research papers
X-ray powder diffraction beamline at D10B of LNLS: application to the Ba2FeReO6 double perovskite
aLaboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13084-971, Campinas, SP, Brazil, and bInstituto de Física `Gleb Wataghin', UNICAMP, CEP 13083-970, Campinas, SP, Brazil
*Correspondence e-mail: granado@lnls.br
A new beamline, fully dedicated to X-ray powder diffraction (XPD) measurements, has been installed after the exit port B of the bending magnet D10 at the Brazilian Synchrotron Light Laboratory (LNLS) and commissioned. The technical characteristics of the beamline are described and some performance indicators are listed, such as the incoming 2O3 using high-resolution data are shown. The refined parameters match those found in the literature, within experimental error. High-resolution XPD measurements on Ba2FeReO6 demonstrate a slight departure from the ideal cubic double-perovskite structure at low temperatures, not detected by previous powder diffraction experiments. The onset of the coincides with the ferrimagnetic ordering temperature, Tc ≃ 315 K. Subtle structural features, such as those reported here for Ba2FeReO6, as well as the determination and/or of complex crystal structures in polycrystalline samples are ideal candidate problems to be investigated on this beamline.
and the angular/energy resolutions obtainable under typical experimental conditions. The results of a for a standard sample of YKeywords: X-ray powder diffraction; high resolution; structural phase transitions; energy resolution; Rietveld refinement; LNLS.
1. Introduction
During the last two decades, synchrotron X-ray powder diffraction (S-XPD) has become a well established technique, being suitable for applications in a number of research fields, such as materials science, condensed matter physics, nanoscience and protein crystallography. The large
and almost parallel beam optics inherent to this technique allow superior instrumental resolution and/or counting statistics when compared with neutron or conventional-source X-ray diffraction under typical experimental conditions. Such characteristics of S-XPD can contribute to the investigation of three broad classes of problems. First of all, when the probed sample presents phases of good crystallinity, the narrow instrumental resolution of the Bragg peaks obtainable by S-XPD is desirable to minimize Bragg peak overlaps, leading to reliable solutions and/or refinements. Another typical case for S-XPD is when the scattering by the phase(s) of interest is quite low and cannot be detected by standard techniques. For such problems, the advantage of the large of a synchrotron source is readily realised, although a compromise with the instrumental resolution is necessary in many cases. Last, but not least, the energy tunability of a synchrotron X-ray beam allows for the study of in which the contrast between the scattering factors of different elements can be conveniently tuned.This paper reports on the construction and commissioning of a fully dedicated X-ray powder diffraction (XPD) beamline at the Brazilian Synchrotron Light Laboratory (LNLS). The beamline was installed after the exit port B of the bending magnet D10. It was built as a response to the demands of an ever growing X-ray powder diffraction community in Brazil and, more generally, in Latin America. The performance of this beamline is illustrated by a preliminary high-resolution XPD study on Ba2FeReO6, which reveals deviations from the ideal cubic double-perovskite structure at low temperatures. The high resolution attainable in this beamline is shown to be essential to detect the slight tetragonal distortion in this case.
2. Instrumentation
2.1. Beamline optics
Fig. 1 shows (a) the layout of the XPD beamline at LNLS and (b) a photograph of the diffractometer inside the experimental hutch. The source is a 1.67 T bending magnet of the LNLS ring operating at 1.37 GeV (Craievich & Rodrigues, 1997; Rodrigues et al., 1998), with a typical initial average current of about 270 mA and 20 h lifetime (September 2004). The of the emitted photons is 2.08 keV. The beamline operates in the energy range 4.5–15 keV (2.76–0.83 Å) with a maximum horizontal acceptance of about 10 mrad.
A Rh-coated ULE (Ultra-Low Expansion, Corning1) glass curved mirror, which is used to filter high-energy photons and vertically focus/collimate the beam, is located at approximately 7 m from the synchrotron source. The angle between the incident beam and the mirror is typically 4.5 mrad, which determines the cut-off energy of ∼15 keV. The mirror is mounted in a home-made chamber (Neuenschwander & Tavares, 2001), operating at ∼10−7 Pa, separated by two 125 µm beryllium windows from the front-end and the monochromator. Three independent Parker motors, with a Heidenhain encoder, allow for the adjustment of the mirror positions (height, vertical and horizontal angles), while a Phytron motor, with a potentiometer-like encoder, bends the mirror. Their positions are read by a 12-bit AD card (bending) and Heidenhain encoder (three axes). Home-made software, named SPEGULO, controls the position of the mirror.
Monochromatization is carried out using a double-bounce Si(111) monochromator, with water refrigeration in the first crystal while the second one is bent for sagittal focusing (Giles et al., 2003). The whole monochromator system is mounted onto a commercial Huber goniometer under high vacuum (typically 10−5 Pa), providing good energy stability and reproducibility (better than 0.2 eV after cycling between 7 keV and 13 keV).
Four sets of four-blade slits may be used. Two of them are computer-controlled by 3-WinDCM software (Piton & Duarte, 1998). The one positioned before the mirror is water-cooled and limits the horizontal and vertical divergence of the incoming white beam, while a second set is placed before the diffractometer and defines the beam size at the sample position. The two other sets of slits are manually operated and are placed at the 2θ arm of the diffractometer, defining resolution and/or reducing background scattering (Le Bolloc'h et al., 2002). To minimize unwanted beam attenuation and air scattering, a vacuum path with Kapton windows is positioned between the last set of computer-controlled slits and the diffractometer. Another vacuum path is positioned between the sample and the detector, at the diffractometer 2θ arm.
2.2. Diffractometer
A Huber 4 + 2 circle diffractometer equipped with a Eulerian cradle (model 513) is located inside the experimental hutch, ∼13 m from the monochromator. The diffractometer is mounted on a lifting/laterally translating table which allows the correct positioning of the X-ray beam in its center. The minimum angular step of the 2θ arm is 0.0001°.
Flat-plates or capillary tube samples may be attached to a goniometer head (model 1001) with four adjustable axes. The diffractometer is operated using the SPEC software (Certified Scientific Software, 1992) in a PC-based Linux environment.
Routine powder diffraction experiments are performed using the Huber diffractometer in either high-resolution (with analyzer crystals) or high-intensity (medium resolution) modes. In the high-resolution mode, Si(111), Ge(111) or Ge(220) analyzer crystals may be employed. This mode is particularly useful in minimizing the superposition of neighboring Bragg peaks, allowing for more reliable solutions and/or refinements of crystalline structures. In high-intensity mode, a (002) highly oriented pyrolitic graphite (HOPG) analyzer may be employed, or, alternatively, no analyzer is used.
In this beamline, most experiments are performed in reflection (θ–2θ) geometry. This is due to the relatively large wavelengths obtainable with useful intensities in the dipole sources of LNLS (≳1 Å), leading to small penetration depths for most inorganic samples. In special cases, transmission experiments using capillary tubes may also be performed. The 2θ arm may be varied by up to ∼150° under normal operational conditions. For room-temperature measurements, the sample may be attached to a spinning system, greatly reducing the unwanted effects of poor grain statistics that might be important in some cases.
For investigations involving special thermal environments, a commercial closed-cycle He cryostat (Advanced Research Materials), with vibration damping and temperature control (10–450 K), and a home-made furnace (293–1273 K) are available. The integration of these systems to the diffractometer allows for the sample to oscillate or rotate along θ (up to a few degrees in amplitude) during each step in 2θ, fairly improving grain statistics.
2.3. Detection system
The detection system is composed of two high-throughput Cyberstar X1000 (Oxford Danfysik) X-ray detectors; one captures air scattering to monitor the incident 6 counts s−1, with a very good linear response up to ∼3 × 105 counts s−1. The incident may also be monitored by a home-made proportional counter.
and the other detects the sample-diffracted photons. These detectors allow for count rates up to 10A 5 cm-long proportional linear detector (MBraun), suitable for instantaneous measurements of a limited angular region of a powder diffraction profile, has been purchased and integrated in the beamline. It operates under high pressure (7.5 × 105 Pa) using a mixture of argon and methane, and shows a spatial resolution better than 70 µm and ∼50% (λ = 1.5 Å). Also, a home-made motorized imaging-plate system, which may be attached to the furnace, permits the fast acquisition of full patterns, suitable for studies. Finally, an X-ray eye (Photonic Science), which is a simple high-efficiency X-ray-sensitive CCD video camera, is used to focus the beam onto the sample position as well as to check the alignment of the sample with respect to the beam.
2.4. Commissioning results
In order to evaluate the energy resolution of the beam, rocking curves of the (111) and (333) reflections of a Si single crystal were recorded for several values of the radius of curvature of the mirror, with λ = 1.2012 Å. Using the corresponding rocking widths, it was possible to calculate the wavelength distribution width, Δλ/λ, for the different curvatures, as shown in Fig. 2. The determination of the wavelength distribution width took into account a deconvolution of the as shown below,
where w111 and w333 are the measured rocking widths and wD111 and wD333 are the Darwin widths of the (111) and (333) reflections of a Si crystal. θ1 and θ2 are the angles of the (111) and (333) reflections; θm is the monochromator angle. The term in the denominator considers a set-up in non-dispersive mode.
The vertical size of the beam was obtained by translating the crystal across the beam, and measuring the transmitted signal (see Fig. 2). The configuration that is closest to parallel beam (Parrish et al., 1986) was achieved with Δλ/λ ≃ 2.5 × 10−4 and a vertical beam size of about 1.5 mm (FWHM). When the beam was focused onto the sample position, its vertical size was about 0.8 mm and Δλ/λ = 3.9 × 10−4. A good compromise is obtained with a vertical size of 1.0 mm and Δλ/λ = 2.8 × 10−4.
Fig. 3 shows the of the beamline for wavelengths between 0.83 Å and 2.76 Å, measured using a 100%-efficient Si photodetector coupled to a Keithley picoamperemeter. The X-ray beam was focused onto the sample position with a of approximately 2 mm (H) × 0.8 mm (V). Both the mirror and the sagittal crystal were adjusted to maximize the current at each energy. The maximum was reached at about 1.8 Å (∼8.4 × 1010 photons s−1 at 200 mA). In the low-energy region the fast decrease in the is mainly due to air absorption. In a typical (non-anomalous) X-ray powder diffraction experiment, the energy is kept between 1.2 and 1.4 Å allowing one to obtain more structural information than at 1.8 Å, with no significant decrease in the photon flux.
The beamline performance was evaluated by means of measurements of powder diffraction profiles of NIST standard samples: LaB6 (SRM 660a), Si (SRM 640c) and Al2O3 (SRM 676). For such measurements a Ge(111) analyzer crystal was employed, with λ = 1.77141 Å and λ = 1.37791 Å. Here, the mirror curvature was 45% (see Fig. 2), leading to a beam at the sample position with dimensions 2 mm (H) × 1.0 mm (V). The use of a Ge(111) analyzer crystal leads to a sharp instrumental angular resolution, Γ2θ ≃ 0.01° at low angles, and efficiently removes unwanted fluorescence and air-scattering background, at the expense of a significant signal reduction. In this configuration the integrated intensity is ∼30 times smaller when compared with a high-intensity set-up (no analyzer, instrumental angular resolution Γ2θ = 0.08°). Fig. 4(a) shows the linewidths (FWHM) of the Bragg peaks of each standard sample as a function of 2θ, based on a set of GSAS (Larson & Von Dreele, 2000; Toby, 2001) profile terms obtained in a (Rietveld, 1969). Fig. 4(b) shows the same results in terms of the wavenumber transfer Q. As certified by NIST (NIST, 2000), LaB6 is an almost strain-free sample. Thus, the linewidths obtained for this sample may be taken as a good estimate of the instrumental resolution. Although considerations of particle size and strain broadening effects (see Balzar et al., 2004, and references therein) are beyond the scope of the present work, it is readily realised in Fig. 4 that they significantly contribute to the total linewidths for the Si and Al2O3 standard samples, illustrating the high resolution power of the beamline when analyzer crystals are employed.
Fig. 5 shows a comparison between measured and calculated X-ray powder diffraction profiles for Y2O3, after a (Rietveld, 1969) using the program GSAS (Larson & Von Dreele, 2001). For this specific measurement, a Ge(111) analyzer was employed, the chosen step width was 0.0025° in 2θ, and the intensity of the strongest Bragg peak was ∼49000 counts s−1 at 200 mA against a background level of ∼8 counts s−1. The wavelength was λ = 1.37794 Å and the total collection time was ∼8 h. The sample was mounted onto the spinning system, operating at a rate of ∼120 r.p.m. The peak profiles were modeled using a modified pseudo-Voigt function (Finger et al., 1994) which takes into account the reflection asymmetry due to axial divergence. In the the degree of linear polarization of the incoming photons was kept fixed at 95%. The inset illustrates the fit for two particular reflections, (222) and (622), at 2θ ≃ 26.01° and 51.06°, respectively. Table 1 summarizes some of the refined structural parameters and goodness-of-fit indicators. Comparison of these data with reported structural values (Paton & Maslen, 1965; Bonnet & Delapalme, 1975) shows an agreement within experimental errors.
|
3. Case study: reinvestigation of the of Ba2FeReO6 double perovskite
A scientific application of the high resolution attainable at this beamline is described here in an investigation of the 2FeReO6. Double perovskites with formula A2Fe(Mo,Re)O6 (A = Ca, Sr, Ba) show interesting electronic and magnetic properties. Most members of the family present a half-metallic state with large tunneling magnetoresistance at room temperature (Kobayashi et al., 1998, 1999; Maignan et al., 1999; Prellier et al., 2000; Gopalakrishnan et al., 2000; Dai et al., 2001), being promising candidates for applications in the field of spin electronics.
of BaIntriguing structural effects have been observed for this family, generally related to magnetic and/or electronic phenomena. For example, the compound Sr2FeMoO6 displays a simultaneous structural and from a tetragonal ferrimagnetic to a cubic paramagnetic phase at ∼410 K (Ritter et al., 2000). Another interesting case is the compound Ca2FeReO6 with monoclinic symmetry (space group P21/n), which shows a competition between two inequivalent ground states with the same leading to a concomitant structural, magnetic and metal–insulator at ∼135–150 K (Kato et al., 2002; Granado et al., 2002; Oikawa et al., 2003; De Teresa et al., 2004).
To the best of our knowledge, the mechanism coupling magnetic and structural 2FeReO6 were not observed in Ca2FeMoO6 with the same monoclinic symmetry. Such comparison led to the suggestion that the Re 5d electrons may be strongly correlated in these double perovskites electrons (Granado et al., 2002; Iwasawa et al., 2005), in opposition to the Mo 4d electrons. To clarify this issue, it is paramount to characterize the phenomenon for different compounds of this family. Of particular interest are those examples where the paramagnetic phase shows cubic symmetry, such as the above-mentioned Sr2FeMoO6 (Ritter et al., 2000), and Ba2FeReO6. For these cases the possible occurring below the magnetic ordering temperature may be entirely driven by the magnetism. Considering the strong magneto-elastic effects observed in Ca2FeReO6, it is interesting to note that the compound Ba2FeReO6 has been reported to keep an undistorted cubic structure (see Fig. 6) even below Tc, based upon conventional X-ray powder diffraction measurements (Rammeh et al., 2004).
in these double perovskites is not fully elucidated. Perhaps an indication of the non-trivial nature of this phenomenon is the fact that the strong magnetic effects on the of CaHere, the 2FeReO6 is reinvestigated by high-resolution S-XPD. It is shown that a small structural distortion, not previously detected, actually takes place below the ferrimagnetic ordering temperature, Tc ≃ 315 K (Prellier et al., 2000). This observation, made possible by the high resolution attainable in the XPD beamline, indicates that the orbital degree of freedom is manifested in this metallic compound.
of BaThe preparation procedures and characterization of the ceramic sample of Ba2FeReO6 used in this work are described elsewhere (Prellier et al., 2000; Gopalakrishnan et al., 2000). The high-resolution S-XPD experiments were performed on Ba2FeReO6 using monochromatic beams with λ = 1.37728 Å or λ = 1.77137 Å, and employing the Ge(111) analyzer crystal before a A flat-plate geometry was employed, and the Cu sample holder was attached to the closed-cycle cryostat (see §2.2). The data were collected between 15° and 150° with steps of 0.01° in 2θ. In order to improve grain statistics, the θ angle, to which the cryostat was coupled, was rocked by 0.5–1.0° at each step. refinements were carried out using the program GSAS with the EXPGUI platform (Larson & Von Dreele, 2000; Toby, 2001). An impurity phase of Fe3O4 was detected (0.8% weight fraction), and included in the refinement.
Fig. 7 shows the observed S-XPD intensities of Ba2FeReO6 at (a) 14 K and (b) 400 K in a selected angular interval (cross symbols). For T = 14 K, the of this compound was refined using a tetragonal double-perovskite model (I4/mmm symmetry), while for T = 400 K a cubic model (Pmm symmetry) was employed. The Fe and Re cationic disorder was refined using the data taken at 400 K, and was found to be 3.7% of Re ions in the Fe site, and vice versa, attesting for the good quality of our sample. The refined structural parameters at 14 K and 400 K are shown in Table 2. In the tetragonal phase with the I4/mmm symmetry used in the structural model at 14 K, either the FeO6 or ReO6 octahedra (or both) are contracted along the c axis, and are not rotated with respect to the cubic structure. Unfortunately, our experimental errors on the determination of the oxygen positions (∼0.01 Å) do not allow us to unambiguously determine which octahedra (FeO6 or ReO6) are actually distorted (see Table 2). In any case, the small magnitude of the distortion is suggestive of orbital phenomena caused by either the Fe 3d:t2g or Re 5d:t2g valence electrons.
|
In order to establish the 2FeReO6 was also studied at intermediate temperatures. During the refinements a difficulty arose. While the tetragonal distortion was clearly established at 14 K (see Fig. 7), the situation was less clear for temperatures approaching the transition, where the splitting of some Bragg peaks caused by the distortion could not be clearly resolved. As a consequence, the tetragonal distortion could not be reliably obtained directly from the above ∼200 K. Fig. 8(a) shows the relative difference of goodness-of-fit for the Rietveld refinements using the tetragonal and cubic symmetries, (χcubic2 − χtetrag2)/χtetrag2, as a function of temperature, indicating that the occurs close to the magnetic-ordering temperature, Tc ≃ 315 K (Prellier et al., 2000). Fig. 8(b) shows the tetragonal distortion, a − c/21/2, also suggesting that the takes place close to Tc.
temperature and attempt to correlate structural and magnetic properties, the of BaIn the temperature range where the tetragonal distortion of Ba2FeReO6 could not be reliably extracted from the (T > 200 K), the was probed by an investigation of the signal at the scattering angle corresponding to 2d ≃ 4.02 Å. In fact, for the tetragonal phase both the (220) and (004) Bragg peaks contribute to the diffracted intensities at this region, centered at slightly different angular positions. However, for extreme cases where the separation of the (220) and (004) peaks is much smaller than the the deviation from cubic metrics is only manifested by a broadening of the resulting peak. Fig. 8(c) shows the temperature-dependence of the width of the scattering at the (004) position (fitted by a single Lorentzian line-shape), taken on cooling, with λ = 1.77137 Å. It can be seen that this peak broadens significantly below Tc ≃ 315 K, clearly indicating that the tetragonal-to-cubic transition occurs at this temperature. A similar analysis for the cubic (111) Bragg reflection (2d ≃ 9.28 Å) does not show this effect (see Fig. 8c), as expected, since this peak does not of course split under a tetragonal distortion.
The observations described above for Ba2FeReO6 indicate that the coupling between lattice and spin is general for this family and not restricted to Ca2FeReO6 (Granado et al., 2002). Since the magnetic and temperatures appear to coincide, a strong spin–orbit coupling caused by unquenched Re 5d orbital moments is the most likely mechanism leading to the concomitant spin-structural transition in Ba2FeReO6. Further work is necessary to establish the impact of the small tetragonal deformation below Tc on the overall physical properties of this compound.
4. Summary
In summary, the XPD beamline at LNLS has been successfully constructed and commissioned. This facility shall be very useful in cases where it is necessary to reduce overlap between neighboring Bragg peaks in powder diffractograms, i.e. in structures with large unit cells or with small lattice distortions. Alternatively, high intensities may be obtained, allowing for weak Bragg peaks to be easily detected. The different set-ups readily available in this beamline pave the way for investigations on a broad range of materials, which may be carried out under different sample environments. refinements and/or determinations are liable to be performed using powder diffraction data taken at this beamline. The use of this facility has been demonstrated by an investigation of the of the Ba2FeReO6 double perovskite, revealing small lattice distortions coupled to the magnetic order not previously observed in conventional X-ray powder diffraction experiments.
Supporting information
10.1107/S0909049505039208/ml5212sup1.cif
contains datablocks I, II, III, global, T14KBST_phase_2, T14KBST_phase_3, T400KBST_phase_1, T400KBST_phase_2, T14KBST_p_01, T400KBST_p_01, T14KBST_overall, T400KBST_overall. DOI:Rietveld powder data: contains datablock I. DOI: 10.1107/S0909049505039208/ml5212Isup2.rtv
Rietveld powder data: contains datablock II. DOI: 10.1107/S0909049505039208/ml5212IIsup3.rtv
Rietveld powder data: contains datablock III. DOI: 10.1107/S0909049505039208/ml5212IIIsup4.rtv
Structure factors: contains datablock I. DOI: 10.1107/S0909049505039208/ml5212Isup5.hkl
Structure factors: contains datablock II. DOI: 10.1107/S0909049505039208/ml5212IIsup6.hkl
Structure factors: contains datablock III. DOI: 10.1107/S0909049505039208/ml5212IIIsup7.hkl
Data collection: SPEC (Certified Scientific Software, 1992) for (I). Data reduction: POWF 2.11 (Virginia Tech, 2001-2003) for (I). For all compounds, program(s) used to solve structure: GSAS (Larson & Von Dreele, 2001). Program(s) used to refine structure: GSAS for (I).
Fe3O4 | Z = 8 |
Mr = 231.54 | Synchrotron radiation, λ = 1.377285 Å |
Cubic, Fd3m | T = 14 K |
Hall symbol: F d -3 m | Particle morphology: powder |
a = 8.3814 (5) Å | flat_sheet, 20 × 10 mm |
V = 588.78 (10) Å3 |
Huber 4+2 circle diffractometer | Data collection mode: reflection |
Radiation source: synchrotron, LNLS D10B-XPD beamline | Scan method: step |
Si 111 monochromator | 2θmin = 15.003°, 2θmax = 150.193°, 2θstep = 0.01° |
Specimen mounting: copper sample holder |
Least-squares matrix: full | 13520 data points |
Rp = 0.168 | Profile function: CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 0.000 #2(GV) = 0.000 #3(GW) = 0.000 #4(LX) = 0.000 #5(LY) = 19.847 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 8.917 #2(GV) = 4.299 #3(GW) = -0.168 #4(LX) = 0.000 #5(LY) = 7.306 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0 |
Rwp = 0.267 | 24 parameters |
Rexp = 0.195 | 0 restraints |
R(F2) = 0.18130 | (Δ/σ)max = 0.02 |
χ2 = 1.904 | Background function: GSAS Background function number 2 with 10 terms. Cosine Fourier series 1: 1.69071 2: -2.03612 3: -3.99352 4: -3.60868 5: -3.03652 6: -2.11781 7: -1.58570 8: -1.02935 9: -0.776166 10: -0.281473 |
Fe3O4 | Z = 8 |
Mr = 231.54 | Synchrotron radiation, λ = 1.377285 Å |
Cubic, Fd3m | T = 14 K |
a = 8.3814 (5) Å | flat_sheet, 20 × 10 mm |
V = 588.78 (10) Å3 |
Huber 4+2 circle diffractometer | Scan method: step |
Specimen mounting: copper sample holder | 2θmin = 15.003°, 2θmax = 150.193°, 2θstep = 0.01° |
Data collection mode: reflection |
Rp = 0.168 | χ2 = 1.904 |
Rwp = 0.267 | 13520 data points |
Rexp = 0.195 | 24 parameters |
R(F2) = 0.18130 | 0 restraints |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.125 | 0.125 | 0.125 | −0.001 (4)* | |
Fe2 | 0.5 | 0.5 | 0.5 | −0.001 (4)* | |
O | 0.2583 | 0.2583 | 0.2583 | −0.001 (4)* |
Fe1—O | 1.9351 (1) | Fe2—Ovii | 2.0282 (1) |
Fe1—Oi | 1.9351 (1) | Fe2—Oviii | 2.0282 (1) |
Fe1—Oii | 1.9351 (1) | Fe2—Oix | 2.0282 (1) |
Fe1—Oiii | 1.9351 (1) | O—Fe1 | 1.9351 (1) |
Fe2—Oiv | 2.0282 (1) | O—Fe2vii | 2.0282 (1) |
Fe2—Ov | 2.0282 (1) | O—Fe2viii | 2.0282 (1) |
Fe2—Ovi | 2.0282 (1) | O—Fe2ix | 2.0282 (1) |
O—Fe1—Ox | 109.471 (2) | Ov—Fe2—Oix | 93.9965 |
O—Fe1—Oxi | 109.471 (4) | Ovi—Fe2—Oxiii | 93.9965 |
O—Fe1—Oxii | 109.471 (2) | Ovi—Fe2—Oxiv | 93.9965 |
Ox—Fe1—Oxi | 109.471 (2) | Ovi—Fe2—Oix | 179.9802 |
Ox—Fe1—Oxii | 109.471 (4) | Oxiii—Fe2—Oxiv | 86.0035 |
Oxi—Fe1—Oxii | 109.471 (2) | Oxiii—Fe2—Oix | 86.0035 |
Oiv—Fe2—Ov | 86.0035 | Oxiv—Fe2—Oix | 86.0035 |
Oiv—Fe2—Ovi | 86.0035 | Fe1—O—Fe2xv | 122.484 (2) |
Oiv—Fe2—Oxiii | 179.9802 | Fe1—O—Fe2viii | 122.4840 (12) |
Oiv—Fe2—Oxiv | 93.9965 | Fe1—O—Fe2xvi | 122.4840 (12) |
Oiv—Fe2—Oix | 93.9965 | Fe2xv—O—Fe2viii | 93.8613 |
Ov—Fe2—Ovi | 86.0035 | Fe2xv—O—Fe2xvi | 93.8613 |
Ov—Fe2—Oxiii | 93.9965 | Fe2viii—O—Fe2xvi | 93.8613 |
Ov—Fe2—Oxiv | 179.9802 |
Symmetry codes: (i) −z+1/4, x, −y+1/4; (ii) −z+1/4, −x+1/4, y; (iii) z, −x−3/4, −y−3/4; (iv) x+1/4, y+1/4, −z+1; (v) −z+1, x+1/4, y+1/4; (vi) y+1/4, −z+1, x+1/4; (vii) −x+3/4, −y+3/4, z; (viii) z, −x+3/4, −y+3/4; (ix) −y+3/4, z, −x+3/4; (x) −z−3/4, x−1, −y−7/4; (xi) −z−3/4, −x−3/4, y−2; (xii) z−1, −x+1/4, −y−3/4; (xiii) −x+3/4, −y+7/4, z−1; (xiv) z−1, −x+7/4, −y+3/4; (xv) −x+7/4, −y+3/4, z−1; (xvi) −y+7/4, z−1, −x+3/4. |
Ba2FeReO6 | V = 259.11 (1) Å3 |
Mr = 306.36 | Z = 4 |
Tetragonal, I4/mmm | Synchrotron radiation, λ = 1.377285 Å |
Hall symbol: I 4/m m m | T = 14 K |
a = 5.68278 (2) Å | Particle morphology: powder |
c = 8.02337 (5) Å | flat_sheet, 20 × 10 mm |
Huber 4+2 circle diffractometer | Data collection mode: reflection |
Radiation source: synchrotron, LNLS D10B-XPD beamline | Scan method: step |
Si 111 monochromator | 2θmin = 15.003°, 2θmax = 150.193°, 2θstep = 0.01° |
Specimen mounting: copper sample holder |
Least-squares matrix: full | 13520 data points |
Rp = 0.168 | Profile function: CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 0.000 #2(GV) = 0.000 #3(GW) = 0.000 #4(LX) = 0.000 #5(LY) = 19.847 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 8.917 #2(GV) = 4.299 #3(GW) = -0.168 #4(LX) = 0.000 #5(LY) = 7.306 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0 |
Rwp = 0.267 | 24 parameters |
Rexp = 0.195 | 0 restraints |
R(F2) = 0.18130 | (Δ/σ)max = 0.02 |
χ2 = 1.904 | Background function: GSAS Background function number 2 with 10 terms. Cosine Fourier series 1: 1.69071 2: -2.03612 3: -3.99352 4: -3.60868 5: -3.03652 6: -2.11781 7: -1.58570 8: -1.02935 9: -0.776166 10: -0.281473 |
Ba2FeReO6 | V = 259.11 (1) Å3 |
Mr = 306.36 | Z = 4 |
Tetragonal, I4/mmm | Synchrotron radiation, λ = 1.377285 Å |
a = 5.68278 (2) Å | T = 14 K |
c = 8.02337 (5) Å | flat_sheet, 20 × 10 mm |
Huber 4+2 circle diffractometer | Scan method: step |
Specimen mounting: copper sample holder | 2θmin = 15.003°, 2θmax = 150.193°, 2θstep = 0.01° |
Data collection mode: reflection |
Rp = 0.168 | χ2 = 1.904 |
Rwp = 0.267 | 13520 data points |
Rexp = 0.195 | 24 parameters |
R(F2) = 0.18130 | 0 restraints |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
FE1 | 0.0 | 0.0 | 0.0 | 0.00840 (17)* | 0.9646 |
RE2 | 0.0 | 0.0 | 0.5 | 0.00840 (17)* | 0.9646 |
BA3 | 0.5 | 0.0 | 0.25 | 0.00325 (16)* | |
O4 | 0.2570 (13) | 0.2570 (13) | 0.0 | 0.0011 (10)* | |
O5 | 0.0 | 0.0 | 0.255 (2) | 0.0011 (10)* | |
FE6 | 0.0 | 0.0 | 0.5 | 0.00840 (17)* | 0.0354 |
RE7 | 0.0 | 0.0 | 0.0 | 0.00840 (17)* | 0.0354 |
FE1—BA3i | 3.4781 (1) | BA3—O5xxviii | 2.8417 (2) |
FE1—BA3 | 3.4781 (1) | BA3—FE6 | 3.4781 (1) |
FE1—BA3ii | 3.4781 (1) | BA3—FE6xviii | 3.4781 (1) |
FE1—BA3iii | 3.4781 (1) | BA3—FE6xxi | 3.4781 (1) |
FE1—BA3iv | 3.4781 (1) | BA3—FE6xxii | 3.4781 (1) |
FE1—BA3v | 3.4781 (1) | BA3—RE7 | 3.4781 (1) |
FE1—BA3vi | 3.4781 (1) | BA3—RE7xviii | 3.4781 (1) |
FE1—BA3vii | 3.4781 (1) | BA3—RE7xix | 3.4781 (1) |
FE1—O4 | 2.065 (11) | BA3—RE7xx | 3.4781 (1) |
FE1—O4iii | 2.065 (11) | O4—FE1 | 2.065 (11) |
FE1—O4viii | 2.065 (11) | O4—RE2xxii | 1.953 (11) |
FE1—O4ix | 2.065 (11) | O4—BA3 | 2.8396 (2) |
FE1—O5 | 2.044 (17) | O4—BA3iii | 2.8396 (2) |
FE1—O5iv | 2.044 (17) | O4—BA3v | 2.8396 (2) |
RE2—BA3i | 3.4781 (1) | O4—BA3vii | 2.8396 (2) |
RE2—BA3 | 3.4781 (1) | O4—FE6xxii | 1.953 (11) |
RE2—BA3ii | 3.4781 (1) | O4—RE7 | 2.065 (11) |
RE2—BA3iii | 3.4781 (1) | O5—FE1 | 2.044 (17) |
RE2—BA3x | 3.4781 (1) | O5—RE2 | 1.968 (17) |
RE2—BA3xi | 3.4781 (1) | O5—BA3i | 2.8417 (2) |
RE2—BA3xii | 3.4781 (1) | O5—BA3 | 2.8417 (2) |
RE2—BA3xiii | 3.4781 (1) | O5—BA3ii | 2.8417 (2) |
RE2—O4xiv | 1.953 (11) | O5—BA3iii | 2.8417 (2) |
RE2—O4xv | 1.953 (11) | O5—FE6 | 1.968 (17) |
RE2—O4xvi | 1.953 (11) | O5—RE7 | 2.044 (17) |
RE2—O4xvii | 1.953 (11) | FE6—BA3i | 3.4781 (1) |
RE2—O5 | 1.968 (17) | FE6—BA3 | 3.4781 (1) |
RE2—O5x | 1.968 (17) | FE6—BA3ii | 3.4781 (1) |
BA3—FE1 | 3.4781 (1) | FE6—BA3iii | 3.4781 (1) |
BA3—FE1xviii | 3.4781 (1) | FE6—BA3x | 3.4781 (1) |
BA3—FE1xix | 3.4781 (1) | FE6—BA3xi | 3.4781 (1) |
BA3—FE1xx | 3.4781 (1) | FE6—BA3xii | 3.4781 (1) |
BA3—RE2 | 3.4781 (1) | FE6—BA3xiii | 3.4781 (1) |
BA3—RE2xviii | 3.4781 (1) | FE6—O4xiv | 1.953 (11) |
BA3—RE2xxi | 3.4781 (1) | FE6—O4xv | 1.953 (11) |
BA3—RE2xxii | 3.4781 (1) | FE6—O4xvi | 1.953 (11) |
BA3—BA3ii | 4.0183 (1) | FE6—O4xvii | 1.953 (11) |
BA3—BA3iii | 4.0183 (1) | FE6—O5 | 1.968 (17) |
BA3—BA3xxiii | 4.0183 (1) | FE6—O5x | 1.968 (17) |
BA3—BA3xxiv | 4.0183 (1) | RE7—BA3i | 3.4781 (1) |
BA3—BA3v | 4.0117 (1) | RE7—BA3 | 3.4781 (1) |
BA3—BA3xi | 4.0117 (1) | RE7—BA3ii | 3.4781 (1) |
BA3—O4 | 2.8396 (2) | RE7—BA3iii | 3.4781 (1) |
BA3—O4xxiv | 2.8396 (2) | RE7—BA3iv | 3.4781 (1) |
BA3—O4xxv | 2.8396 (2) | RE7—BA3v | 3.4781 (1) |
BA3—O4ix | 2.8396 (2) | RE7—BA3vi | 3.4781 (1) |
BA3—O4xix | 2.8396 (2) | RE7—BA3vii | 3.4781 (1) |
BA3—O4xv | 2.8396 (2) | RE7—O4 | 2.065 (11) |
BA3—O4xvi | 2.8396 (2) | RE7—O4iii | 2.065 (11) |
BA3—O4xxvi | 2.8396 (2) | RE7—O4viii | 2.065 (11) |
BA3—O5 | 2.8417 (2) | RE7—O4ix | 2.065 (11) |
BA3—O5xviii | 2.8417 (2) | RE7—O5 | 2.044 (17) |
BA3—O5xxvii | 2.8417 (2) | RE7—O5iv | 2.044 (17) |
BA3i—FE1—BA3 | 109.5606 (4) | BA3ii—BA3—O5xviii | 134.995 (5) |
BA3i—FE1—BA3ii | 70.5734 (2) | BA3ii—BA3—O5xxvii | 45.005 (5) |
BA3i—FE1—BA3iii | 70.5734 (2) | BA3iii—BA3—BA3xxiii | 180.0 |
BA3i—FE1—BA3iv | 70.4394 (4) | BA3iii—BA3—BA3xxiv | 90.0 |
BA3i—FE1—BA3v | 180.0 | BA3iii—BA3—BA3v | 90.0 |
BA3i—FE1—BA3vi | 109.4265 (2) | BA3iii—BA3—BA3xi | 90.0 |
BA3i—FE1—BA3vii | 109.4265 (2) | BA3iii—BA3—O4 | 44.964 (4) |
BA3i—FE1—O4 | 125.2867 (1) | BA3iii—BA3—O4xxiv | 88.9 (2) |
BA3i—FE1—O4iii | 54.7133 (1) | BA3iii—BA3—O4xxv | 135.036 (4) |
BA3i—FE1—O4viii | 54.7133 (1) | BA3iii—BA3—O4ix | 91.1 (2) |
BA3i—FE1—O4ix | 125.2867 (1) | BA3iii—BA3—O4xix | 135.036 (4) |
BA3i—FE1—O5 | 54.7803 (2) | BA3iii—BA3—O4xv | 88.9 (2) |
BA3i—FE1—O5iv | 125.2197 (2) | BA3iii—BA3—O4xvi | 44.964 (4) |
BA3—FE1—BA3ii | 70.5734 (2) | BA3iii—BA3—O4xxvi | 91.1 (2) |
BA3—FE1—BA3iii | 70.5734 (2) | BA3iii—BA3—O5 | 45.005 (5) |
BA3—FE1—BA3iv | 180.0 | BA3iii—BA3—O5xviii | 134.995 (5) |
BA3—FE1—BA3v | 70.4394 (4) | BA3iii—BA3—O5xxvii | 134.995 (5) |
BA3—FE1—BA3vi | 109.4266 (2) | BA3xxiii—BA3—BA3xxiv | 90.0 |
BA3—FE1—BA3vii | 109.4265 (2) | BA3xxiii—BA3—BA3v | 90.0 |
BA3—FE1—O4 | 54.7133 (1) | BA3xxiii—BA3—BA3xi | 90.0 |
BA3—FE1—O4iii | 125.2867 (1) | BA3xxiii—BA3—O4 | 135.036 (4) |
BA3—FE1—O4viii | 125.2867 (1) | BA3xxiii—BA3—O4xxiv | 91.1 (2) |
BA3—FE1—O4ix | 54.7133 (1) | BA3xxiii—BA3—O4xxv | 44.964 (4) |
BA3—FE1—O5 | 54.7803 (2) | BA3xxiii—BA3—O4ix | 88.9 (2) |
BA3—FE1—O5iv | 125.2197 (2) | BA3xxiii—BA3—O4xix | 44.964 (4) |
BA3ii—FE1—BA3iii | 109.5606 (4) | BA3xxiii—BA3—O4xv | 91.1 (2) |
BA3ii—FE1—BA3iv | 109.4265 (2) | BA3xxiii—BA3—O4xvi | 135.036 (4) |
BA3ii—FE1—BA3v | 109.4265 (2) | BA3xxiii—BA3—O4xxvi | 88.9 (2) |
BA3ii—FE1—BA3vi | 70.4394 (4) | BA3xxiii—BA3—O5 | 134.995 (5) |
BA3ii—FE1—BA3vii | 180.0 | BA3xxiii—BA3—O5xviii | 45.005 (5) |
BA3ii—FE1—O4 | 125.2867 (1) | BA3xxiii—BA3—O5xxvii | 45.005 (5) |
BA3ii—FE1—O4iii | 125.2867 (1) | BA3xxiv—BA3—BA3v | 90.0 |
BA3ii—FE1—O4viii | 54.7133 (1) | BA3xxiv—BA3—BA3xi | 90.0 |
BA3ii—FE1—O4ix | 54.7133 (1) | BA3xxiv—BA3—O4 | 88.9 (2) |
BA3ii—FE1—O5 | 54.7803 (2) | BA3xxiv—BA3—O4xxiv | 44.964 (4) |
BA3ii—FE1—O5iv | 125.2197 (2) | BA3xxiv—BA3—O4xxv | 91.1 (2) |
BA3iii—FE1—BA3iv | 109.4266 (2) | BA3xxiv—BA3—O4ix | 135.036 (4) |
BA3iii—FE1—BA3v | 109.4265 (2) | BA3xxiv—BA3—O4xix | 88.9 (2) |
BA3iii—FE1—BA3vi | 180.0 | BA3xxiv—BA3—O4xv | 135.036 (4) |
BA3iii—FE1—BA3vii | 70.4394 (4) | BA3xxiv—BA3—O4xvi | 91.1 (2) |
BA3iii—FE1—O4 | 54.7133 (1) | BA3xxiv—BA3—O4xxvi | 44.964 (4) |
BA3iii—FE1—O4iii | 54.7133 (1) | BA3xxiv—BA3—O5 | 134.995 (5) |
BA3iii—FE1—O4viii | 125.2867 (1) | BA3xxiv—BA3—O5xviii | 45.005 (5) |
BA3iii—FE1—O4ix | 125.2867 (1) | BA3xxiv—BA3—O5xxvii | 134.995 (5) |
BA3iii—FE1—O5 | 54.7803 (2) | BA3v—BA3—BA3xi | 180.0 |
BA3iii—FE1—O5iv | 125.2197 (2) | BA3v—BA3—O4 | 45.058 (4) |
BA3iv—FE1—BA3v | 109.5606 (4) | BA3v—BA3—O4xxiv | 45.058 (4) |
BA3iv—FE1—BA3vi | 70.5734 (2) | BA3v—BA3—O4xxv | 45.058 (4) |
BA3iv—FE1—BA3vii | 70.5734 (2) | BA3v—BA3—O4ix | 45.058 (4) |
BA3iv—FE1—O4 | 125.2867 (1) | BA3v—BA3—O4xix | 134.941 (4) |
BA3iv—FE1—O4iii | 54.7133 (1) | BA3v—BA3—O4xv | 134.941 (4) |
BA3iv—FE1—O4viii | 54.7133 (1) | BA3v—BA3—O4xvi | 134.941 (4) |
BA3iv—FE1—O4ix | 125.2867 (1) | BA3v—BA3—O4xxvi | 134.941 (4) |
BA3iv—FE1—O5 | 125.2197 (2) | BA3v—BA3—O5 | 90.8 (3) |
BA3iv—FE1—O5iv | 54.7803 (2) | BA3v—BA3—O5xviii | 90.8 (3) |
BA3v—FE1—BA3vi | 70.5734 (2) | BA3v—BA3—O5xxvii | 89.2 (3) |
BA3v—FE1—BA3vii | 70.5734 (2) | BA3xi—BA3—O4 | 134.941 (4) |
BA3v—FE1—O4 | 54.7133 (1) | BA3xi—BA3—O4xxiv | 134.941 (4) |
BA3v—FE1—O4iii | 125.2867 (1) | BA3xi—BA3—O4xxv | 134.941 (4) |
BA3v—FE1—O4viii | 125.2867 (1) | BA3xi—BA3—O4ix | 134.941 (4) |
BA3v—FE1—O4ix | 54.7133 (1) | BA3xi—BA3—O4xix | 45.058 (4) |
BA3v—FE1—O5 | 125.2197 (2) | BA3xi—BA3—O4xv | 45.058 (4) |
BA3v—FE1—O5iv | 54.7803 (2) | BA3xi—BA3—O4xvi | 45.058 (4) |
BA3vi—FE1—BA3vii | 109.5606 (4) | BA3xi—BA3—O4xxvi | 45.058 (4) |
BA3vi—FE1—O4 | 125.2867 (1) | BA3xi—BA3—O5 | 89.2 (3) |
BA3vi—FE1—O4iii | 125.2867 (1) | BA3xi—BA3—O5xviii | 89.2 (3) |
BA3vi—FE1—O4viii | 54.7133 (1) | BA3xi—BA3—O5xxvii | 90.8 (3) |
BA3vi—FE1—O4ix | 54.7133 (1) | O4—BA3—O4xxiv | 58.2 (4) |
BA3vi—FE1—O5 | 125.2197 (2) | O4—BA3—O4xxv | 90.117 (8) |
BA3vi—FE1—O5iv | 54.7803 (2) | O4—BA3—O4ix | 61.9 (4) |
BA3vii—FE1—O4 | 54.7133 (1) | O4—BA3—O4xix | 177.7 (4) |
BA3vii—FE1—O4iii | 54.7133 (1) | O4—BA3—O4xv | 119.932 (5) |
BA3vii—FE1—O4viii | 125.2867 (1) | O4—BA3—O4xvi | 89.927 (9) |
BA3vii—FE1—O4ix | 125.2867 (1) | O4—BA3—O4xxvi | 119.932 (5) |
BA3vii—FE1—O5 | 125.2197 (2) | O4—BA3—O5 | 61.5 (3) |
BA3vii—FE1—O5iv | 54.7803 (2) | O4—BA3—O5xviii | 119.7 (4) |
O4—FE1—O4iii | 90.0 | O4—BA3—O5xxvii | 120.3 (4) |
O4—FE1—O4viii | 179.9802 | O4xxiv—BA3—O4xxv | 61.9 (4) |
O4—FE1—O4ix | 90.0 | O4xxiv—BA3—O4ix | 90.117 (8) |
O4—FE1—O5 | 90.0 | O4xxiv—BA3—O4xix | 119.932 (5) |
O4—FE1—O5iv | 90.0 | O4xxiv—BA3—O4xv | 177.7 (4) |
O4iii—FE1—O4viii | 90.0 | O4xxiv—BA3—O4xvi | 119.932 (5) |
O4iii—FE1—O4ix | 179.972 | O4xxiv—BA3—O4xxvi | 89.927 (9) |
O4iii—FE1—O5 | 90.0 | O4xxiv—BA3—O5 | 119.7 (4) |
O4iii—FE1—O5iv | 90.0 | O4xxiv—BA3—O5xviii | 61.5 (3) |
O4viii—FE1—O4ix | 90.0 | O4xxiv—BA3—O5xxvii | 120.3 (4) |
O4viii—FE1—O5 | 90.0 | O4xxv—BA3—O4ix | 58.2 (4) |
O4viii—FE1—O5iv | 90.0 | O4xxv—BA3—O4xix | 89.927 (9) |
O4ix—FE1—O5 | 90.0 | O4xxv—BA3—O4xv | 119.932 (5) |
O4ix—FE1—O5iv | 90.0 | O4xxv—BA3—O4xvi | 177.7 (4) |
O5—FE1—O5iv | 180.0 | O4xxv—BA3—O4xxvi | 119.932 (5) |
BA3i—RE2—BA3 | 109.5606 (4) | O4xxv—BA3—O5 | 119.7 (4) |
BA3i—RE2—BA3ii | 70.5734 (2) | O4xxv—BA3—O5xviii | 61.5 (3) |
BA3i—RE2—BA3iii | 70.5734 (2) | O4xxv—BA3—O5xxvii | 58.4 (3) |
BA3i—RE2—BA3x | 70.4394 (4) | O4ix—BA3—O4xix | 119.932 (5) |
BA3i—RE2—BA3xi | 180.0 | O4ix—BA3—O4xv | 89.927 (9) |
BA3i—RE2—BA3xii | 109.4265 (2) | O4ix—BA3—O4xvi | 119.932 (5) |
BA3i—RE2—BA3xiii | 109.4266 (2) | O4ix—BA3—O4xxvi | 177.7 (4) |
BA3i—RE2—O4xiv | 54.7133 (1) | O4ix—BA3—O5 | 61.5 (3) |
BA3i—RE2—O4xv | 125.2867 (1) | O4ix—BA3—O5xviii | 119.7 (4) |
BA3i—RE2—O4xvi | 125.2867 (1) | O4ix—BA3—O5xxvii | 58.4 (3) |
BA3i—RE2—O4xvii | 54.7133 (1) | O4xix—BA3—O4xv | 61.9 (4) |
BA3i—RE2—O5 | 54.7803 (2) | O4xix—BA3—O4xvi | 90.117 (8) |
BA3i—RE2—O5x | 125.2197 (2) | O4xix—BA3—O4xxvi | 58.2 (4) |
BA3—RE2—BA3ii | 70.5734 (2) | O4xix—BA3—O5 | 120.3 (4) |
BA3—RE2—BA3iii | 70.5734 (2) | O4xix—BA3—O5xviii | 58.4 (3) |
BA3—RE2—BA3x | 180.0 | O4xix—BA3—O5xxvii | 61.5 (3) |
BA3—RE2—BA3xi | 70.4394 (4) | O4xv—BA3—O4xvi | 58.2 (4) |
BA3—RE2—BA3xii | 109.4265 (2) | O4xv—BA3—O4xxvi | 90.117 (8) |
BA3—RE2—BA3xiii | 109.4265 (2) | O4xv—BA3—O5 | 58.4 (3) |
BA3—RE2—O4xiv | 125.2867 (1) | O4xv—BA3—O5xviii | 120.3 (4) |
BA3—RE2—O4xv | 54.7133 (1) | O4xv—BA3—O5xxvii | 61.5 (3) |
BA3—RE2—O4xvi | 54.7133 (1) | O4xvi—BA3—O4xxvi | 61.9 (4) |
BA3—RE2—O4xvii | 125.2867 (1) | O4xvi—BA3—O5 | 58.4 (3) |
BA3—RE2—O5 | 54.7803 (2) | O4xvi—BA3—O5xviii | 120.3 (4) |
BA3—RE2—O5x | 125.2197 (2) | O4xvi—BA3—O5xxvii | 119.7 (4) |
BA3ii—RE2—BA3iii | 109.5606 (4) | O4xxvi—BA3—O5 | 120.3 (4) |
BA3ii—RE2—BA3x | 109.4265 (2) | O4xxvi—BA3—O5xviii | 58.4 (3) |
BA3ii—RE2—BA3xi | 109.4266 (2) | O4xxvi—BA3—O5xxvii | 119.7 (4) |
BA3ii—RE2—BA3xii | 70.4394 (4) | O5—BA3—O5xviii | 178.5 (7) |
BA3ii—RE2—BA3xiii | 180.0 | O5—BA3—O5xxvii | 90.010 (9) |
BA3ii—RE2—O4xiv | 54.7133 (1) | O5xviii—BA3—O5xxvii | 90.010 (9) |
BA3ii—RE2—O4xv | 54.7133 (1) | FE1—O4—RE2xxii | 180.0 |
BA3ii—RE2—O4xvi | 125.2867 (1) | FE1—O4—BA3 | 88.9 (2) |
BA3ii—RE2—O4xvii | 125.2867 (1) | FE1—O4—BA3iii | 88.9 (2) |
BA3ii—RE2—O5 | 54.7803 (2) | FE1—O4—BA3v | 88.9 (2) |
BA3ii—RE2—O5x | 125.2197 (2) | FE1—O4—BA3vii | 88.9 (2) |
BA3iii—RE2—BA3x | 109.4265 (2) | FE1—O4—FE6xxii | 180.0 |
BA3iii—RE2—BA3xi | 109.4265 (2) | FE1—O4—RE7 | 0.0 |
BA3iii—RE2—BA3xii | 180.0 | RE2xxii—O4—BA3 | 91.1 (2) |
BA3iii—RE2—BA3xiii | 70.4394 (4) | RE2xxii—O4—BA3iii | 91.1 (2) |
BA3iii—RE2—O4xiv | 125.2867 (1) | RE2xxii—O4—BA3v | 91.1 (2) |
BA3iii—RE2—O4xv | 125.2867 (1) | RE2xxii—O4—BA3vii | 91.1 (2) |
BA3iii—RE2—O4xvi | 54.7133 (1) | RE2xxii—O4—FE6xxii | 0.0 |
BA3iii—RE2—O4xvii | 54.7133 (1) | RE2xxii—O4—RE7 | 180.0 |
BA3iii—RE2—O5 | 54.7803 (2) | BA3—O4—BA3iii | 90.073 (9) |
BA3iii—RE2—O5x | 125.2197 (2) | BA3—O4—BA3v | 89.883 (8) |
BA3x—RE2—BA3xi | 109.5606 (4) | BA3—O4—BA3vii | 177.7 (4) |
BA3x—RE2—BA3xii | 70.5734 (2) | BA3—O4—FE6xxii | 91.1 (2) |
BA3x—RE2—BA3xiii | 70.5734 (2) | BA3—O4—RE7 | 88.9 (2) |
BA3x—RE2—O4xiv | 54.7133 (1) | BA3iii—O4—BA3v | 177.7 (4) |
BA3x—RE2—O4xv | 125.2867 (1) | BA3iii—O4—BA3vii | 89.883 (8) |
BA3x—RE2—O4xvi | 125.2867 (1) | BA3iii—O4—FE6xxii | 91.1 (2) |
BA3x—RE2—O4xvii | 54.7133 (1) | BA3iii—O4—RE7 | 88.9 (2) |
BA3x—RE2—O5 | 125.2197 (2) | BA3v—O4—BA3vii | 90.073 (9) |
BA3x—RE2—O5x | 54.7803 (2) | BA3v—O4—FE6xxii | 91.1 (2) |
BA3xi—RE2—BA3xii | 70.5734 (2) | BA3v—O4—RE7 | 88.9 (2) |
BA3xi—RE2—BA3xiii | 70.5734 (2) | BA3vii—O4—FE6xxii | 91.1 (2) |
BA3xi—RE2—O4xiv | 125.2867 (1) | BA3vii—O4—RE7 | 88.9 (2) |
BA3xi—RE2—O4xv | 54.7133 (1) | FE6xxii—O4—RE7 | 180.0 |
BA3xi—RE2—O4xvi | 54.7133 (1) | FE1—O5—RE2 | 180.0 |
BA3xi—RE2—O4xvii | 125.2867 (1) | FE1—O5—BA3i | 89.2 (3) |
BA3xi—RE2—O5 | 125.2197 (2) | FE1—O5—BA3 | 89.2 (3) |
BA3xi—RE2—O5x | 54.7803 (2) | FE1—O5—BA3ii | 89.2 (3) |
BA3xii—RE2—BA3xiii | 109.5606 (4) | FE1—O5—BA3iii | 89.2 (3) |
BA3xii—RE2—O4xiv | 54.7133 (1) | FE1—O5—FE6 | 180.0 |
BA3xii—RE2—O4xv | 54.7133 (1) | FE1—O5—RE7 | 0.0 |
BA3xii—RE2—O4xvi | 125.2867 (1) | RE2—O5—BA3i | 90.8 (3) |
BA3xii—RE2—O4xvii | 125.2867 (1) | RE2—O5—BA3 | 90.8 (3) |
BA3xii—RE2—O5 | 125.2197 (2) | RE2—O5—BA3ii | 90.8 (3) |
BA3xii—RE2—O5x | 54.7803 (2) | RE2—O5—BA3iii | 90.8 (3) |
BA3xiii—RE2—O4xiv | 125.2867 (1) | RE2—O5—FE6 | 0.0 |
BA3xiii—RE2—O4xv | 125.2867 (1) | RE2—O5—RE7 | 180.0 |
BA3xiii—RE2—O4xvi | 54.7133 (1) | BA3i—O5—BA3 | 178.5 (7) |
BA3xiii—RE2—O4xvii | 54.7133 (1) | BA3i—O5—BA3ii | 89.990 (9) |
BA3xiii—RE2—O5 | 125.2197 (2) | BA3i—O5—BA3iii | 89.990 (9) |
BA3xiii—RE2—O5x | 54.7803 (2) | BA3i—O5—FE6 | 90.8 (3) |
O4xiv—RE2—O4xv | 90.0 | BA3i—O5—RE7 | 89.2 (3) |
O4xiv—RE2—O4xvi | 180.0 | BA3—O5—BA3ii | 89.990 (9) |
O4xiv—RE2—O4xvii | 90.0 | BA3—O5—BA3iii | 89.990 (9) |
O4xiv—RE2—O5 | 90.0 | BA3—O5—FE6 | 90.8 (3) |
O4xiv—RE2—O5x | 90.0 | BA3—O5—RE7 | 89.2 (3) |
O4xv—RE2—O4xvi | 90.0 | BA3ii—O5—BA3iii | 178.5 (7) |
O4xv—RE2—O4xvii | 180.0 | BA3ii—O5—FE6 | 90.8 (3) |
O4xv—RE2—O5 | 90.0 | BA3ii—O5—RE7 | 89.2 (3) |
O4xv—RE2—O5x | 90.0 | BA3iii—O5—FE6 | 90.8 (3) |
O4xvi—RE2—O4xvii | 90.0 | BA3iii—O5—RE7 | 89.2 (3) |
O4xvi—RE2—O5 | 90.0 | FE6—O5—RE7 | 180.0 |
O4xvi—RE2—O5x | 90.0 | BA3i—FE6—BA3 | 109.5606 (4) |
O4xvii—RE2—O5 | 90.0 | BA3i—FE6—BA3ii | 70.5734 (2) |
O4xvii—RE2—O5x | 90.0 | BA3i—FE6—BA3iii | 70.5734 (2) |
O5—RE2—O5x | 180.0 | BA3i—FE6—BA3x | 70.4394 (4) |
FE1—BA3—FE1xviii | 109.5606 (4) | BA3i—FE6—BA3xi | 180.0 |
FE1—BA3—FE1xix | 109.4265 (2) | BA3i—FE6—BA3xii | 109.4265 (2) |
FE1—BA3—FE1xx | 109.4266 (2) | BA3i—FE6—BA3xiii | 109.4266 (2) |
FE1—BA3—RE2 | 70.4394 (4) | BA3i—FE6—O4xiv | 54.7133 (1) |
FE1—BA3—RE2xviii | 180.0 | BA3i—FE6—O4xv | 125.2867 (1) |
FE1—BA3—RE2xxi | 70.5734 (2) | BA3i—FE6—O4xvi | 125.2867 (1) |
FE1—BA3—RE2xxii | 70.5734 (2) | BA3i—FE6—O4xvii | 54.7133 (1) |
FE1—BA3—BA3ii | 54.7133 (1) | BA3i—FE6—O5 | 54.7803 (2) |
FE1—BA3—BA3iii | 54.7133 (1) | BA3i—FE6—O5x | 125.2197 (2) |
FE1—BA3—BA3xxiii | 125.2867 (1) | BA3—FE6—BA3ii | 70.5734 (2) |
FE1—BA3—BA3xxiv | 125.2867 (1) | BA3—FE6—BA3iii | 70.5734 (2) |
FE1—BA3—BA3v | 54.7803 (2) | BA3—FE6—BA3x | 180.0 |
FE1—BA3—BA3xi | 125.2197 (2) | BA3—FE6—BA3xi | 70.4394 (4) |
FE1—BA3—O4 | 36.4 (2) | BA3—FE6—BA3xii | 109.4265 (2) |
FE1—BA3—O4xxiv | 89.43 (12) | BA3—FE6—BA3xiii | 109.4265 (2) |
FE1—BA3—O4xxv | 89.43 (12) | BA3—FE6—O4xiv | 125.2867 (1) |
FE1—BA3—O4ix | 36.4 (2) | BA3—FE6—O4xv | 54.7133 (1) |
FE1—BA3—O4xix | 145.8 (2) | BA3—FE6—O4xvi | 54.7133 (1) |
FE1—BA3—O4xv | 89.27 (12) | BA3—FE6—O4xvii | 125.2867 (1) |
FE1—BA3—O4xvi | 89.27 (12) | BA3—FE6—O5 | 54.7803 (2) |
FE1—BA3—O4xxvi | 145.8 (2) | BA3—FE6—O5x | 125.2197 (2) |
FE1—BA3—O5 | 36.0 (3) | BA3ii—FE6—BA3iii | 109.5606 (4) |
FE1—BA3—O5xviii | 145.6 (3) | BA3ii—FE6—BA3x | 109.4265 (2) |
FE1—BA3—O5xxvii | 89.6 (2) | BA3ii—FE6—BA3xi | 109.4266 (2) |
FE1xviii—BA3—FE1xix | 109.4265 (2) | BA3ii—FE6—BA3xii | 70.4394 (4) |
FE1xviii—BA3—FE1xx | 109.4265 (2) | BA3ii—FE6—BA3xiii | 180.0 |
FE1xviii—BA3—RE2 | 180.0 | BA3ii—FE6—O4xiv | 54.7133 (1) |
FE1xviii—BA3—RE2xviii | 70.4394 (4) | BA3ii—FE6—O4xv | 54.7133 (1) |
FE1xviii—BA3—RE2xxi | 70.5734 (2) | BA3ii—FE6—O4xvi | 125.2867 (1) |
FE1xviii—BA3—RE2xxii | 70.5734 (2) | BA3ii—FE6—O4xvii | 125.2867 (1) |
FE1xviii—BA3—BA3ii | 125.2867 (1) | BA3ii—FE6—O5 | 54.7803 (2) |
FE1xviii—BA3—BA3iii | 125.2867 (1) | BA3ii—FE6—O5x | 125.2197 (2) |
FE1xviii—BA3—BA3xxiii | 54.7133 (1) | BA3iii—FE6—BA3x | 109.4265 (2) |
FE1xviii—BA3—BA3xxiv | 54.7133 (1) | BA3iii—FE6—BA3xi | 109.4265 (2) |
FE1xviii—BA3—BA3v | 54.7803 (2) | BA3iii—FE6—BA3xii | 180.0 |
FE1xviii—BA3—BA3xi | 125.2197 (2) | BA3iii—FE6—BA3xiii | 70.4394 (4) |
FE1xviii—BA3—O4 | 89.43 (12) | BA3iii—FE6—O4xiv | 125.2867 (1) |
FE1xviii—BA3—O4xxiv | 36.4 (2) | BA3iii—FE6—O4xv | 125.2867 (1) |
FE1xviii—BA3—O4xxv | 36.4 (2) | BA3iii—FE6—O4xvi | 54.7133 (1) |
FE1xviii—BA3—O4ix | 89.43 (12) | BA3iii—FE6—O4xvii | 54.7133 (1) |
FE1xviii—BA3—O4xix | 89.27 (12) | BA3iii—FE6—O5 | 54.7803 (2) |
FE1xviii—BA3—O4xv | 145.8 (2) | BA3iii—FE6—O5x | 125.2197 (2) |
FE1xviii—BA3—O4xvi | 145.8 (2) | BA3x—FE6—BA3xi | 109.5606 (4) |
FE1xviii—BA3—O4xxvi | 89.27 (12) | BA3x—FE6—BA3xii | 70.5734 (2) |
FE1xviii—BA3—O5 | 145.6 (3) | BA3x—FE6—BA3xiii | 70.5734 (2) |
FE1xviii—BA3—O5xviii | 36.0 (3) | BA3x—FE6—O4xiv | 54.7133 (1) |
FE1xviii—BA3—O5xxvii | 89.6 (2) | BA3x—FE6—O4xv | 125.2867 (1) |
FE1xix—BA3—FE1xx | 109.5606 (4) | BA3x—FE6—O4xvi | 125.2867 (1) |
FE1xix—BA3—RE2 | 70.5734 (2) | BA3x—FE6—O4xvii | 54.7133 (1) |
FE1xix—BA3—RE2xviii | 70.5734 (2) | BA3x—FE6—O5 | 125.2197 (2) |
FE1xix—BA3—RE2xxi | 70.4394 (4) | BA3x—FE6—O5x | 54.7803 (2) |
FE1xix—BA3—RE2xxii | 180.0 | BA3xi—FE6—BA3xii | 70.5734 (2) |
FE1xix—BA3—BA3ii | 54.7133 (1) | BA3xi—FE6—BA3xiii | 70.5734 (2) |
FE1xix—BA3—BA3iii | 125.2867 (1) | BA3xi—FE6—O4xiv | 125.2867 (1) |
FE1xix—BA3—BA3xxiii | 54.7133 (1) | BA3xi—FE6—O4xv | 54.7133 (1) |
FE1xix—BA3—BA3xxiv | 125.2867 (1) | BA3xi—FE6—O4xvi | 54.7133 (1) |
FE1xix—BA3—BA3v | 125.2197 (2) | BA3xi—FE6—O4xvii | 125.2867 (1) |
FE1xix—BA3—BA3xi | 54.7803 (2) | BA3xi—FE6—O5 | 125.2197 (2) |
FE1xix—BA3—O4 | 145.8 (2) | BA3xi—FE6—O5x | 54.7803 (2) |
FE1xix—BA3—O4xxiv | 145.8 (2) | BA3xii—FE6—BA3xiii | 109.5606 (4) |
FE1xix—BA3—O4xxv | 89.27 (12) | BA3xii—FE6—O4xiv | 54.7133 (1) |
FE1xix—BA3—O4ix | 89.27 (12) | BA3xii—FE6—O4xv | 54.7133 (1) |
FE1xix—BA3—O4xix | 36.4 (2) | BA3xii—FE6—O4xvi | 125.2867 (1) |
FE1xix—BA3—O4xv | 36.4 (2) | BA3xii—FE6—O4xvii | 125.2867 (1) |
FE1xix—BA3—O4xvi | 89.43 (12) | BA3xii—FE6—O5 | 125.2197 (2) |
FE1xix—BA3—O4xxvi | 89.43 (12) | BA3xii—FE6—O5x | 54.7803 (2) |
FE1xix—BA3—O5 | 89.6 (2) | BA3xiii—FE6—O4xiv | 125.2867 (1) |
FE1xix—BA3—O5xviii | 89.6 (2) | BA3xiii—FE6—O4xv | 125.2867 (1) |
FE1xix—BA3—O5xxvii | 36.0 (3) | BA3xiii—FE6—O4xvi | 54.7133 (1) |
FE1xx—BA3—RE2 | 70.5734 (2) | BA3xiii—FE6—O4xvii | 54.7133 (1) |
FE1xx—BA3—RE2xviii | 70.5734 (2) | BA3xiii—FE6—O5 | 125.2197 (2) |
FE1xx—BA3—RE2xxi | 180.0 | BA3xiii—FE6—O5x | 54.7803 (2) |
FE1xx—BA3—RE2xxii | 70.4394 (4) | O4xiv—FE6—O4xv | 90.0 |
FE1xx—BA3—BA3ii | 125.2867 (1) | O4xiv—FE6—O4xvi | 180.0 |
FE1xx—BA3—BA3iii | 54.7133 (1) | O4xiv—FE6—O4xvii | 90.0 |
FE1xx—BA3—BA3xxiii | 125.2867 (1) | O4xiv—FE6—O5 | 90.0 |
FE1xx—BA3—BA3xxiv | 54.7133 (1) | O4xiv—FE6—O5x | 90.0 |
FE1xx—BA3—BA3v | 125.2197 (2) | O4xv—FE6—O4xvi | 90.0 |
FE1xx—BA3—BA3xi | 54.7803 (2) | O4xv—FE6—O4xvii | 180.0 |
FE1xx—BA3—O4 | 89.27 (12) | O4xv—FE6—O5 | 90.0 |
FE1xx—BA3—O4xxiv | 89.27 (12) | O4xv—FE6—O5x | 90.0 |
FE1xx—BA3—O4xxv | 145.8 (2) | O4xvi—FE6—O4xvii | 90.0 |
FE1xx—BA3—O4ix | 145.8 (2) | O4xvi—FE6—O5 | 90.0 |
FE1xx—BA3—O4xix | 89.43 (12) | O4xvi—FE6—O5x | 90.0 |
FE1xx—BA3—O4xv | 89.43 (12) | O4xvii—FE6—O5 | 90.0 |
FE1xx—BA3—O4xvi | 36.4 (2) | O4xvii—FE6—O5x | 90.0 |
FE1xx—BA3—O4xxvi | 36.4 (2) | O5—FE6—O5x | 180.0 |
FE1xx—BA3—O5 | 89.6 (2) | BA3i—RE7—BA3 | 109.5606 (4) |
FE1xx—BA3—O5xviii | 89.6 (2) | BA3i—RE7—BA3ii | 70.5734 (2) |
FE1xx—BA3—O5xxvii | 145.6 (3) | BA3i—RE7—BA3iii | 70.5734 (2) |
RE2—BA3—RE2xviii | 109.5606 (4) | BA3i—RE7—BA3iv | 70.4394 (4) |
RE2—BA3—RE2xxi | 109.4265 (2) | BA3i—RE7—BA3v | 180.0 |
RE2—BA3—RE2xxii | 109.4265 (2) | BA3i—RE7—BA3vi | 109.4265 (2) |
RE2—BA3—BA3ii | 54.7133 (1) | BA3i—RE7—BA3vii | 109.4265 (2) |
RE2—BA3—BA3iii | 54.7133 (1) | BA3i—RE7—O4 | 125.2867 (1) |
RE2—BA3—BA3xxiii | 125.2867 (1) | BA3i—RE7—O4iii | 54.7133 (1) |
RE2—BA3—BA3xxiv | 125.2867 (1) | BA3i—RE7—O4viii | 54.7133 (1) |
RE2—BA3—BA3v | 125.2197 (2) | BA3i—RE7—O4ix | 125.2867 (1) |
RE2—BA3—BA3xi | 54.7803 (2) | BA3i—RE7—O5 | 54.7803 (2) |
RE2—BA3—O4 | 90.57 (12) | BA3i—RE7—O5iv | 125.2197 (2) |
RE2—BA3—O4xxiv | 143.6 (2) | BA3—RE7—BA3ii | 70.5734 (2) |
RE2—BA3—O4xxv | 143.6 (2) | BA3—RE7—BA3iii | 70.5734 (2) |
RE2—BA3—O4ix | 90.57 (12) | BA3—RE7—BA3iv | 180.0 |
RE2—BA3—O4xix | 90.73 (12) | BA3—RE7—BA3v | 70.4394 (4) |
RE2—BA3—O4xv | 34.2 (2) | BA3—RE7—BA3vi | 109.4266 (2) |
RE2—BA3—O4xvi | 34.2 (2) | BA3—RE7—BA3vii | 109.4265 (2) |
RE2—BA3—O4xxvi | 90.73 (12) | BA3—RE7—O4 | 54.7133 (1) |
RE2—BA3—O5 | 34.5 (3) | BA3—RE7—O4iii | 125.2867 (1) |
RE2—BA3—O5xviii | 144.0 (3) | BA3—RE7—O4viii | 125.2867 (1) |
RE2—BA3—O5xxvii | 90.4 (2) | BA3—RE7—O4ix | 54.7133 (1) |
RE2xviii—BA3—RE2xxi | 109.4266 (2) | BA3—RE7—O5 | 54.7803 (2) |
RE2xviii—BA3—RE2xxii | 109.4265 (2) | BA3—RE7—O5iv | 125.2197 (2) |
RE2xviii—BA3—BA3ii | 125.2867 (1) | BA3ii—RE7—BA3iii | 109.5606 (4) |
RE2xviii—BA3—BA3iii | 125.2867 (1) | BA3ii—RE7—BA3iv | 109.4265 (2) |
RE2xviii—BA3—BA3xxiii | 54.7133 (1) | BA3ii—RE7—BA3v | 109.4265 (2) |
RE2xviii—BA3—BA3xxiv | 54.7133 (1) | BA3ii—RE7—BA3vi | 70.4394 (4) |
RE2xviii—BA3—BA3v | 125.2197 (2) | BA3ii—RE7—BA3vii | 180.0 |
RE2xviii—BA3—BA3xi | 54.7803 (2) | BA3ii—RE7—O4 | 125.2867 (1) |
RE2xviii—BA3—O4 | 143.6 (2) | BA3ii—RE7—O4iii | 125.2867 (1) |
RE2xviii—BA3—O4xxiv | 90.57 (12) | BA3ii—RE7—O4viii | 54.7133 (1) |
RE2xviii—BA3—O4xxv | 90.57 (12) | BA3ii—RE7—O4ix | 54.7133 (1) |
RE2xviii—BA3—O4ix | 143.6 (2) | BA3ii—RE7—O5 | 54.7803 (2) |
RE2xviii—BA3—O4xix | 34.2 (2) | BA3ii—RE7—O5iv | 125.2197 (2) |
RE2xviii—BA3—O4xv | 90.73 (12) | BA3iii—RE7—BA3iv | 109.4266 (2) |
RE2xviii—BA3—O4xvi | 90.73 (12) | BA3iii—RE7—BA3v | 109.4265 (2) |
RE2xviii—BA3—O4xxvi | 34.2 (2) | BA3iii—RE7—BA3vi | 180.0 |
RE2xviii—BA3—O5 | 144.0 (3) | BA3iii—RE7—BA3vii | 70.4394 (4) |
RE2xviii—BA3—O5xviii | 34.5 (3) | BA3iii—RE7—O4 | 54.7133 (1) |
RE2xviii—BA3—O5xxvii | 90.4 (2) | BA3iii—RE7—O4iii | 54.7133 (1) |
RE2xxi—BA3—RE2xxii | 109.5606 (4) | BA3iii—RE7—O4viii | 125.2867 (1) |
RE2xxi—BA3—BA3ii | 54.7133 (1) | BA3iii—RE7—O4ix | 125.2867 (1) |
RE2xxi—BA3—BA3iii | 125.2867 (1) | BA3iii—RE7—O5 | 54.7803 (2) |
RE2xxi—BA3—BA3xxiii | 54.7133 (1) | BA3iii—RE7—O5iv | 125.2197 (2) |
RE2xxi—BA3—BA3xxiv | 125.2867 (1) | BA3iv—RE7—BA3v | 109.5606 (4) |
RE2xxi—BA3—BA3v | 54.7803 (2) | BA3iv—RE7—BA3vi | 70.5734 (2) |
RE2xxi—BA3—BA3xi | 125.2197 (2) | BA3iv—RE7—BA3vii | 70.5734 (2) |
RE2xxi—BA3—O4 | 90.73 (12) | BA3iv—RE7—O4 | 125.2867 (1) |
RE2xxi—BA3—O4xxiv | 90.73 (12) | BA3iv—RE7—O4iii | 54.7133 (1) |
RE2xxi—BA3—O4xxv | 34.2 (2) | BA3iv—RE7—O4viii | 54.7133 (1) |
RE2xxi—BA3—O4ix | 34.2 (2) | BA3iv—RE7—O4ix | 125.2867 (1) |
RE2xxi—BA3—O4xix | 90.57 (12) | BA3iv—RE7—O5 | 125.2197 (2) |
RE2xxi—BA3—O4xv | 90.57 (12) | BA3iv—RE7—O5iv | 54.7803 (2) |
RE2xxi—BA3—O4xvi | 143.6 (2) | BA3v—RE7—BA3vi | 70.5734 (2) |
RE2xxi—BA3—O4xxvi | 143.6 (2) | BA3v—RE7—BA3vii | 70.5734 (2) |
RE2xxi—BA3—O5 | 90.4 (2) | BA3v—RE7—O4 | 54.7133 (1) |
RE2xxi—BA3—O5xviii | 90.4 (2) | BA3v—RE7—O4iii | 125.2867 (1) |
RE2xxi—BA3—O5xxvii | 34.5 (3) | BA3v—RE7—O4viii | 125.2867 (1) |
RE2xxii—BA3—BA3ii | 125.2867 (1) | BA3v—RE7—O4ix | 54.7133 (1) |
RE2xxii—BA3—BA3iii | 54.7133 (1) | BA3v—RE7—O5 | 125.2197 (2) |
RE2xxii—BA3—BA3xxiii | 125.2867 (1) | BA3v—RE7—O5iv | 54.7803 (2) |
RE2xxii—BA3—BA3xxiv | 54.7133 (1) | BA3vi—RE7—BA3vii | 109.5606 (4) |
RE2xxii—BA3—BA3v | 54.7803 (2) | BA3vi—RE7—O4 | 125.2867 (1) |
RE2xxii—BA3—BA3xi | 125.2197 (2) | BA3vi—RE7—O4iii | 125.2867 (1) |
RE2xxii—BA3—O4 | 34.2 (2) | BA3vi—RE7—O4viii | 54.7133 (1) |
RE2xxii—BA3—O4xxiv | 34.2 (2) | BA3vi—RE7—O4ix | 54.7133 (1) |
RE2xxii—BA3—O4xxv | 90.73 (12) | BA3vi—RE7—O5 | 125.2197 (2) |
RE2xxii—BA3—O4ix | 90.73 (12) | BA3vi—RE7—O5iv | 54.7803 (2) |
RE2xxii—BA3—O4xix | 143.6 (2) | BA3vii—RE7—O4 | 54.7133 (1) |
RE2xxii—BA3—O4xv | 143.6 (2) | BA3vii—RE7—O4iii | 54.7133 (1) |
RE2xxii—BA3—O4xvi | 90.57 (12) | BA3vii—RE7—O4viii | 125.2867 (1) |
RE2xxii—BA3—O4xxvi | 90.57 (12) | BA3vii—RE7—O4ix | 125.2867 (1) |
RE2xxii—BA3—O5 | 90.4 (2) | BA3vii—RE7—O5 | 125.2197 (2) |
RE2xxii—BA3—O5xviii | 90.4 (2) | BA3vii—RE7—O5iv | 54.7803 (2) |
RE2xxii—BA3—O5xxvii | 144.0 (3) | O4—RE7—O4iii | 90.0 |
BA3ii—BA3—BA3iii | 90.0 | O4—RE7—O4viii | 179.9802 |
BA3ii—BA3—BA3xxiii | 90.0 | O4—RE7—O4ix | 90.0 |
BA3ii—BA3—BA3xxiv | 180.0 | O4—RE7—O5 | 90.0 |
BA3ii—BA3—BA3v | 90.0 | O4—RE7—O5iv | 90.0 |
BA3ii—BA3—BA3xi | 90.0 | O4iii—RE7—O4viii | 90.0 |
BA3ii—BA3—O4 | 91.1 (2) | O4iii—RE7—O4ix | 179.972 |
BA3ii—BA3—O4xxiv | 135.036 (4) | O4iii—RE7—O5 | 90.0 |
BA3ii—BA3—O4xxv | 88.9 (2) | O4iii—RE7—O5iv | 90.0 |
BA3ii—BA3—O4ix | 44.964 (4) | O4viii—RE7—O4ix | 90.0 |
BA3ii—BA3—O4xix | 91.1 (2) | O4viii—RE7—O5 | 90.0 |
BA3ii—BA3—O4xv | 44.964 (4) | O4viii—RE7—O5iv | 90.0 |
BA3ii—BA3—O4xvi | 88.9 (2) | O4ix—RE7—O5 | 90.0 |
BA3ii—BA3—O4xxvi | 135.036 (4) | O4ix—RE7—O5iv | 90.0 |
BA3ii—BA3—O5 | 45.005 (5) | O5—RE7—O5iv | 180.0 |
Symmetry codes: (i) x−1, y, z; (ii) −y, x−1, z; (iii) −y, x, z; (iv) −x, −y, −z; (v) −x+1, −y, −z; (vi) y, −x, −z; (vii) y, −x+1, −z; (viii) −x, −y, z; (ix) y, −x, z; (x) −x, −y, −z+1; (xi) −x+1, −y, −z+1; (xii) y, −x, −z+1; (xiii) y, −x+1, −z+1; (xiv) x−1/2, y−1/2, z+1/2; (xv) −y+1/2, x−1/2, z+1/2; (xvi) −x+1/2, −y+1/2, z+1/2; (xvii) y−1/2, −x+1/2, z+1/2; (xviii) x+1, y, z; (xix) x+1/2, y−1/2, z+1/2; (xx) x+1/2, y+1/2, z+1/2; (xxi) x+1/2, y−1/2, z−1/2; (xxii) x+1/2, y+1/2, z−1/2; (xxiii) −y+1, x−1, z; (xxiv) −y+1, x, z; (xxv) −x+1, −y, z; (xxvi) y+1/2, −x+1/2, z+1/2; (xxvii) −x−1/2, −y−3/2, −z−1/2; (xxviii) −x−1/2, −y−1/2, −z−1/2. |
Ba2FeReO6 | Z = 8 |
Mr = 306.36 | ? radiation, λ = 1.377287 Å |
Cubic, Fm3m | T = 400 K |
Hall symbol: F m 3 m | Particle morphology: powder |
a = 8.063327 (13) Å | flat_sheet, 20 × 10 mm |
V = 524.26 (1) Å3 |
Huber 4+2 circle diffractometer | Data collection mode: reflection |
Radiation source: synchrotron, LNLS D10B-XPD beamline | Scan method: step |
Si 111 monochromator | 2θmin = 15.003°, 2θmax = 150.193°, 2θstep = 0.01° |
Specimen mounting: copper sample holder |
Least-squares matrix: full | 13520 data points |
Rp = 0.149 | Profile function: CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 1.637 #2(GV) = 2.828 #3(GW) = 0.012 #4(LX) = 0.000 #5(LY) = 8.663 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 0.000 #2(GV) = 0.000 #3(GW) = 0.000 #4(LX) = 0.000 #5(LY) = 12.919 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0 |
Rwp = 0.221 | 25 parameters |
Rexp = 0.170 | 0 restraints |
R(F2) = 0.12564 | (Δ/σ)max = 0.02 |
χ2 = 1.690 | Background function: GSAS Background function number 2 with 10 terms. Cosine Fourier series 1: 5.36654 2: 1.01816 3: -5.78612 4: -0.425017 5: -3.39798 6: -0.251197 7: -1.97797 8: 0.272396 9: -0.804030 10: 0.197454 |
Ba2FeReO6 | Z = 8 |
Mr = 306.36 | ? radiation, λ = 1.377287 Å |
Cubic, Fm3m | T = 400 K |
a = 8.063327 (13) Å | flat_sheet, 20 × 10 mm |
V = 524.26 (1) Å3 |
Huber 4+2 circle diffractometer | Scan method: step |
Specimen mounting: copper sample holder | 2θmin = 15.003°, 2θmax = 150.193°, 2θstep = 0.01° |
Data collection mode: reflection |
Rp = 0.149 | χ2 = 1.690 |
Rwp = 0.221 | 13520 data points |
Rexp = 0.170 | 25 parameters |
R(F2) = 0.12564 | 0 restraints |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ba | 0.25 | 0.25 | 0.25 | 0.0073 (2)* | |
Fe | 0.0 | 0.0 | 0.0 | 0.0101 (2)* | 0.9646 |
Re | 0.5 | 0.0 | 0.0 | 0.0101 (2)* | 0.9646 |
RE5 | 0.0 | 0.0 | 0.0 | 0.0100 (2)* | 0.0354 |
FE6 | 0.5 | 0.0 | 0.0 | 0.0100 (2)* | 0.0354 |
O7 | 0.2608 (9) | 0.0 | 0.0 | 0.0091 (12)* |
Ba—Fe | 3.4915 | Re—O7 | 1.929 (8) |
Ba—Fei | 3.4915 | Re—O7xxvii | 1.929 (8) |
Ba—Feii | 3.4915 | Re—O7xxviii | 1.929 (8) |
Ba—Feiii | 3.4915 | Re—O7ix | 1.929 (8) |
Ba—Re | 3.4915 | Re—O7xxix | 1.929 (8) |
Ba—Reiv | 3.4915 | Re—O7xiii | 1.929 (8) |
Ba—Rev | 3.4915 | RE5—Ba | 3.4915 |
Ba—Rei | 3.4915 | RE5—Baxiv | 3.4915 |
Ba—RE5 | 3.4915 | RE5—Baxv | 3.4915 |
Ba—RE5i | 3.4915 | RE5—Baxvi | 3.4915 |
Ba—RE5ii | 3.4915 | RE5—Baxvii | 3.4915 |
Ba—RE5iii | 3.4915 | RE5—Baxviii | 3.4915 |
Ba—FE6 | 3.4915 | RE5—Baxix | 3.4915 |
Ba—FE6iv | 3.4915 | RE5—Baxx | 3.4915 |
Ba—FE6v | 3.4915 | RE5—O7 | 2.103 (8) |
Ba—FE6i | 3.4915 | RE5—O7iv | 2.103 (8) |
Ba—O7 | 2.8521 (2) | RE5—O7v | 2.103 (8) |
Ba—O7iv | 2.8521 (2) | RE5—O7xix | 2.103 (8) |
Ba—O7v | 2.8521 (2) | RE5—O7xxi | 2.103 (8) |
Ba—O7i | 2.8521 (2) | RE5—O7xxii | 2.103 (8) |
Ba—O7vi | 2.8521 (2) | FE6—Ba | 3.4915 |
Ba—O7vii | 2.8521 (2) | FE6—Baxiv | 3.4915 |
Ba—O7viii | 2.8521 (2) | FE6—Baxxiii | 3.4915 |
Ba—O7ix | 2.8521 (2) | FE6—Baxvi | 3.4915 |
Ba—O7x | 2.8521 (2) | FE6—Baxxiv | 3.4915 |
Ba—O7xi | 2.8521 (2) | FE6—Baxxv | 3.4915 |
Ba—O7xii | 2.8521 (2) | FE6—Baxix | 3.4915 |
Ba—O7xiii | 2.8521 (2) | FE6—Baxxvi | 3.4915 |
Fe—Ba | 3.4915 | FE6—O7 | 1.929 (8) |
Fe—Baxiv | 3.4915 | FE6—O7xxvii | 1.929 (8) |
Fe—Baxv | 3.4915 | FE6—O7xxviii | 1.929 (8) |
Fe—Baxvi | 3.4915 | FE6—O7ix | 1.929 (8) |
Fe—Baxvii | 3.4915 | FE6—O7xxix | 1.929 (8) |
Fe—Baxviii | 3.4915 | FE6—O7xiii | 1.929 (8) |
Fe—Baxix | 3.4915 | O7—Ba | 2.8521 (2) |
Fe—Baxx | 3.4915 | O7—Baxiv | 2.8521 (2) |
Fe—O7 | 2.103 (8) | O7—Baxvi | 2.8521 (2) |
Fe—O7iv | 2.103 (8) | O7—Baxix | 2.8521 (2) |
Fe—O7v | 2.103 (8) | O7—Fe | 2.103 (8) |
Fe—O7xix | 2.103 (8) | O7—Re | 1.929 (8) |
Fe—O7xxi | 2.103 (8) | O7—RE5 | 2.103 (8) |
Fe—O7xxii | 2.103 (8) | O7—FE6 | 1.929 (8) |
Re—Ba | 3.4915 | O7—O7iv | 2.974 (11) |
Re—Baxiv | 3.4915 | O7—O7v | 2.974 (11) |
Re—Baxxiii | 3.4915 | O7—O7xix | 2.974 (11) |
Re—Baxvi | 3.4915 | O7—O7xxii | 2.974 (11) |
Re—Baxxiv | 3.4915 | O7—O7xxviii | 2.728 (11) |
Re—Baxxv | 3.4915 | O7—O7ix | 2.728 (11) |
Re—Baxix | 3.4915 | O7—O7xxix | 2.728 (11) |
Re—Baxxvi | 3.4915 | O7—O7xiii | 2.728 (11) |
O7—Fe—O7iv | 90.0 | O7—RE5—O7xxi | 180.0 |
O7—Fe—O7v | 90.0 | O7—RE5—O7xxii | 90.0 |
O7—Fe—O7xix | 90.0 | O7iv—RE5—O7v | 90.0 |
O7—Fe—O7xxi | 180.0 | O7iv—RE5—O7xix | 90.0 |
O7—Fe—O7xxii | 90.0 | O7iv—RE5—O7xxi | 90.0 |
O7iv—Fe—O7v | 90.0 | O7iv—RE5—O7xxii | 180.0 |
O7iv—Fe—O7xix | 90.0 | O7v—RE5—O7xix | 180.0 |
O7iv—Fe—O7xxi | 90.0 | O7v—RE5—O7xxi | 90.0 |
O7iv—Fe—O7xxii | 180.0 | O7v—RE5—O7xxii | 90.0 |
O7v—Fe—O7xix | 180.0 | O7xix—RE5—O7xxi | 90.0 |
O7v—Fe—O7xxi | 90.0 | O7xix—RE5—O7xxii | 90.0 |
O7v—Fe—O7xxii | 90.0 | O7xxi—RE5—O7xxii | 90.0 |
O7xix—Fe—O7xxi | 90.0 | O7—FE6—O7xxvii | 179.9604 |
O7xix—Fe—O7xxii | 90.0 | O7—FE6—O7xxviii | 90.0 |
O7xxi—Fe—O7xxii | 90.0 | O7—FE6—O7ix | 90.0 |
O7—Re—O7xxvii | 179.9604 | O7—FE6—O7xxix | 90.0 |
O7—Re—O7xxviii | 90.0 | O7—FE6—O7xiii | 90.0 |
O7—Re—O7ix | 90.0 | O7xxvii—FE6—O7xxviii | 90.0 |
O7—Re—O7xxix | 90.0 | O7xxvii—FE6—O7ix | 90.0 |
O7—Re—O7xiii | 90.0 | O7xxvii—FE6—O7xxix | 90.0 |
O7xxvii—Re—O7xxviii | 90.0 | O7xxvii—FE6—O7xiii | 90.0 |
O7xxvii—Re—O7ix | 90.0 | O7xxviii—FE6—O7ix | 180.0 |
O7xxvii—Re—O7xxix | 90.0 | O7xxviii—FE6—O7xxix | 90.0 |
O7xxvii—Re—O7xiii | 90.0 | O7xxviii—FE6—O7xiii | 90.0 |
O7xxviii—Re—O7ix | 180.0 | O7ix—FE6—O7xxix | 90.0 |
O7xxviii—Re—O7xxix | 90.0 | O7ix—FE6—O7xiii | 90.0 |
O7xxviii—Re—O7xiii | 90.0 | O7xxix—FE6—O7xiii | 180.0 |
O7ix—Re—O7xxix | 90.0 | Fe—O7—Re | 180.0 |
O7ix—Re—O7xiii | 90.0 | Fe—O7—RE5 | 0.0 |
O7xxix—Re—O7xiii | 180.0 | Fe—O7—FE6 | 180.0 |
O7—RE5—O7iv | 90.0 | Re—O7—RE5 | 180.0 |
O7—RE5—O7v | 90.0 | Re—O7—FE6 | 0.0 |
O7—RE5—O7xix | 90.0 | RE5—O7—FE6 | 180.0 |
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y+1/2, z; (iv) z, x, y; (v) y, z, x; (vi) y, −z+1/2, −x+1/2; (vii) −z, −x+1/2, y+1/2; (viii) z+1/2, x, y+1/2; (ix) y+1/2, −z, −x+1/2; (x) −x+1/2, y, −z+1/2; (xi) y+1/2, z+1/2, x; (xii) −x+1/2, y+1/2, −z; (xiii) −z+1/2, −x+1/2, y; (xiv) x, y, −z; (xv) −z, x, y; (xvi) y, −z, x; (xvii) −z, x, −y; (xviii) −y, −z, x; (xix) y, −z, −x; (xx) −x, −y, −z; (xxi) −x, y, −z; (xxii) −z, −x, y; (xxiii) −z+1, x, y; (xxiv) −z+1, x, −y; (xxv) −y+1, −z, x; (xxvi) −x+1, −y, −z; (xxvii) −x+1, y, −z; (xxviii) y+1/2, z, x−1/2; (xxix) z+1/2, x−1/2, y. |
Fe3O4 | Z = 8 |
Mr = 231.54 | ? radiation, λ = 1.377287 Å |
Cubic, Fd3m | T = 400 K |
Hall symbol: F d -3 m | Particle morphology: powder |
a = 8.3985 (5) Å | flat_sheet, 20 × 10 mm |
V = 592.38 (10) Å3 |
Huber 4+2 circle diffractometer | Data collection mode: reflection |
Radiation source: synchrotron, LNLS D10B-XPD beamline | Scan method: step |
Si 111 monochromator | 2θmin = 15.003°, 2θmax = 150.193°, 2θstep = 0.01° |
Specimen mounting: copper sample holder |
Least-squares matrix: full | 13520 data points |
Rp = 0.149 | Profile function: CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 1.637 #2(GV) = 2.828 #3(GW) = 0.012 #4(LX) = 0.000 #5(LY) = 8.663 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0, CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function C.J. Howard (1982). J. Appl. Cryst.,15,615-620. P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. #1(GU) = 0.000 #2(GV) = 0.000 #3(GW) = 0.000 #4(LX) = 0.000 #5(LY) = 12.919 #6(trns) = 0.000 #7(asym) = 0.0000 #8(shft) = 0.0000 #9(GP) = 0.000 #10(stec)= 0.00 #11(ptec)= 0.00 #12(sfec)= 0.00 #13(L11) = 0.000 #14(L22) = 0.000 #15(L33) = 0.000 #16(L12) = 0.000 #17(L13) = 0.000 #18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0 |
Rwp = 0.221 | 25 parameters |
Rexp = 0.170 | 0 restraints |
R(F2) = 0.12564 | (Δ/σ)max = 0.02 |
χ2 = 1.690 | Background function: GSAS Background function number 2 with 10 terms. Cosine Fourier series 1: 5.36654 2: 1.01816 3: -5.78612 4: -0.425017 5: -3.39798 6: -0.251197 7: -1.97797 8: 0.272396 9: -0.804030 10: 0.197454 |
Fe3O4 | Z = 8 |
Mr = 231.54 | ? radiation, λ = 1.377287 Å |
Cubic, Fd3m | T = 400 K |
a = 8.3985 (5) Å | flat_sheet, 20 × 10 mm |
V = 592.38 (10) Å3 |
Huber 4+2 circle diffractometer | Scan method: step |
Specimen mounting: copper sample holder | 2θmin = 15.003°, 2θmax = 150.193°, 2θstep = 0.01° |
Data collection mode: reflection |
Rp = 0.149 | χ2 = 1.690 |
Rwp = 0.221 | 13520 data points |
Rexp = 0.170 | 25 parameters |
R(F2) = 0.12564 | 0 restraints |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.125 | 0.125 | 0.125 | −0.016 (4)* | |
Fe2 | 0.5 | 0.5 | 0.5 | −0.016 (4)* | |
O | 0.246 (10) | 0.246 (10) | 0.246 (10) | −0.016 (4)* |
Fe1—O | 1.76 (15) | Fe2—Ovii | 2.14 (9) |
Fe1—Oi | 1.76 (15) | Fe2—Oviii | 2.14 (9) |
Fe1—Oii | 1.76 (15) | Fe2—Oix | 2.14 (9) |
Fe1—Oiii | 1.76 (15) | O—Fe1 | 1.76 (15) |
Fe2—Oiv | 2.14 (9) | O—Fe2vii | 2.14 (9) |
Fe2—Ov | 2.14 (9) | O—Fe2viii | 2.14 (9) |
Fe2—Ovi | 2.14 (9) | O—Fe2ix | 2.14 (9) |
O—Fe1—Ox | 109.471 (2) | Ov—Fe2—Oix | 88 (4) |
O—Fe1—Oxi | 109.471 (4) | Ovi—Fe2—Oxiii | 88 (4) |
O—Fe1—Oxii | 109.471 (2) | Ovi—Fe2—Oxiv | 88 (4) |
Ox—Fe1—Oxi | 109.471 (2) | Ovi—Fe2—Oix | 179.9557 |
Ox—Fe1—Oxii | 109.471 (4) | Oxiii—Fe2—Oxiv | 92 (4) |
Oxi—Fe1—Oxii | 109.471 (2) | Oxiii—Fe2—Oix | 92 (4) |
Oiv—Fe2—Ov | 92 (4) | Oxiv—Fe2—Oix | 92 (4) |
Oiv—Fe2—Ovi | 92 (4) | Fe1—O—Fe2xv | 127 (3) |
Oiv—Fe2—Oxiii | 179.9557 | Fe1—O—Fe2viii | 127 (3) |
Oiv—Fe2—Oxiv | 88 (4) | Fe1—O—Fe2xvi | 127 (3) |
Oiv—Fe2—Oix | 88 (4) | Fe2xv—O—Fe2viii | 88 (5) |
Ov—Fe2—Ovi | 92 (4) | Fe2xv—O—Fe2xvi | 88 (5) |
Ov—Fe2—Oxiii | 88 (4) | Fe2viii—O—Fe2xvi | 88 (5) |
Ov—Fe2—Oxiv | 179.9557 |
Symmetry codes: (i) −z+1/4, x, −y+1/4; (ii) −z+1/4, −x+1/4, y; (iii) z, −x−3/4, −y−3/4; (iv) x+1/4, y+1/4, −z+1; (v) −z+1, x+1/4, y+1/4; (vi) y+1/4, −z+1, x+1/4; (vii) −x+3/4, −y+3/4, z; (viii) z, −x+3/4, −y+3/4; (ix) −y+3/4, z, −x+3/4; (x) −z−3/4, x−1, −y−7/4; (xi) −z−3/4, −x−3/4, y−2; (xii) z−1, −x+1/4, −y−3/4; (xiii) −x+3/4, −y+7/4, z−1; (xiv) z−1, −x+7/4, −y+3/4; (xv) −x+7/4, −y+3/4, z−1; (xvi) −y+7/4, z−1, −x+3/4. |
Experimental details
(T14KBST_phase_2) | (T14KBST_phase_3) | (T400KBST_phase_1) | (T400KBST_phase_2) | |
Crystal data | ||||
Chemical formula | Fe3O4 | Ba2FeReO6 | Ba2FeReO6 | Fe3O4 |
Mr | 231.54 | 306.36 | 306.36 | 231.54 |
Crystal system, space group | Cubic, Fd3m | Tetragonal, I4/mmm | Cubic, Fm3m | Cubic, Fd3m |
Temperature (K) | 14 | 14 | 400 | 400 |
a, b, c (Å) | 8.3814 (5), 8.3814, 8.3814 | 5.68278 (2), 5.682775, 8.02337 (5) | 8.063327 (13), 8.063327, 8.063327 | 8.3985 (5), 8.3985, 8.3985 |
α, β, γ (°) | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 | 90, 90, 90 |
V (Å3) | 588.78 (10) | 259.11 (1) | 524.26 (1) | 592.38 (10) |
Z | 8 | 4 | 8 | 8 |
Radiation type | Synchrotron, λ = 1.377285 Å | Synchrotron, λ = 1.377285 Å | ?, λ = 1.377287 Å | ?, λ = 1.377287 Å |
Specimen shape, size (mm) | Flat_sheet, 20 × 10 | Flat_sheet, 20 × 10 | Flat_sheet, 20 × 10 | Flat_sheet, 20 × 10 |
Data collection | ||||
Diffractometer | Huber 4+2 circle diffractometer | Huber 4+2 circle diffractometer | Huber 4+2 circle diffractometer | Huber 4+2 circle diffractometer |
Specimen mounting | Copper sample holder | Copper sample holder | Copper sample holder | Copper sample holder |
Data collection mode | Reflection | Reflection | Reflection | Reflection |
Scan method | Step | Step | Step | Step |
2θ values (°) | 2θmin = 15.003 2θmax = 150.193 2θstep = 0.01 | 2θmin = 15.003 2θmax = 150.193 2θstep = 0.01 | 2θmin = 15.003 2θmax = 150.193 2θstep = 0.01 | 2θmin = 15.003 2θmax = 150.193 2θstep = 0.01 |
Refinement | ||||
R factors and goodness of fit | Rp = 0.168, Rwp = 0.267, Rexp = 0.195, R(F2) = 0.18130, χ2 = 1.904 | Rp = 0.168, Rwp = 0.267, Rexp = 0.195, R(F2) = 0.18130, χ2 = 1.904 | Rp = 0.149, Rwp = 0.221, Rexp = 0.170, R(F2) = 0.12564, χ2 = 1.690 | Rp = 0.149, Rwp = 0.221, Rexp = 0.170, R(F2) = 0.12564, χ2 = 1.690 |
No. of data points | 13520 | 13520 | 13520 | 13520 |
No. of parameters | 24 | 24 | 25 | 25 |
Computer programs: SPEC (Certified Scientific Software, 1992), POWF 2.11 (Virginia Tech, 2001-2003), GSAS (Larson & Von Dreele, 2001), GSAS.
Footnotes
1Identification of commercial equipment in the text is not intended to imply recommendation or endorsement by the authors or the respective institutions.
Acknowledgements
Thanks are due to the LNLS technical staff (Carlos R. Scorzato, Edson G. L. Silva, Evandro Blumer, Hélio Gazetta Filho, João R. Costa, João V. O. Neto, Milton B. da Silva, Thiago C. de Freitas, Wagner S. Veira and members of the Projects Group), which has been contributing to the progress of the beamline. Also, we thank Iris Torriani, Guinter Kellerman, Daniel Vega and Oscar Agüero, who helped with valuable discussions. This work was partially supported by FINEP and ABTLuS. EG thanks CNPq for a research grant.
References
Balzar, D., Audebrand, N., Daymond, M. R., Fitch, A., Hewat, A., Langford, J. I., Le Bail, A., Louër, D., Masson, O., McCowan, C. N., Popa, N. C., Stephens, P. W. & Toby, B. H. (2004). J. Appl. Cryst. 37, 911–924. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bonnet, M. & Delapalme, A. (1975). Acta Cryst. A31, 264–265. CrossRef CAS IUCr Journals Web of Science Google Scholar
Certified Scientific Software (1992). SPEC. Certified Scientific Software, Chicago, IL, USA. Google Scholar
Craievich, A. F. & Rodrigues, A. R. D. (1997). Braz. J. Phys. 27, 417–424. CrossRef CAS Google Scholar
Dai, J. M., Song, W. H., Wang, S. G., Ye, S. L., Wang, K. Y., Du, J. J., Sun, Y. P., Fang, J., Chen, J. L. & Gao, B. J. (2001). Mater. Sci. Eng. B, 83, 217–222. Web of Science CrossRef Google Scholar
De Teresa, J. M., Serrate, D., Blasco, J., Ibarra, M. R. & Morellon, L. (2004). Phys. Rev. B, 69, 144401. CrossRef Google Scholar
Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900. CrossRef CAS Web of Science IUCr Journals Google Scholar
Giles, C., Yokaichiya, F., Kycia, S. W., Sampaio, L. C., Ardiles-Saraiva, D. C., Franco, M. K. K. & Neuenschwander, R. T. (2003). J. Synchrotron Rad. 10, 430–434. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gopalakrishnan, J., Chattopadhyay, A., Ogale, S. B., Venkatesan, T., Greene, R. L., Millis, A. J. & Ramesha, K. (2000). Phys. Rev. B, 62, 9538–9542. Web of Science CrossRef CAS Google Scholar
Granado, E., Huang, Q., Lynn, J. W., Gopalakrishnan, J., Greene, R. L. & Ramesha, K. (2002). Phys. Rev. B, 66, 064409. CrossRef Google Scholar
Iwasawa, H., Saitoh, T., Yamashita, Y., Ishii, D., Kato, H., Hamada, N., Tokura, Y. & Sarma, D. D. (2005). Phys. Rev. B, 71, 075106. CrossRef Google Scholar
Kato, H., Okuda, T., Okimoto, Y., Tomioka, Y., Oikawa, K., Kamiyama, T. & Tokura, Y. (2002). Phys. Rev. B, 65, 144404. CrossRef Google Scholar
Kobayashi, K.-I., Kimura, T., Sawada, H., Terakura, K. & Tokura, Y. (1998). Nature (London), 395, 677–680. Web of Science CrossRef CAS Google Scholar
Kobayashi, K.-I., Kimura, Y., Tomioka, Y., Sawada, H., Terakura, K. & Tokura, Y. (1999). Phys. Rev. B, 59, 11159–11162. Web of Science CrossRef CAS Google Scholar
Larson, A. C. & Von Dreele, R. B. (2001). General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748, https://www.ccp14.ac.uk/ccp/ccp14/ftp-mirror/gsas/public/gsas/ . Google Scholar
Le Bolloc'h, D., Livet, F., Bley, F., Schulli, T., Veron, M. & Metzger, T. H. (2002). J. Synchrotron Rad. 9, 258–265. Web of Science CrossRef CAS IUCr Journals Google Scholar
Maignan, A., Raveau, B., Martin, C. & Hervieu, M. (1999). J. Solid State Chem. 144, 224–227. Web of Science CrossRef CAS Google Scholar
Neuenschwander, R. T. & Tavares, W. S. (2001). Internal Technical Communication CT 06/2001. Laboratório Nacional de Luz Síncrotron, Campinas, SP, Brazil. Google Scholar
NIST (2000). National Institute of Standard and Technology Standard Reference Material 660a, https://srmors.nist.gov/view_detail.cfm?srm=660a . Google Scholar
Oikawa, K., Kamiyama, T., Kato, H. & Tokura, Y. (2003). J. Phys. Soc. Jpn, 72, 1411–1417. Web of Science CrossRef CAS Google Scholar
Parrish, W., Hart, M. & Huang, T. C. (1986). J. Appl. Cryst. 19, 92–100. CrossRef CAS Web of Science IUCr Journals Google Scholar
Paton, M. G. & Maslen, E. N. (1965). Acta Cryst. 19, 307–310. CrossRef CAS IUCr Journals Web of Science Google Scholar
Piton, J. R. & Duarte, L. F. (1998). 3-WinDCM Internal Technical Manual MT 01/1998. Laboratório Nacional de Luz Síncrotron, Campinas, SP, Brazil. Google Scholar
Prellier, W., Smolyaninova, V., Biswas, A., Galley, C., Greene, R. L., Ramesha, K. & Gopalakrishnan, J. (2000). J. Phys. C, 12, 965–973. CAS Google Scholar
Rammeh, N., Bramnik, K. G., Ehrenberg, H., Fuess, H. & Cheikh-Rouhou, A. (2004). J. Magn. Magn. Mater. 278, 14. CrossRef Google Scholar
Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65–71. CrossRef CAS IUCr Journals Web of Science Google Scholar
Ritter, C., Ibarra, M. R., Morellon, L., Blasco, J., García, J. & De Teresa, J. M. (2000). J. Phys. Condens. Matter, 12, 8295–8308. Web of Science CrossRef CAS Google Scholar
Rodrigues, A. R. D., Craievich, A. F. & Gonçalves da Silva, C. E. T. (1998). J. Synchrotron Rad. 5, 1157–1161. Web of Science CrossRef CAS IUCr Journals Google Scholar
Toby, B. H. (2001). J. Appl. Cryst. 34, 210–213. Web of Science CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.