (9)0.4239 (9)*
O10.531 (3)0.551 (5)0.315 (3)*
O20.395 (3)0.637 (5)0.377 (4)*
O30.540 (4)0.932 (5)0.193 (3)*
N10.616 (4)0.677 (5)0.475 (4)*
N20.486 (4)0.750 (5)0.542 (5)*
C10.599 (5)0.502 (8)0.294 (5)*
C20.671 (4)0.526 (9)0.353 (5)*
C30.676 (4)0.600 (7)0.448 (5)*
C40.337 (4)0.724 (8)0.415 (5)*
C50.349 (4)0.796 (7)0.504 (5)*
C60.423 (4)0.802 (7)0.561 (5)*
C70.562 (5)0.754 (7)0.615 (5)*
C80.630 (5)0.764 (6)0.562 (5)*
C90.603 (5)0.433 (8)0.203 (6)*
C100.679 (5)0.383 (7)0.177 (5)*
C110.748 (5)0.438 (8)0.238 (7)*
C120.741 (5)0.496 (8)0.325 (5)*
C130.534 (4)0.387 (7)0.138 (4)*
C140.253 (5)0.698 (8)0.377 (5)*
C150.190 (4)0.745 (7)0.424 (5)*
C160.206 (4)0.827 (7)0.511 (5)*
C170.285 (4)0.863 (7)0.543 (5)*
C180.242 (5)0.623 (7)0.278 (6)*
C190.504 (5)0.834 (6)0.343 (5)*
C200.519 (5)0.801 (7)0.240 (4)*
C210.508 (5)0.917 (6)0.097 (5)*
C220.463 (4)0.783 (5)0.076 (5)*
C230.449 (5)0.740 (6)0.179 (5)*
H10.728840.613790.48906*
H20.432760.902140.60771*
H30.557680.844160.65820*
H40.564220.671960.65380*
H50.637250.873130.53487*
H60.682180.744870.60020*
H70.684710.341370.11580*
H80.804890.396370.22219*
H90.796230.518850.37329*
H100.496560.332050.17186*
H110.503020.484930.11774*
H120.535280.344010.07094*
H130.133130.735140.39212*
H140.159920.854220.54692*
H150.296300.906540.61220*
H160.266950.691100.22854*
H170.263020.536300.28082*
H180.181500.620650.24375*
H190.451600.867800.33850*
H200.547970.887920.37344*
H210.572090.731940.23607*
H220.476070.996200.06920*
H230.558180.912100.04944*
H240.409890.796500.03228*
H250.493840.706280.03658*
H260.400260.762730.19330*
H270.454860.622780.17759*
Geometric parameters (Å, º) top
Co—O11.83 (5)C10—C111.43 (11)
Co—N11.86 (6)C11—H81.08 (9)
Co—N21.94 (6)C11—C121.34 (12)
Co—O21.95 (5)C12—H91.09 (8)
Co—C192.05 (6)C13—H100.97 (7)
O1—C11.30 (9)C13—H121.00 (6)
O2—C41.40 (9)C13—H111.07 (6)
O3—C211.36 (8)C14—C151.37 (11)
O3—C201.45 (8)C14—C181.52 (10)
N1—C31.31 (9)C15—H131.01 (6)
N1—C81.44 (9)C15—C161.42 (9)
N2—C61.22 (10)C16—H140.99 (8)
N2—C71.52 (9)C16—C171.38 (10)
C1—C21.38 (10)C17—H151.03 (7)
C1—C91.42 (11)C18—H170.88 (7)
C2—C121.31 (11)C18—H161.05 (8)
C2—C31.46 (10)C18—H181.07 (8)
C3—H11.00 (6)C19—H190.93 (8)
C4—C51.39 (10)C19—H200.95 (7)
C4—C141.46 (11)C19—C201.49 (9)
C5—C61.39 (9)C20—H211.10 (8)
C5—C171.40 (10)C20—C231.48 (10)
C6—H21.14 (7)C21—H220.97 (7)
C7—H40.94 (7)C21—H231.12 (9)
C7—H31.04 (7)C21—C221.48 (9)
C7—C81.42 (11)C22—H241.01 (7)
C8—H60.98 (7)C22—H251.07 (6)
C8—H51.10 (6)C22—C231.52 (10)
C9—C131.43 (10)C23—H260.88 (8)
C9—C101.44 (11)C23—H271.11 (6)
C10—H70.94 (7)
N1···H11.95 (6)C1···C193.60 (10)
C20···H191.96 (7)C5···C193.61 (11)
N2···H21.96 (6)C6···C163.61 (10)
C8···H41.96 (8)O2···N13.61 (7)
C9···H111.98 (7)C10···C163.61 (10)
O3···H221.99 (5)N1···C203.63 (8)
C9···H102.01 (7)O1···C103.65 (9)
C20···H202.01 (6)C2···C53.65 (10)
C22···H222.02 (5)N2···C13.67 (10)
C22···H262.03 (7)C13···C233.68 (9)
O3···H212.03 (4)C19···C223.68 (9)
O3···H232.03 (5)O2···C153.68 (8)
C8···H32.03 (8)C11···C133.70 (11)
N2···H42.03 (6)C6···C143.70 (10)
C14···H172.03 (7)C2···C63.71 (10)
N1···H62.04 (6)C5···C73.72 (10)
N1···H52.04 (5)C7···C183.73 (10)
C7···H62.04 (8)O3···C123.74 (10)
C20···H262.05 (8)O2···C173.74 (9)
C16···H152.06 (7)N1···C63.75 (10)
C22···H232.07 (7)C2···C83.75 (10)
C14···H132.07 (8)C21···C223.75 (9)
C22···H272.07 (6)O2···C73.76 (8)
C14···H162.07 (7)C2···C133.76 (9)
C11···H72.08 (8)C5···C183.76 (10)
N2···H32.08 (6)C3···C193.77 (9)
C2···H92.08 (7)O1···C63.77 (8)
C15···H142.08 (7)O1···N23.77 (8)
C5···H152.09 (7)C3···C93.79 (10)
C12···H82.09 (8)C9···C203.79 (10)
C7···H52.09 (7)C3···C143.79 (9)
C11···H92.09 (9)Co···N23.80 (5)
C17···H142.09 (7)O2···N13.81 (7)
C9···H72.10 (8)C11···C163.81 (11)
C21···H242.10 (8)C3···C53.82 (9)
C16···H132.11 (7)C2···C203.82 (10)
C23···H242.11 (7)C7···C193.82 (9)
C23···H212.11 (7)C12···C163.82 (10)
C10···H82.12 (7)N2···C33.82 (10)
C20···H272.12 (7)C6···C193.82 (9)
C5···H22.13 (7)C16···C183.83 (10)
C21···H252.15 (6)C9···C233.85 (10)
C2···H12.16 (7)C12···C173.88 (10)
O1···H212.17 (5)C10···C123.88 (11)
C19···H212.17 (7)O2···C83.90 (8)
C9···H122.18 (7)C4···C233.92 (11)
C14···H182.19 (7)C1···C73.92 (11)
C23···H252.19 (7)O2···C13.93 (9)
C20···C212.23 (9)O1···O33.97 (6)
C21···C232.30 (10)C2···C43.97 (10)
C2···C112.31 (12)C13···C153.97 (9)
C3···C122.32 (11)C13···C223.97 (8)
N2···C52.33 (9)C2···C173.97 (10)
N1···C72.33 (10)C1···C53.97 (10)
O1···C92.34 (9)C6···C93.98 (10)
O1···C22.34 (9)O1···C43.99 (9)
C20···C222.35 (9)O1···C224.00 (8)
C1···C122.35 (11)C18···C234.00 (12)
O3···C232.35 (8)C2···C194.00 (10)
C6···C172.36 (10)C9···C164.00 (11)
N2···C82.38 (10)Co···C74.01 (7)
C3···C82.38 (10)C5···C124.01 (10)
C6···C72.39 (10)O1···C114.02 (11)
O3···C192.39 (8)Co···O24.05 (5)
O3···C222.39 (8)N2···C24.06 (10)
C5···C142.41 (10)Co···N14.07 (6)
C2···C92.41 (10)C11···C204.07 (12)
C9···C112.41 (11)C7···C194.09 (9)
C15···C172.41 (9)C3···C104.10 (10)
C14···C162.41 (10)C3···C204.10 (9)
C5···C162.41 (10)N1···C44.11 (9)
C10···C122.42 (10)O1···C84.11 (8)
O2···C142.42 (10)C8···C174.11 (10)
C10···C132.42 (10)Co···C94.11 (8)
C4···C172.43 (10)C3···C64.12 (9)
N1···C22.43 (10)C7···C134.13 (10)
C4···C62.44 (10)C4···C204.15 (11)
Co···H202.443 (9)C6···C154.15 (9)
C1···C102.47 (11)C13···C204.16 (9)
C4···C152.48 (10)C12···C154.17 (9)
O2···C52.48 (9)Co···O14.17 (5)
Co···H192.489 (10)O2···C74.19 (8)
C19···C232.49 (9)C12···C134.19 (10)
C4···C182.50 (10)O3···C64.19 (8)
C1···C32.51 (9)Co···O34.20 (5)
C1···C132.53 (9)C11···C174.21 (11)
C15···C182.54 (10)C3···C154.21 (9)
N1···N22.55 (9)O3···C214.21 (8)
O1···C202.57 (8)O2···C164.21 (9)
O1···O22.64 (8)N2···C194.22 (8)
O2···C192.68 (9)C2···C164.22 (10)
O1···C192.73 (7)C12···C174.23 (10)
O2···C182.74 (9)C2···C104.24 (11)
C1···C112.74 (12)O2···N24.24 (7)
O1···N12.74 (7)C11···C164.24 (11)
C9···C122.76 (10)C3···C104.24 (10)
C14···C172.76 (9)C11···C124.25 (11)
C2···C102.79 (10)O2···C24.26 (9)
O2···N22.79 (8)Co···C144.26 (8)
C5···C152.79 (9)C5···C84.26 (9)
Co···C32.80 (7)C10···C224.26 (9)
Co···C82.81 (7)N2···C34.27 (9)
O1···C232.81 (8)N2···C204.27 (9)
Co···C12.83 (8)C12···C214.27 (12)
Co···C72.83 (7)C17···C184.27 (10)
C4···C162.84 (11)N2···C144.29 (10)
N1···C192.86 (8)C7···C94.29 (11)
Co···C62.87 (7)C9···C224.29 (9)
N2···C42.87 (9)C16···C214.30 (11)
O1···C132.89 (8)C13···C214.31 (9)
O1···C32.89 (8)N2···C94.31 (10)
N2···C192.89 (9)C13···C164.32 (10)
Co···C202.91 (6)C2···C144.32 (10)
Co···C42.94 (7)C6···C124.33 (11)
O2···C62.96 (8)C2···C114.34 (11)
N1···C12.96 (9)C15···C214.34 (11)
C21···C213.07 (9)C9···C224.35 (10)
O2···C233.11 (9)O3···C14.35 (9)
C1···C203.16 (10)O3···C134.35 (8)
Co···C23.19 (8)C3···C114.36 (11)
C4···C193.23 (11)N1···N24.36 (7)
Co···C53.30 (7)N1···C94.36 (9)
O2···C203.33 (9)C13···C134.36 (8)
C13···C223.34 (9)C16···C224.37 (11)
C11···C173.37 (11)C3···C184.38 (10)
C6···C193.44 (10)C9···C174.38 (11)
O1···C73.45 (8)C4···C74.38 (10)
C3···C73.46 (10)C1···C84.40 (10)
C6···C83.46 (11)Co···C34.40 (7)
C19···C213.46 (10)C3···C174.41 (10)
O1···N23.48 (7)Co···C64.41 (6)
Co···C233.49 (7)C1···C224.42 (9)
C8···C183.50 (10)C1···C174.42 (10)
N1···C123.52 (10)C2···C154.43 (9)
C8···C193.52 (10)C13···C164.43 (10)
N2···C173.52 (10)C4···C124.44 (11)
C1···C63.53 (10)C11···C214.44 (12)
O1···C123.53 (10)Co···C124.48 (9)
Co···Co3.564 (14)Co···C84.56 (7)
O3···C113.57 (10)Co···C184.67 (8)
O2···C33.57 (9)Co···C14.68 (8)
C3···C113.58 (11)Co···C174.70 (8)
C1···C233.59 (10)Co···C134.70 (6)
C10···C173.59 (10)Co···C44.76 (7)
C3···C43.60 (10)Co···C24.82 (8)
O1—Co—N196 (3)H9—C12—C2120 (7)
O1—Co—N2178 (2)H9—C12—C11118 (8)
O1—Co—O288 (2)C2—C12—C11121 (7)
O1—Co—C1989 (2)H10—C13—H12108 (6)
N1—Co—N284 (3)H10—C13—H11105 (6)
N1—Co—O2175 (2)H10—C13—C9112 (6)
N1—Co—C1994 (3)H12—C13—H11100 (5)
N2—Co—O292 (2)H12—C13—C9126 (7)
N2—Co—C1993 (2)H11—C13—C9103 (5)
O2—Co—C1984 (3)C15—C14—C4122 (6)
C1—O1—Co129 (5)C15—C14—C18123 (7)
C4—O2—Co121 (4)C4—C14—C18114 (7)
C21—O3—C20105 (5)H13—C15—C14120 (6)
C3—N1—C8120 (6)H13—C15—C16120 (6)
C3—N1—Co123 (4)C14—C15—C16119 (6)
C8—N1—Co116 (5)H14—C16—C17123 (7)
C6—N2—C7121 (6)H14—C16—C15118 (6)
C6—N2—Co129 (5)C17—C16—C15119 (7)
C7—N2—Co109 (5)H15—C17—C16118 (7)
O1—C1—C2122 (7)H15—C17—C5118 (6)
O1—C1—C9119 (6)C16—C17—C5120 (6)
C2—C1—C9119 (7)H17—C18—H16114 (9)
C12—C2—C1122 (7)H17—C18—H18110 (7)
C12—C2—C3114 (6)H17—C18—C14113 (7)
C1—C2—C3124 (7)H16—C18—H1898 (6)
H1—C3—N1114 (6)H16—C18—C14106 (6)
H1—C3—C2121 (7)H18—C18—C14115 (7)
N1—C3—C2123 (6)H19—C19—H20121 (7)
C5—C4—O2125 (6)H19—C19—C20106 (6)
C5—C4—C14116 (7)H19—C19—Co108 (5)
O2—C4—C14116 (6)H20—C19—C20109 (7)
C4—C5—C6123 (7)H20—C19—Co103 (5)
C4—C5—C17121 (6)C20—C19—Co110 (4)
C6—C5—C17116 (6)H21—C20—O3105 (6)
H2—C6—N2113 (6)H21—C20—C23109 (5)
H2—C6—C5114 (6)H21—C20—C19113 (5)
N2—C6—C5127 (7)O3—C20—C23107 (5)
H4—C7—H3110 (7)O3—C20—C19109 (5)
H4—C7—C8111 (7)C23—C20—C19114 (7)
H4—C7—N2110 (6)H22—C21—H23102 (6)
H3—C7—C8110 (6)H22—C21—O3116 (6)
H3—C7—N2107 (6)H22—C21—C22110 (7)
C8—C7—N2109 (6)H23—C21—O3109 (7)
H6—C8—H5103 (6)H23—C21—C22104 (5)
H6—C8—C7115 (7)O3—C21—C22114 (5)
H6—C8—N1113 (6)H24—C22—H25103 (5)
H5—C8—C7111 (6)H24—C22—C21113 (5)
H5—C8—N1105 (6)H24—C22—C23112 (7)
C7—C8—N1109 (6)H25—C22—C21114 (7)
C1—C9—C13125 (7)H25—C22—C23115 (5)
C1—C9—C10119 (6)C21—C22—C23100 (5)
C13—C9—C10115 (6)H26—C23—H27110 (6)
H7—C10—C11122 (8)H26—C23—C20118 (6)
H7—C10—C9122 (7)H26—C23—C22112 (6)
C11—C10—C9114 (7)H27—C23—C20109 (6)
H8—C11—C12119 (8)H27—C23—C22103 (5)
H8—C11—C10115 (7)C20—C23—C22103 (6)
C12—C11—C10122 (8)
O2—Co—O1—C1174 (6)C4—C5—C6—N22 (12)
N1—Co—O1—C18 (6)C4—C5—C6—H2151 (7)
N2—Co—O1—C182 (66)C17—C5—C6—N2179 (7)
C19—Co—O1—C1102 (6)C17—C5—C6—H232 (9)
O1—Co—O2—C4164 (5)C4—C5—C17—C1619 (10)
N1—Co—O2—C47 (32)C4—C5—C17—H15174 (6)
N2—Co—O2—C418 (5)C6—C5—C17—C16159 (6)
C19—Co—O2—C475 (5)C6—C5—C17—H153 (*)
O1—Co—N1—C319 (6)N2—C7—C8—N138 (7)
O1—Co—N1—C8176 (4)N2—C7—C8—H577 (7)
O2—Co—N1—C3176 (27)N2—C7—C8—H6166 (5)
O2—Co—N1—C818 (32)H3—C7—C8—N1155 (5)
N2—Co—N1—C3159 (6)H3—C7—C8—H540 (8)
N2—Co—N1—C87 (4)H3—C7—C8—H677 (7)
C19—Co—N1—C3108 (6)H4—C7—C8—N182 (7)
C19—Co—N1—C886 (5)H4—C7—C8—H5162 (6)
O1—Co—N2—C6103 (64)H4—C7—C8—H646 (9)
O1—Co—N2—C776 (65)C1—C9—C10—C1113 (10)
O2—Co—N2—C612 (6)C1—C9—C10—H7176 (7)
O2—Co—N2—C7167 (4)C13—C9—C10—C11175 (6)
N1—Co—N2—C6166 (6)C13—C9—C10—H712 (11)
N1—Co—N2—C715 (4)C1—C9—C13—H1051 (*)
C19—Co—N2—C672 (6)C1—C9—C13—H1162 (9)
C19—Co—N2—C7108 (4)C1—C9—C13—H12175 (7)
O1—Co—C19—C200 (5)C10—C9—C13—H10120 (7)
O1—Co—C19—H19115 (5)C10—C9—C13—H11127 (6)
O1—Co—C19—H20116 (5)C10—C9—C13—H1214 (10)
O2—Co—C19—C2088 (5)C9—C10—C11—C1217 (11)
O2—Co—C19—H1926 (5)C9—C10—C11—H8176 (7)
O2—Co—C19—H20156 (5)H7—C10—C11—C12179 (7)
N1—Co—C19—C2096 (5)H7—C10—C11—H821 (11)
N1—Co—C19—H19149 (5)C10—C11—C12—C211 (12)
N1—Co—C19—H2020 (5)C10—C11—C12—H9170 (7)
N2—Co—C19—C20180 (5)H8—C11—C12—C2169 (8)
N2—Co—C19—H1965 (5)H8—C11—C12—H912 (12)
N2—Co—C19—H2064 (5)C4—C14—C15—C163 (10)
Co—O1—C1—C23 (11)C4—C14—C15—H13173 (6)
Co—O1—C1—C9177 (5)C18—C14—C15—C16174 (6)
Co—O2—C4—C519 (9)C18—C14—C15—H134 (10)
Co—O2—C4—C14177 (5)C4—C14—C18—H1662 (8)
C21—O3—C20—C19146 (6)C4—C14—C18—H1764 (*)
C21—O3—C20—C2322 (8)C4—C14—C18—H18169 (6)
C21—O3—C20—H2193 (6)C15—C14—C18—H16115 (8)
C20—O3—C21—C222 (9)C15—C14—C18—H17120 (9)
C20—O3—C21—H22131 (8)C15—C14—C18—H188 (*)
C20—O3—C21—H23114 (6)C14—C15—C16—C173 (*)
Co—N1—C3—C224 (9)C14—C15—C16—H14176 (6)
Co—N1—C3—H1170 (5)H13—C15—C16—C17167 (6)
C8—N1—C3—C2170 (6)H13—C15—C16—H1414 (*)
C8—N1—C3—H15 (9)C15—C16—C17—C514 (*)
Co—N1—C8—C728 (6)C15—C16—C17—H15169 (6)
Co—N1—C8—H592 (6)H14—C16—C17—C5166 (6)
Co—N1—C8—H6157 (5)H14—C16—C17—H1510 (11)
C3—N1—C8—C7138 (6)Co—C19—C20—O3163 (5)
C3—N1—C8—H5102 (7)Co—C19—C20—C2378 (6)
C3—N1—C8—H69 (9)Co—C19—C20—H2147 (7)
Co—N2—C6—C54 (11)H19—C19—C20—O381 (7)
Co—N2—C6—H2145 (5)H19—C19—C20—C2338 (7)
C7—N2—C6—C5175 (6)H19—C19—C20—H21163 (6)
C7—N2—C6—H235 (9)H20—C19—C20—O351 (8)
Co—N2—C7—C833 (6)H20—C19—C20—C23170 (5)
Co—N2—C7—H3152 (5)H20—C19—C20—H2165 (7)
Co—N2—C7—H488 (7)O3—C20—C23—C2233 (7)
C6—N2—C7—C8147 (6)O3—C20—C23—H2691 (8)
C6—N2—C7—H328 (9)O3—C20—C23—H27142 (6)
C6—N2—C7—H491 (8)C19—C20—C23—C22153 (5)
O1—C1—C2—C34 (12)C19—C20—C23—H2629 (9)
O1—C1—C2—C12170 (7)C19—C20—C23—H2798 (7)
C9—C1—C2—C3179 (7)H21—C20—C23—C2279 (6)
C9—C1—C2—C125 (12)H21—C20—C23—H26156 (6)
O1—C1—C9—C10178 (7)H21—C20—C23—H2730 (8)
O1—C1—C9—C1312 (11)O3—C21—C22—C2318 (8)
C2—C1—C9—C103 (11)O3—C21—C22—H24136 (7)
C2—C1—C9—C13173 (7)O3—C21—C22—H25106 (7)
C1—C2—C3—N116 (12)H22—C21—C22—C23115 (7)
C1—C2—C3—H1179 (7)H22—C21—C22—H244 (*)
C12—C2—C3—N1158 (7)H22—C21—C22—H25122 (7)
C12—C2—C3—H16 (11)H23—C21—C22—C23137 (6)
C1—C2—C12—C111 (13)H23—C21—C22—H24105 (7)
C1—C2—C12—H9178 (7)H23—C21—C22—H2513 (8)
C3—C2—C12—C11176 (7)C21—C22—C23—C2030 (7)
C3—C2—C12—H94 (11)C21—C22—C23—H2699 (7)
O2—C4—C5—C67 (11)C21—C22—C23—H27143 (6)
O2—C4—C5—C17170 (7)H24—C22—C23—C20149 (5)
C14—C4—C5—C6165 (7)H24—C22—C23—H2621 (7)
C14—C4—C5—C1712 (*)H24—C22—C23—H2797 (6)
O2—C4—C14—C15162 (6)H25—C22—C23—C2093 (6)
O2—C4—C14—C1821 (9)H25—C22—C23—H26138 (6)
C5—C4—C14—C152 (10)H25—C22—C23—H2720 (8)
C5—C4—C14—C18178 (6)

Experimental details

(Compound_1)(Compound_2)
Crystal data
Chemical formulaC37H40ClN2ORhC23H27CoN2O3
Mr667.07438.41
Crystal system, space groupOrthorhombic, PbcaMonoclinic, P21/n
Temperature (K)293293
a, b, c (Å)21.729 (2), 27.376 (3), 11.579 (1)16.6701 (6), 9.4170 (4), 13.7088 (7)
α, β, γ (°)90, 90, 9090, 96.520 (3), 90
V3)6888 (2)2138.1 (2)
Z84
Radiation typeSynchrotron, λ = 0.65296 ÅSynchrotron, λ = 0.65051 Å
µ (mm1)0.60.8
Specimen shape, size (mm)Cylinder, ? × 0.7 mmCylinder, ? × 0.7 mm
Data collection
Data collection methodESRF BM16ESRF BM16
Specimen mountingCapillaryCapillary
Data collection modeTransmissionTransmission
Scan methodContinuousContinuous
2θ values (°)2θmin = 2.500 2θmax = 25.00 2θstep = 0.0052θmin = 0.010 2θmax = 30.00 2θstep = 0.005
Refinement
R factors and goodness of fitRp = 8.4, Rwp = 11.1, Rexp = ?, χ2 = 6.250Rp = 8.5, Rwp = 11.4, Rexp = ?, χ2 = 57.760
No. of data points45005999
No. of parameters175142
No. of restraints38?
H-atom treatmentCalculated and kept fixedCalculated and kept fixed

Computer programs: UnitCell, MRIA, CHEMDRAW and PLATON.

 

Footnotes

1Supplementary data for this paper are available from the IUCr electronic archives (Reference: WL2002 ). Services for accessing these data are described at the back of the journal.

Acknowledgements

The authors would like to thank Dr A. N. Fitch from BM16 at the ESRF in Grenoble for his help during the high-resolution powder diffraction measurements, and Dr D. J. A. De Ridder for his help during the latter stages of the preparation of the manuscript.

References

First citationAhtee, M., Nurmela, M., Suortti, P. & Järvinen, M. (1989). J. Appl. Cryst. 22, 261–268. CrossRef CAS Web of Science IUCr Journals
First citationAllen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 31–37.
First citationAltomare, A., Burla, M. C., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G. & Polidori, G. (1995). J. Appl. Cryst. 28, 842–846. CrossRef CAS Web of Science IUCr Journals
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–436. CrossRef Web of Science IUCr Journals
First citationArkel, B. van, van der Baan, J. L., Balt, S., Bickelhaupt, F., de Bolster, M. W. G., Kingma, I. E., Klumpp, G. W., Moos, J. W. E. & Spek, A. L. (1993). J. Chem. Soc. Perkin Trans 1, pp. 3023–3032.
First citationAsselt, R. van, Elsevier, C. J., Smeets, W. J. J., Spek, A. L. & Benedix, R. (1994). Recl Trav. Chim. Pays-Bas, 113, 88–98.
First citationBaerlocher, C. (1993). The Rietveld Method, edited by R. A. Young, pp. 187–196. Oxford University Press.
First citationBayón, J. C., Esteban, P. & Real, J. (1991). J. Organomet. Chem. 403, 393–399. CAS
First citationBollinger, C. M., Story, N., Sullivan, B. P. & Meyer, T. J. (1988). Inorg. Chem. 27, 4582–4587.
First citationBotteghi, C. & Paganelli, S. (1993). J. Organomet. Chem. 451, C18–C21. CrossRef CAS Web of Science
First citationChernyshev, V. V. & Schenk, H. (1998). Z. Kristallogr. 213, 1–3. Web of Science CrossRef CAS
First citationClauti, G., Zassinovich, G. & Mestroni, G. (1986). Inorg. Chim. Acta, 112, 103–106. CrossRef CAS Web of Science
First citationDe Ridder, D. J. A., Zangrandeo, E. & Bürgi, H.-B. (1996). J. Mol. Struct. 374, 63–83. CrossRef CAS Web of Science
First citationDova, E., Stassen, A. F., Driessen, R. A. J., Sonneveld, E., Goubitz, K., Peschar, R., Haasnoot, J. G., Reedijk, J. & Schenk, H. (2001). Acta Cryst. B57, 531–538. Web of Science CSD CrossRef CAS IUCr Journals
First citationFitch, A. N. (1996). Mater. Sci. Forum, 228, 219–222.  CrossRef
First citationGarcia, V., Garralda, M. A. & Ibarlucea, L. (1985). Trans. Met. Chem. 10, 288–291. CAS
First citationGillard, R. D., Harrison, K. & Mather, I. H. (1975). J. Chem. Soc. Dalton Trans. pp. 133–140. CrossRef Web of Science
First citationGoubitz, K., Čapková, P., Melánová, K., Molleman, W. & Schenk, H. (2001). Acta Cryst. B57, 178–183. Web of Science CrossRef CAS IUCr Journals
First citationGoubitz, K., Sonneveld, E. J., Chernyshev, V. V., Yatsenko, A. V., Zhukov, S. G., Reiss, C. A. & Schenk, H. (1999). Z. Kristallogr. 214, 469–474. Web of Science CSD CrossRef CAS
First citationHaller, K. J. & Enemark, J. H. (1978). Acta Cryst. B34, 102–109. CSD CrossRef CAS IUCr Journals Web of Science
First citationHalpern, J. (1985). Science, 227, 869–875. CrossRef CAS PubMed Web of Science
First citationHelmholdt, R. B., Sonneveld, E. J. & Schenk, H. (1998). Z. Kristallogr. 213, 596–598. Web of Science CSD CrossRef CAS
First citationJansen, J., Peschar, R. & Schenk, H. (1992a). J. Appl. Cryst. 25, 231–236. CrossRef CAS Web of Science IUCr Journals
First citationJansen, J., Peschar, R. & Schenk, H. (1992b). J. Appl. Cryst. 25, 237–243. CrossRef CAS Web of Science IUCr Journals
First citationJansen, J., Peschar, R. & Schenk, H. (1993). Z. Kristallogr. 206, 33–43. CrossRef CAS Web of Science
First citationJärvinen, M. (1993). J. Appl. Cryst. 26, 525–531. CrossRef Web of Science IUCr Journals
First citationLangevelde, A. J. van, Capková, P., Sonneveld, E. J., Schenk, H., Trchova, M. & Ilavsky, M. (1999). J. Synchrotron Rad. 6, 1035–1043. CSD CrossRef IUCr Journals
First citationMahabiersing, M. C., Hartl, F. & Spek, A. L. (2001). To be published.
First citationMestroni, G., Zassinovich, G. & Camus, A. (1977). J. Organomet. Chem. 140, 63–72. CrossRef CAS Web of Science
First citationMolecular Simulations Inc. (1995). Cerius2. Molecular Simulations Inc., Burlington, USA.
First citationPasternak, H., Glowiak, T. & Pruchnik, F. (1976). Inorg. Chim. Acta, 19, 11–14. CSD CrossRef CAS Web of Science
First citationPasternak, H. & Pruchnik, F. (1976). Inorg. Nucl. Chem. Lett. 12, 591. CrossRef Web of Science
First citationRoberts, B. W. & Parrish, W. (1962). International Tables for Crystallography, Vol. III, edited by C. H. MacGillavry & G. D. Rieck, pp. 73–88. Birmingham: Kynoch Press.
First citationSaus, A., Nhu Phu, T., Mirbach, M. J. & Mirbach, F. M. (1983). J. Mol. Catal. 18, 117–125. CrossRef CAS
First citationSmith, L. H. (1955). Org. Synth. Collect. 3, 793.
First citationSpek, A. L. (1990). Acta Cryst. A46, C-34.  CrossRef IUCr Journals
First citationToraya, H. (1986). J. Appl. Cryst. 19, 440–447. CrossRef CAS Web of Science IUCr Journals
First citationToscano, P. J. & Marzilli, L. G. (1984). Prog. Inorg. Chem. 31, 105. CrossRef
First citationVisser, J. W. (1969). J. Appl. Cryst. 2, 89–95. CrossRef CAS IUCr Journals Web of Science
First citationZassinovich, G., Mestroni, G. & Camus, A. (1976). Inorg. Nucl. Chem. Lett. 12, 865. CrossRef Web of Science
First citationZassinovich, G., Mestroni, G. & Camus, A. (1977). J. Mol. Catal. 2, 63–64. CrossRef CAS
First citationZassinovich, G., Mestroni, G. & Camus, A. (1987). J. Mol. Catal. 42, 81. CrossRef
First citationZlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst. 25, 447–451. CrossRef Web of Science IUCr Journals

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoJOURNAL OF
SYNCHROTRON
RADIATION
ISSN: 1600-5775
Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds