research papers
Towards automated crystallographic structure phenix.refine
withaLawrence Berkeley National Laboratory, One Cyclotron Road, MS64R0121, Berkeley, CA 94720, USA, bLos Alamos National Laboratory, M888, Los Alamos, NM 87545, USA, cIGBMC, CNRS–INSERM–UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France, dDépartement de Physique, Faculté des Sciences et des Technologies, Université Henri Poincaré, Nancy 1, BP 239, 54506 Vandoeuvre-lès-Nancy, France, and eDepartment of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA
*Correspondence e-mail: pafonine@lbl.gov
phenix.refine is a program within the PHENIX package that supports crystallographic structure against experimental data with a wide range of upper resolution limits using a large repertoire of model parameterizations. It has several automation features and is also highly flexible. Several hundred parameters enable extensive customizations for complex use cases. Multiple user-defined strategies can be applied to specific parts of the model in a single run. An intuitive graphical user interface is available to guide novice users and to assist advanced users in managing projects. X-ray or neutron diffraction data can be used separately or jointly in phenix.refine is tightly integrated into the PHENIX suite, where it serves as a critical component in automated model building, final structure structure validation and deposition to the wwPDB. This paper presents an overview of the major phenix.refine features, with extensive literature references for readers interested in more detailed discussions of the methods.
Keywords: structure refinement; PHENIX; joint X-ray/neutron refinement; maximum likelihood; TLS; simulated annealing; subatomic resolution; real-space refinement; twinning; NCS.
1. Introduction
Crystallographic structure model parameterization, a refinement target and an optimization method. These decisions are often dictated by the experimental data quality (completeness and resolution) and the current model quality (how complete the model is and the level of error in the atomic parameters). The diversity of data qualities (from ultrahigh to very low resolution) and model qualities (from crude molecular-replacement results to well refined near-final structures) generates the need for a large variety of possible model parameterizations, targets and optimization methods.
is a complex procedure that combines a large number of very diverse steps, where each step may be very complex itself. Each run requires selection of aModel parameters are variables used to describe the crystal content and its properties. Model parameters can be broken down into two categories: (i) those that describe the atomic model (atomic model parameters), such as atomic coordinates, atomic displacement parameters (ADPs), atomic occupancies and f′ and f′′), and (ii) non-atomic model parameters that describe bulk solvent, crystal anisotropy and so on. The parameters that describe the crystal are combined and expressed through the total model structure factors Fmodel, which are expected to match the corresponding observed values Fobs and other experimentally derived data (e.g. experimental phase information).
terms (A Fmodel) and the experimental data (amplitudes, Fobs, or intensities, Iobs, and experimental phases if available). Typically, target functions are defined such that their value decreases as the model improves. This in turn formulates the goal of a crystallographic structure as an optimization problem in which the model parameters are modified in order to achieve the lowest possible value of the target function or, in other words, minimization of the target.
target is a mathematical function that quantifies the fit of the model parameters (expressed throughAlgorithms to optimize the
target range from gradient-driven minimization, simulated-annealing-based methods and grid searches to interactive model building in a graphical environment. These methods vary in speed, scalability, convergence radius and applicability to current model parameters. The type of parameters to be optimized, the number of refinable parameters and the current model quality may all dictate the choice of optimization (target-minimization) method.Below, we describe how crystallographic structure phenix.refine.
is implemented in2. Methods
Crystallographic structure PHENIX (Adams et al., 2002, 2010) using X-ray data, neutron data or both types of data simultaneously. Highly customized strategies are available for a broad range of experimental data resolutions from ultrahigh resolution, where an interatomic scatterer (IAS) model can be used to model bonding features (Afonine et al., 2004, 2007), to low resolution, where the use of torsion-angle parameterization (Rice & Brünger, 1994; Grosse-Kunstleve et al., 2009) and specific restraints for coordinates [reference-model, secondary-structure, (NCS) and Ramachandran plot restraints] may be essential (Headd et al., 2012). A highly optimized automatic rigid-body protocol (Afonine et al., 2009) is available to facilitate initial stages of when the starting model may contain large errors or as the only option at very low resolution. Most strategies can be combined with each other and applied to any selected part of the structure. Specific tools are available for using neutron data, such as automatic detection, building and of exchangeable H/D sites and difference electron-density map-based building of D atoms for water molecules (Afonine, Mustyakimov et al., 2010). Most of the strategies available for against X-ray data are also available for using neutron data. of individual coordinates can be performed in real or or consecutively in both (dual-space refinement). against data collected from twinned crystals is also possible.
can be performed inThe high degree of flexibility and extensive functionality of phenix.refine has been made possible by modern software-development approaches. These approaches include the use of object-oriented languages, where the convenience of scripting and ease of use in Python are augmented by the speed of C++, and by a library-based development approach, where each of the major building blocks is implemented as a reusable set of modules. Most of the modules are available through the open-source CCTBX libraries (Grosse-Kunstleve & Adams, 2002; Grosse-Kunstleve et al., 2002). An overview of the underlying open-source libraries can be found in a series of recent IUCr Computing Commission Newsletter articles (issues 1–8; http://www.iucr.org/iucr-top/comm/ccom/newsletters/).
The phenix.refine (Afonine et al., 2005b) consists of three main parts.
protocol implemented in
|
The following sections outline the key steps of structure phenix.refine.
in2.1. Initial step of processing of inputs
To initiate
a number of major sources of information have to be processed.The user provides the structural model and reflection data. The
software then retrieves default parameters and information from a library of empirical geometry restraints, which can be readily customized by the user.The PDB format (Bernstein et al., 1977; Berman et al., 2000) is the most commonly used format for exchanging macromolecular model data and is therefore available as the input format for in PHENIX. The iotbx.pdb library module (Grosse-Kunstleve & Adams, 2010) performs the first stage of the PDB-file interpretation. It robustly constructs an internal hierarchy of models (PDB MODEL keyword), chains, conformers (PDB altLoc identifier), residues and atoms. Common simple formatting problems are corrected on the fly where possible. Currently, phenix.refine can only make use of PDB files containing a single model. The second stage of the PDB interpretation involves matching the structural data with definitions in the CCP4 Monomer Library (Vagin & Murshudov, 2004; Vagin et al., 2004) in order to derive geometry restraints, scattering types and nonbonded energy types. Many common simple formatting and naming problems are considered in this interpretation. The PDB interpretation (iotbx.pdb) has been tested with all files found in the PDB database (http://www.pdb.org/) as of August, 2011 and supports both PDB version 2.3 and version 3.x atom-naming conventions. The vast majority of files can be processed without user intervention. Detailed diagnostic messages help the user to quickly identify idiosyncrasies in the PDB file that cannot be automatically corrected. If the input PDB file contains an item undefined in the CCP4 Monomer Library, a geometry restraint (CIF) file must be provided for that item. This file can be obtained by running phenix.elbow (Moriarty et al., 2009) or phenix.ready_set, which is more comprehensive and automated.
The experimental data can be provided in many commonly used formats. Multiple input files can be given simultaneously, e.g. a SCALEPACK file (Otwinowski & Minor, 1997) with observed intensities, a CNS (Brünger et al., 1998) file with Rfree flags (Brünger, 1992, 1993) and an MTZ file (Winn et al., 2011) with phase information. A comprehensive procedure aims to extract the data most suitable for without user intervention. A preliminary crystallographic data analysis is performed in order to detect and ignore potential reflection outliers (Read, 1999). If (for a review, see Parsons, 2003; Helliwell, 2008) is suspected, a user can run phenix.xtriage (Zwart et al., 2005) to obtain a twin-law operator to be used by the twin-refinement target in phenix.refine.
A number of automatic adjustments to the ), specifying the atomic displacement parameters (isotropic or anisotropic), determining whether or not to add ordered solvent (if the resolution is sufficient), automatic detection or adjustment of user-provided NCS selections, determining the set of atoms that should have their occupancies refined and automatic determination of occupancy constraints for atoms in alternative conformations. When joint is performed using both X-ray and neutron data (Coppens et al., 1981; Wlodawer & Hendrickson, 1981, 1982; Adams et al., 2009; Afonine, Mustyakimov et al., 2010), it is important to ensure that the cross-validation reflections are consistent between data sets. This check is performed automatically. If a mismatch is detected, phenix.refine will terminate and offer to generate a new set of flags consistent with both data sets.
strategy are considered at this point. These adjustments include automatic choice of target if necessary (based on the number of test reflections, the presence of and the availability of experimental phase information as Hendrickson–Lattman coefficients; Hendrickson & Lattman, 1970The large set of configurable libtbx.phil, specifically designed to be user-friendly (Grosse-Kunstleve et al., 2005). This is achieved via a simple syntax with the option to easily override selected parameters from the command line. This parameter-handling framework is completely general and can be reused for other purposes unrelated to A comprehensive and intuitive graphical user interface (GUI) built around this framework is also available, allowing users of all skill levels to use phenix.refine.
parameters is presented to the user in a novel hierarchical organization,2.2. The main body of the macro-cycle
A
protocol typically consists of several steps, in which each step aims to optimize specific model parameters using dedicated methods. This is because of the following.The R factors, for example). This section reviews the steps.
protocol therefore consists of multiple steps repeated iteratively, in which each step is specifically tailored to the of particular parameters. The required number of such steps depends on the data quality and initial model quality. Convergence of the particular run is reached if the optimization of the model parameters does not lead to a significant improvement in the monitored criteria (refinement target function and2.2.1. Total model bulk-solvent correction, scaling and twin-fraction refinement
The total model
comprises a number of contributions,where koverall is an overall scale factor, Ucryst is the overall anisotropic scale matrix (Sheriff & Hendrickson, 1987; Grosse-Kunstleve & Adams, 2002), h is a column vector with the of a reflection and ht is its transpose, Fcalc are the structure factors computed from the atomic model, ksol and Bsol are flat bulk-solvent model parameters (Phillips, 1980; Jiang & Brünger, 1994), s2 = htG*h, where G* is the reciprocal-space and Fmask are structure factors calculated from a solvent mask (a binary function with zero values in the protein region and non-zeros values in the solvent region). The mask is computed using memory-efficient exact asymmetric units described in Grosse-Kunstleve et al. (2011). The mask-calculation parameters, rsolvent and rshrink, can be optimized in each macro-cycle.
The structure factors from the atomic model, Fcalc, are computed using either fast Fourier transformation (FFT) or direct-summation algorithms (for a review, see Afonine & Urzhumtsev, 2004). Various X-ray and neutron scattering dictionaries are available (Neutron News, 1992; Maslen et al., 1992; Waasmaier & Kirfel, 1995; Grosse-Kunstleve, Sauter et al., 2004).
phenix.refine uses a very efficient and robust algorithm for finding the best values for ksol, Bsol and Ucryst. The details of the algorithm, as well as a comprehensive set of references to relevant works, have been described previously (Afonine et al., 2005b). A radial-shell bulk-solvent model (Jiang & Brünger, 1994) is also available. In the case of against twinned data, the total model is defined as
where α is a twin fraction and is determined by minimizing the R factor using a simple grid search in the [0, 0.5] range with a step of 0.01 and the matrix T defines the twin operator.
2.2.2. Ordered solvent (water) modeling
An automated protocol for updating the ordered solvent model can be applied during the . Updating the ordered solvent model involves the following steps.
process. If requested by the user, waters are updated (added, removed and refined) in each macro-cycle as indicated in Fig. 12.2.3. targets and target weights
Model parameters, such as coordinates and ADPs, are not refined simultaneously but at separate steps (see §2.2 for details). phenix.refine uses the following target function for of individual coordinates,
A similar function is used in restrained ADP refinement,
Here, Texp is the crystallographic term that relates the experimental data to the model structure factors. It can be a least-squares target (LS; for example, as defined in Afonine et al., 2005a), an amplitude-based target (ML; for example, as defined in Afonine et al., 2005a) or a phased target (MLHL; Pannu et al., 1998). For of coordinates, Texp can also be defined in real space (see below).
Txyz_restraints and Tadp_restraints are restraint terms that introduce a priori knowledge, thus helping to compensate for the insufficient amount of experimental data owing to finite resolution or incompleteness of the data set typically observed in macromolecular crystallography. Note that the restraint terms are not used in certain situations, for example rigid-body coordinate TLS occupancy f′/f′′ or if the data-to-parameter ratio is extremely high. In these cases the total target is reduced to Texp.
The weights wxcscale, wxc and wc (or wxuscale, wxu and wu, correspondingly) are used to balance the relative contributions of experimental and restraints terms. The automatic weight-estimation procedure is implemented as described in Brünger et al. (1989) and Adams et al. (1997) with some variations and is used by default to calculate wxc and wxu. The long-term experience of using a similar scheme in CNS and PHENIX indicates that it is typically robust and provides a good estimate of weights in most cases, especially at medium to high resolution. In cases where this procedure fails to produce optimal weights, a more time-intensive automatic weight-optimization procedure may be used, as originally described by Brünger (1992) and further adopted by Afonine et al. (2011), in which an array of wxcscale or wxuscale values is systematically tested in order to find the value that minimizes Rfree while keeping the overall model geometry deviations from ideality within a predefined range. The weight wc (or wu, correspondingly) is used to scale the restraints contribution, mostly duplicating the function of wxcscale (or wxuscale), while allowing an important unique option of excluding the restraints if necessary (for example, at subatomic resolution). Setting wc = 0 (or wu = 0) reduces the total target to Texp.
In ; Bricogne & Irwin, 1996; Murshudov et al., 1997; Adams et al., 1997; Pannu et al., 1998) the calculation of the ML target (Lunin & Urzhumtsev, 1984; Read, 1986, 1990; Lunin & Skovoroda, 1995) requires an estimation of model error parameters, which depend on the current atomic parameters and bulk-solvent model and scales. Since the atomic parameters and the bulk-solvent model are updated during the ML error model has to be updated correspondingly, as described in Lunin & Skovoroda (1995), Urzhumtsev et al. (1996) and Afonine et al. (2005a).
(ML)-based (Pannu & Read, 19962.2.4. of coordinates
Depending on the resolution (or more formally the data-to-parameter ratio; Urzhumtsev et al., 2009) and initial model quality, there are four main options for of coordinates in phenix.refine: individual unrestrained (at subatomic resolution), individual restrained, constrained rigid-groups (also known as torsion-angle) or pure rigid-body Restrained individual coordinate can be performed in real and/or Coordinate is performed using L-BFGS minimization (Liu & Nocedal, 1989) of the target Txyz (2) with respect to atomic positional parameters (individual coordinates or rotation–translation parameters of rigid bodies or torsion-angle space variables), while keeping all other parameters fixed. Simulated annealing (SA) is an alternative option for optimizing the target Txyz (2) and is known to be a powerful tool for escaping from local minima and therefore increasing the convergence radius of (Brünger et al., 1987). This option is available and can be used depending on the model and data quality, as well as the stage of SA can be performed in Cartesian or torsion-angle space (Grosse-Kunstleve et al., 2009).
A highly optimized protocol for pure rigid-body et al., 2009). All of the parameters of this protocol have been selected to achieve the largest convergence radius with a minimal runtime. The algorithm does not require a user to truncate the high-resolution limits at ad hoc values.
is available (the MZ protocol), in which the begins with the lowest resolution zone using a few hundred low-resolution reflections and gradually proceeds to higher resolution by adding an optimal number of high-resolution reflections in each step (AfonineReal-space ; Deisenhofer et al., 1985; Urzhumtsev, Lunin & Vernoslova, 1989; Jones et al., 1991; Oldfield, 2001; Chapman, 1995; see also the discussion of and references to earlier original works in Murshudov et al., 1997; Korostelev et al., 2002). It is complementary to the more routinely used structure-factor-based reciprocal-space RSR optimizes the fit of the atoms to the current electron-density map. In phenix.refine the map is computed only once per macro-cycle. An RSR iteration is therefore typically much faster than a reciprocal-space iteration and it is significantly more practical to systematically determine the optimal RSR relative weighting of Texp and Txyz_restraints in (3) compared with the reciprocal-space weight optimization outlined in §2.2.3. The RSR weight determination in phenix.refine aims to find the largest weight for Texp that still produces reasonable geometry. The current model is refined independently multiple times, each time using a different trial weight from an empirically determined range. The resulting geometry is evaluated by computing the maximum and average deviation of the model bond distances from ideal bond distances. Typically, the RSR procedure increases the R factors (work and free) for well refined structures, but for resolutions better than 3 Å we often observe important local corrections that are beyond the reach of SA (see §3). In such cases, subsequent reciprocal-space usually leads to lower R factors than before RSR. In cases where the R factors increase beyond a user-definable threshold the RSR result is automatically discarded.
(RSR) of coordinates has a long history (Diamond, 19712.2.5. of atomic displacement parameters (ADP refinement)
An atomic displacement parameter (ADP) or B factor is a superposition of a number of nested contributions (Dunitz & White, 1973; Prince & Finger, 1973; Sheriff & Hendrickson, 1987; Winn et al., 2001) that describe relatively small motions (within the validity of harmonic approximations), such as the following.
|
Ucryst is a symmetric 3 × 3 matrix which models the common displacement of the crystal as a whole and some additional experimental anisotropic effects (Sheriff & Hendrickson, 1987; Usón et al., 1999). This contribution is exactly the same for all atoms and thus it is possible to treat this effect directly while performing overall anisotropic scaling (Afonine et al., 2005a; see equation 1). Ucryst is forced to obey the crystal symmetry constraints. phenix.refine reports refined elements of the Ucryst matrix expressed on a Cartesian basis and uses the Bcart notation (Grosse-Kunstleve & Adams, 2002).
Ugroup is used to model the contribution to Utotal arising from concerted motions of multiple atoms (group motions). It allows the combination of group motion at different levels (for example, whole molecule + chain + residue) and the use of models of different degrees of sophistication, such as general TLS, TLS for a fixed axis (a librational ADP; ULIB) and a simple group isotropic model with one single parameter. In its most general form, Ugroup can be UTLS + ULIB + Usubgroup, where, for example, UTLS would model the motion of the whole molecule or a large domain, Usubgroup would model the displacement of a smaller group such as a chain using a simpler one-parameter model and ULIB would model a side-chain libration around a torsion bond using a simplified TLS model (Dunitz & White, 1973; Stuart & Phillips, 1985; currently, this approach is being implemented in phenix.refine). Depending on the current model and data quality, some components cannot be used: for example, Ugroup may be just UTLS.
If the TLS model is used then UTLS = T + ALAt + AS + StAt with 20 refinable T (translation), L (libration) and S (screw-rotation) matrix elements per group (Schomaker & Trueblood; 1968). The choice of TLS groups is often subjective and may be based on visual inspection of the molecule in an attempt to identify distinct and potentially independent fragments. A more rigorous and automated approach is implemented in the TLSMD algorithm (Painter & Merritt, 2006a,b). The TLSMD algorithm identifies TLS groups by splitting a whole molecule into smaller pieces followed by fitting of TLS parameters to the previously refined atomic B factors for each piece. Therefore, it is very important that the input ADPs for the TLSMD procedure are minimally biased by the restraints used in previous refinements and are meaningful in general (not reset to an arbitrary constant value, for example). In PHENIX, TLS groups can be determined fully automatically either as part of a run or by using the phenix.find_tls_groups tool (Afonine, unpublished work).
Finally, small (in the harmonic approximation) local atomic vibrations, Ulocal, can be modeled using a less detailed isotropic model that uses only one parameter per atom or using a more detailed (and accurate) anisotropic parameterization that includes six parameters per atom and therefore requires more experimental observations to be feasible. To enforce physical correctness of the refined ADPs, phenix.refine employs ADP restraints. In case of anisotropic ADPs these are simple similarity restraints (Schneider, 1996; Sheldrick & Schneider, 1997). For isotropic ADP phenix.refine uses sphere ADP restraints first introduced by Afonine et al. (2005b),
where Natoms is the total number of atoms in the model, the inner sum spans over all Matoms in the sphere of radius R around atom i, rij is the distance between two atoms i and j, Ulocal,i and Ulocal,j are the corresponding isotropic ADPs and p and q are empirical constants. By default, R, p and q are fixed at empirically derived values of 5.0 Å, 1.69 and 1.03, respectively, but they can also be changed by the user. The function reduces to a simple pair-wise similarity restraints target if p = q = 0 and the radius R is set to be approximately equal to the upper limit of a typical bond length.
The implementation of ADP phenix.refine is described in Afonine, Urzhumtsev et al. (2010) and Urzhumtsev et al. (2011).
in2.2.6. Occupancy refinement
Atomic occupancies can be used to model disorder beyond the harmonic approximation. With the default settings, phenix.refine always refines the occupancies of atoms in alternative conformations and those having partial nonzero occupancies at input (unless instructed otherwise by the user). The constraints for the occupancies of atoms in alternative conformations are constructed automatically based on the altLoc identifiers in the input PDB file. Also, a user can specify additional constraints on occupancies between any selected atoms. One can also perform a group occupancy where one occupancy factor is refined per selected set of atoms and is constrained between predefined minimal and maximal values (0 and 1 by default). This can be useful for the of partially occupied ligands, waters (when H or D are present) or other crystallization-solution components (Hendrickson, 1985). In the case of of a partially deuterated structure against neutron data, the occupancies of exchangeable H/D sites are refined automatically and constraints are applied to ensure that the sum of related H and D occupancies is 1. phenix.refine does not currently build alternative conformations or H/D sites; external tools can be used for this, such as phenix.ready_set to add H/D atoms or Coot (Emsley & Cowtan, 2004; Emsley et al., 2010) to add side chains in alternate conformations. Fig. 2 shows some typical situations that are addressed automatically by phenix.refine.
2.2.7. of dispersive and anomalous coefficients (f′ and f′′)
Given data with a significant anomalous signal, improved f′ and f′′ of the anomalously scattering atoms (usually heavy atoms) and including them in the calculation of structure factors. Most commonly there is only one type of anomalous scatterer and it is reasonable to assume that the f′ and f′′ coefficients are identical for all anomalous scatterers of the same type in the In this case the data-to-parameter ratio is very high and the of the anomalous coefficients is very stable. Often it is possible to initiate with f′ = 0 and f′′ = 0. For rare cases, phenix.refine also supports of an arbitrary number of sets of f′ and f′′. Initial values may need to be specified in these cases.
results can be obtained by refining the coefficients2.3. output
The following output is generated at the end of each phenix.refine run.
2.3.1. Map calculation and output
In general, phenix.refine can output weighted p*mFobs − q*DFmodel and unweighted p*Fobs − q*Fmodel maps, where p and q can be any user-specified numbers. The phases used for computing these maps are either taken from the current model or the combination of model phases with the experimentally derived phases (if available). By default, phenix.refine outputs an MTZ file with several sets of Fourier map coefficients.
m and D of likelihood-weighted maps (Read, 1986) are computed using the test set of reflections as described in Lunin & Skovoroda (1995) and Urzhumtsev et al. (1996). Other map types can also be output, such as average kick maps (AK maps; Guncar et al., 2000; Turk, 2007; Pražnikar et al., 2009) and B-factor sharpened maps (see Brunger et al., 2009 and references therein) with the sharpening B factors determined automatically.It is known that data incompleteness, especially systematic incompleteness (missing planes or cones of reciprocal space), can cause mild to severe map distortions (Lunin, 1988; Urzhumtsev, Lunin & Luzyanina, 1989; Lunin & Skovoroda, 1991; Tronrud, 1996; Lunina et al., 2002; Urzhumtseva & Urzhumtsev, 2011). To compensate for data incompleteness, phenix.refine will `fill' in missing observations with certain calculated values to reduce these map distortions. However, this procedure may introduce model bias and obviously the less complete the data, the higher the risk. By default, missing Fobs are `filled' in with DFmodel [similar to the procedure used in the REFMAC program (Murshudov et al., 1997, 2011)], but there are other options possible, such as filling with 〈Fobs〉, where the Fobs are averaged out in a resolution bin around the missing Fobs, filling with simply Fmodel or even filling with random numbers generated around 〈Fobs〉. Based on a limited number of tests, all of the above `filling' schemes produce similar results, indicating the dominance of the phases rather than the amplitudes of the filled reflections. Clearly, this subject needs more systematic and thorough research (work in progress). However, one can effectively use both maps simultaneously, using the `filled' map to help overcome difficult cases and using the unfilled map to confirm that map features have not been over-interpreted owing to model bias. For presentation purposes, it is recommended that unfilled maps be used so as to minimize any chance of misleading the viewer.
2.4. H atoms in refinement
H atoms constitute about 50% of the atoms in a macromolecular structure, playing a crucial role in interatomic contacts (see, for example, Chen et al., 2010 and references therein). H atoms also contribute to the atomic X-ray scattering (to Fmodel). Information about H atoms (both, geometry and scattering) should therefore be used in In phenix.refine there are a number of tools that make handling of H atoms as easy and as automatic as possible at all resolutions and using any diffraction data source (X-ray, neutron or both simultaneously). A detailed overview of using H atoms in can be found in Afonine, Mustyakimov et al. (2010).
2.5. Specific tools for at subatomic resolution
At subatomic resolution (see Urzhumtsev et al., 2009 for a discussion of this definition), the residual electron-density maps begin to show some additional features that are not visible at lower resolutions, such as (i) density peaks for H atoms (for both macromolecule and water H atoms), (ii) electron-density peaks at interatomic bonds owing to bonding effects, (iii) lone-pair electrons and (iv) specific densities for ring-conjugated systems. The amount of these features visible in residual maps is a function of model quality and data resolution.
If a model is refined at ultrahigh resolution and the above features are not modeled, this model can be considered to be incomplete. It is well known that refining an incomplete model can have a negative effect on all model parameters: positional and B factors, for example (Lunin et al., 2002; Afonine et al., 2004). In addition, when refining a structure at such a high resolution one usually looks for very fine structural details (for example, Dauter et al., 1995, 1997; Vrielink & Sampson, 2003; Petrova & Podjarny, 2004), which are often only seen as subtle features in residual maps close to the noise level. Completing the model is well known to improve the map quality (by reducing noise) and this is clearly demonstrated for the case of subatomic resolution residual maps (Afonine et al., 2007; Volkov et al., 2007).
phenix.refine possesses a number of tools specifically dedicated to model completion and at subatomic resolution.
2.6. Specific tools for at low resolution
At low resolution (∼3.5 Å and worse), the electron-density map often provides little atomic detail and the traditional set of local restraints (bonds, angles, planarities, chiralities, dihedrals and nonbonded interactions) are insufficient to maintain known higher order structural organization (secondary structure) as well as other local geometry characteristics that are not directly restrained during φ and ψ angles). At these low resolutions it is essential to include more a priori or external information in order to assure the overall correctness of the model. This information can be expressed through restraints to a known similar higher resolution (or homolologous) `reference' structure (if available), to known secondary-structure elements or to target peptide φ and ψ angles in the Ramachandran plot. All these tools have recently been implemented in phenix.refine and details are discussed in this issue (Headd et al., 2012).
against higher resolution data (for example, peptideGiven low-resolution data, if there are several copies of a molecule in the ). This improves the data-to-parameter ratio at low resolution and therefore reduces the risk of overfitting (DeLaBarre & Brunger, 2006; for a practical example, see Braig et al., 1995; it has been noted that nearly half of the low-resolution structures in the wwPDB contain NCS copies; see, for example, Kleywegt & Jones, 1995; Kleywegt, 1996).
one can assume that these copies are essentially similar and therefore (NCS) restraints can be applied to coordinates and ADPs (Hendrickson, 1985In phenix.refine the coordinates and ADPs of NCS copies are harmonically restrained to the positions and ADPs of an average structure that is obtained by superposition and averaging of the NCS copies (Hendrickson, 1985). The NCS restraint term is added as an additional harmonic function to the geometry or ADP restraints terms. In ADP the NCS restraints are only applied to Ulocal (Winn et al., 2001; Afonine, Urzhumtsev et al., 2010). Selections for NCS groups can either be provided by the user or they can be determined automatically. Currently, phenix.refine uses a simple algorithm for automatic NCS detection which is based on sequence alignment of the chains provided in the input PDB file. The automatically generated NCS groups should therefore be considered as a guide in generating a complete set of NCS restraints rather than as a best final answer.
If insufficient care is taken in defining the NCS groups, the above method may be counterproductive (Kleywegt & Jones, 1995; Kleywegt, 1996, 1999, 2001; Usón et al., 1999). It is important not to use NCS restraints for truly variable fragments that are different between the NCS copies (certain side chains, flexible loops etc.), otherwise they will be forced to match the average structure, producing various local artifacts. An alternative approach restraining local interatomic distances has been published by Usón et al. (1999) and is used in SHELXL (Sheldrick, 2008). A similar approach using NCS restraints parameterized in torsion-angle space is available in phenix.refine.
2.7. GUI
The graphical interface for phenix.refine retains most of the functionality of the command-line program, with the same parameter template used to draw controls in the GUI (in many cases automatically). However, the arrangement and visibility of the controls have been tailored to minimize confusion for novice users, with only the most commonly used options displayed in the main window (Fig. 3a). In the windows for individual protocols, advanced options are hidden by default, but may be toggled by a `user-level' control. Several extensions in the GUI provide additional automation via links to other programs such as phenix.ready_set, phenix.simple_ncs_from_pdb, phenix.find_tls_groups and phenix.xtriage, all of which may be run interactively to generate parameters that are incorporated into the phenix.refine inputs. For parameters that define atom selections, a built-in graphical viewer allows dynamic visualization and modification of the selection. During and after progress is presented graphically as a plot showing the current R factors and geometry after each step. The final results (Fig. 3b) include buttons to load the refined model and electron-density maps in Coot or PyMOL (DeLano, 2002). A comprehensive suite of validation tools largely derived from MolProbity (Davis et al., 2007; Chen et al., 2010) is run as the final step of and these analyses are integrated into the display of results.
3. Selected examples
In this section, we illustrate the application of phenix.refine to a broad range of cases (Table 1). Standard protocols were used as dictated by the resolution of the diffraction data and the model characteristics. The protocols were not manually optimized to produce the lowest free R factors.
‡R factors as reported on the PDB_REDO web site (Joosten et al., 2009; http://www.cmbi.ru.nl/pdb_redo/); RO and CS computed using PHENIX. §Re-refinement of PDB-deposited structures using phenix.refine. strategy (model parameterization and number of macro-cycles) varies depending on model and data quality. See text for details. ¶PDB or NDB (Berman et al., 1992) code. ††na, value is not available either owing to a missing cross-validation set of reflections or the entry is not available in the database. |
3.1. Low-resolution structures
The structures with PDB entries 1jl4 (Wang et al., 2001), 2gsz (Satyshur et al., 2007), 1yi5 (Bourne et al., 2005), 2wjx (Clayton et al., 2009), 3eob (Li et al., 2009), 1av1 (Brouillette & Anantharamaiah, 1995), 3bbw (Qiu et al., 2008) and 2i07 (Janssen et al., 2006) were selected because their published R factors are much higher than expected (Urzhumtseva et al., 2009). We were interested to test whether it was possible to improve their using phenix.refine in a straightforward fashion. Since all of these structures are reported at low resolution (4 Å or lower) the phenix.refine included NCS (where available), secondary-structure and Ramachandran plot restraints for of coordinates and a restrained isotropic model for the of atomic displacement parameters. A bulk-solvent mask optimization was also performed (Brunger, 2007; DeLaBarre & Brunger, 2006). In all cases the R factors (both free and work) were reduced significantly and in two of them overlooked was a likely cause of the unusually high published R factors. For structure 3bbw was detected by phenix.xtriage and the corresponding twin operator was used in refinement.
3.2. Impact of ADP refinement
The re-refinement of a synaptotagmin structure at 3.2 Å resolution (PDB entry 1dqv; Sutton et al., 1999) emphasizes the importance of using a TLS parameterization not only as a way to reduce the number of refined parameters but more importantly to provide a more reasonable model for global domain motions (Urzhumtsev et al., 2011). of individual ADPs in phenix.refine reduces the published Rwork/Rfree from 29.3/34.8% to 25.5/29.3%. Further combined of TLS parameters and individual ADPs reduced Rwork/Rfree to 22.5/25.5%.
3.3. High-resolution refinement
Given the relatively high resolution of 1.4 Å, the structure 1eic (Chatani et al., 2002) has surprisingly high values of Rfree and Rwork, as well as unusually small bond and angle deviations from ideal values (Fig. 4). Re-refinement with all anisotropic ADPs, automatic water update, target-weight optimization and added riding H atoms significantly improved these statistics. Other structures, 2elg (Ohishi et al., 2007), 1g2y (Rose et al., 2000) and 2ppn (Szep et al., 2009), were also selected on the basis of unusually high R factors. Re-refining the models with added riding H atoms, anisotropic ADPs for all atoms except H atoms and automated water update resulted in a significant improvement in R factor and other statistics as illustrated by polygon images (Urzhumtseva et al., 2009; Fig. 4).
3.4. against neutron data at medium and ultrahigh resolution
The structure 1c57 (Habash et al., 2000) was obtained from a partially deuterated sample at 2.4 Å resolution. However, the PDB model does not contain any D atoms, resulting in the recalculated Rwork of 30.0% and Rfree of 33.9% being higher than the published values (27.0% and 30.1%, respectively). Automated rebuilding of H and H/D exchangeable atoms using phenix.ready_set followed by in phenix.refine yielded significantly improved Rwork and Rfree factors of 20.4% and 25.7%, respectively (Table 1). The overall map improvement is also clear (Fig. 5a). A number of rotatable H/D sites were reoriented into improved nuclear density by local real-space optimization (Figs. 5b and 5c). As another example, the availability of subatomic resolution data (0.65 Å) for the ur0013 structure (Guillot et al., 2001) allowed partially unrestrained positional and all-atom anisotropic ADP (including H atoms).
3.5. Combined real- and reciprocal-space (dual-space refinement)
To illustrate the power of the dual-space phenix.refine, we selected a structure from the PDB (PDB entry 1txj; Vedadi et al., 2007) and moved atoms in a such a way that the amount of introduced distortion is likely to put it beyond the convergence radius of traditional reciprocal-space minimization-based The model distortions included (i) switching to a different rotamer for each residue side chain; (ii) randomly moving (shaking using phenix.pdbtools) all coordinates with an r.m.s. coordinate shift of 1 Å followed by geometry regularization (also using phenix.pdbtools); (iii) removing all solvent and (iv) resetting all ADPs to the average value computed across all atoms. This resulted in an overall coordinate distortion r.m.s.d. of about 2.1 Å (Fig. 6a) and an increase of the best available Rwork/Rfree from 18.7/21.2% to 53.2/54.4%. Subsequently, we performed three independent runs, each starting from the same distorted model. All refinements included ten macro-cycles of coordinate and isotropic ADP combined with ordered solvent (water) updates. Coordinates in the first were refined using L-BFGS minimization only. The second included L-BFGS minimization and Cartesian simulated annealing performed during the first five macro-cycles. Finally, the third was similar to the second one but included overall real-space and local torsion-angle grid-search real-space correction of residues to best fit the density map and match the closest plausible rotameric state. The Rwork and Rfree after the three refinements were 46.1/52.2%, 41.5/48.8% and 20.8/23.7%, respectively. The refined models are shown in Figs. 6(b), 6(c) and 6(d). Clearly, the new dual-space protocol was able to bring the distorted model back close to the best available refined model, while both simple minimization and combined minimization and simulated annealing failed to do so.
protocol implemented in3.6. Including H atoms in refinement
To illustrate the contribution of H atoms to 3aci; Tsukimoto et al., 2010) which was refined at 1.6 Å resolution to Rwork = 14.1 and Rfree = 18.8%. This structure was then refined with and without H atoms. Both runs included three macro-cycles of positional and isotropic ADP automated water update and X-ray/restraints target-weight optimization. The without H atoms yielded Rwork = 14.6 and Rfree = 18.3%. with H atoms resulted in Rwork = 13.7 and Rfree = 16.5%. We suggest that it is prudent to preserve the H atoms in the final model (and to record them in the PDB deposition file), as omitting them increases the Rwork and Rfree to 15.1% and 17.8%, respectively.
we selected a structure from the PDB (PDB entry4. Remark regarding uncertainties in results
Given that the landscape of a macromolecular crystallography a). The variation of structures within the ensemble reflects two phenomena: artifacts (limited convergence radius and speed) and (probably to a lesser degree) structural variability (Terwilliger et al., 2007). The spread of the ensemble broadens as the upper resolution limit becomes worse. The R factors also deviate further (Fig. 7b). This variation is always important to keep in mind when comparing results (R factors, for example) obtained with different strategies or slightly different starting models.
target is very complex and the convergence radii of protocols are generally very small in comparison, the outcome of a run may strongly depend on the initial model and algorithmic parameters in ways that at first sight may not seem important. To illustrate this, we performed 100 identical SA runs for a structure at 2 Å resolution, where the only difference between each run was the random seed used to assign initial random velocities. The result is an ensemble of structures that are all similar in general but slightly different in detail (Fig. 75. Conclusions
phenix.refine provides a comprehensive set of tools for across a broad range of resolution limits (subatomic to low) using X-ray, neutron or both types of data simultaneously. A high degree of automation and robustness allows a range of strategies to be used from a nearly `black box'-like default mode to the option of customizing more than 500 control parameters. All standard tools available for using X-ray data are also available for using neutron data. Any combination of available strategies can be applied to any selected part of the structure. The GUI makes phenix.refine easy to use for both novice and experienced crystallographers.
The most recent developments include new or improved tools for Rfree but also to maintain the Rfree–Rwork gap and model geometry within expected limits. A fast TLS group-determination algorithm allows fully automated assignment of TLS groups as part of the run. Our initial results incorporating real-space methods into the protocol (dual-space refinement) show a significant increase in the convergence radius of that is not typically achievable using only reciprocal-space methods.
against low-resolution data (∼3.5 Å and lower), such as reference-model, secondary-structure and Ramachandran plot restraints, the latter being recommended in only the most challenging of circumstances such as very low resolution. NCS restraints parameterized in torsion-angle space will eliminate the need for subjective and often tedious selection of NCS groups. An improved target-weight optimization protocol is designed not only to yield a refined model with the bestFuture development plans include further improvements of the tools for low-resolution
the expanded use of real-space methods for fast local model completion and rebuilding, the implementation of twinning-specific targets, methods for of very incomplete atomic models, better modeling of local structural anisotropy and improving the bulk-solvent model to account for hydrophobic cores and alternative conformations. More automated decision-making will also be implemented for determining the optimal model parameterization and strategy for different situations.Finally, others have shown (Joosten et al., 2009) that it is possible to apply modern and model-rebuilding algorithms to improve structures deposited in major public databases such as the PDB. A number of examples in this manuscript illustrate that the application of methods in the phenix.refine program can potentially extend these improvements and lead to even better models.
The PHENIX software is available at http://www.phenix-online.org free of charge for academic users and through a consortium for commercial users.
Acknowledgements
The authors would like to thank the NIH (grant GM063210 and its ARRA supplement) and the Phenix Industrial Consortium for support of the PHENIX project. This work was supported in part by the US Department of Energy under Contract No. DE-AC02-05CH11231. We are grateful to all PHENIX developers and the user community for valuable discussions and testing of new features in PHENIX.
References
Adams, P. D. et al. (2010). Acta Cryst. D66, 213–221. Web of Science CrossRef CAS IUCr Journals Google Scholar
Adams, P. D., Grosse-Kunstleve, R. W., Hung, L.-W., Ioerger, T. R., McCoy, A. J., Moriarty, N. W., Read, R. J., Sacchettini, J. C., Sauter, N. K. & Terwilliger, T. C. (2002). Acta Cryst. D58, 1948–1954. Web of Science CrossRef CAS IUCr Journals Google Scholar
Adams, P. D., Mustyakimov, M., Afonine, P. V. & Langan, P. (2009). Acta Cryst. D65, 567–573. Web of Science CrossRef CAS IUCr Journals Google Scholar
Adams, P. D., Pannu, N. S., Read, R. J. & Brünger, A. T. (1997). Proc. Natl Acad. Sci. USA, 94, 5018–5023. CrossRef CAS PubMed Web of Science Google Scholar
Afonine, P. V., Grosse-Kunstleve, R. W. & Adams, P. D. (2005a). Acta Cryst. D61, 850–855. Web of Science CrossRef CAS IUCr Journals Google Scholar
Afonine, P. V., Grosse-Kunstleve, R. W. & Adams, P. D. (2005b). CCP4 Newsl. Protein Crystallogr. 42, contribution 8. Google Scholar
Afonine, P. V., Grosse-Kunstleve, R. W., Adams, P. D., Lunin, V. Y. & Urzhumtsev, A. (2007). Acta Cryst. D63, 1194–1197. Web of Science CrossRef CAS IUCr Journals Google Scholar
Afonine, P. V., Grosse-Kunstleve, R. W., Urzhumtsev, A. & Adams, P. D. (2009). J. Appl. Cryst. 42, 607–615. Web of Science CrossRef CAS IUCr Journals Google Scholar
Afonine, P. V., Lunin, V. Y., Muzet, N. & Urzhumtsev, A. (2004). Acta Cryst. D60, 260–274. Web of Science CrossRef CAS IUCr Journals Google Scholar
Afonine, P. V., Mustyakimov, M., Grosse-Kunstleve, R. W., Moriarty, N. W., Langan, P. & Adams, P. D. (2010). Acta Cryst. D66, 1153–1163. Web of Science CrossRef CAS IUCr Journals Google Scholar
Afonine, P. V. & Urzhumtsev, A. (2004). Acta Cryst. A60, 19–32. Web of Science CrossRef CAS IUCr Journals Google Scholar
Afonine, P. V., Urzhumtsev, A., Grosse-Kunstleve, R. W. & Adams, P. D. (2010). Comput. Crystallogr. Newsl. 1, 24–31. Google Scholar
Afonine, P. V., Urzhumtsev, A., Grosse-Kunstleve, R. W. & Adams, P. D. (2011). Comput. Crystallogr. Newsl. 2, 99–103. Google Scholar
Agarwal, R. C. (1978). Acta Cryst. A34, 791–809. CrossRef CAS IUCr Journals Web of Science Google Scholar
Berman, H. M., Olson, W. K., Beveridge, D. L., Westbrook, J., Gelbin, A., Demeny, T., Hsieh, S. H., Srinivasan, A. R. & Schneider, B. (1992). Biophys. J. 63, 751–759. CrossRef PubMed CAS Web of Science Google Scholar
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids Res. 28, 235–242. Web of Science CrossRef PubMed CAS Google Scholar
Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meyer, E. F. Jr, Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. & Tasumi, M. (1977). J. Mol. Biol. 112, 535–542. CrossRef CAS PubMed Web of Science Google Scholar
Bourne, Y., Talley, T. T., Hansen, S. B., Taylor, P. & Marchot, P. (2005). EMBO J. 24, 1512–1522. CrossRef PubMed CAS Google Scholar
Braig, K., Adams, P. D. & Brünger, A. T. (1995). Nature Struct. Biol. 2, 1083–1094. CrossRef CAS PubMed Web of Science Google Scholar
Bricogne, G. & Irwin, J. (1996). Proceedings of the CCP4 Study Weekend. Macromolecular Refinement, edited by E. Dodson, M. Moore, A. Ralph & S. Bailey, pp. 85–92. Warrington: Daresbury Laboratory. Google Scholar
Brouillette, C. G. & Anantharamaiah, G. M. (1995). Biochim. Biophys. Acta, 1256, 103–129. CrossRef PubMed Web of Science Google Scholar
Brünger, A. T. (1992). Nature (London), 355, 472–475. PubMed Web of Science Google Scholar
Brünger, A. T. (1993). Acta Cryst. D49, 24–36. CrossRef Web of Science IUCr Journals Google Scholar
Brunger, A. T. (2007). Nature Protoc. 2, 2728–2733. Web of Science CrossRef CAS Google Scholar
Brunger, A. T. & Adams, P. D. (2002). Acc. Chem. Res. 35, 404–412. Web of Science CrossRef PubMed CAS Google Scholar
Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J.-S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. & Warren, G. L. (1998). Acta Cryst. D54, 905–921. Web of Science CrossRef IUCr Journals Google Scholar
Brunger, A. T., Adams, P. D. & Rice, L. M. (2001). International Tables for Crystallography, Vol. F, edited by M. G. Rossmann & E. Arnold, pp. 375–381. Dordrecht: Kluwer Academic Publishers. Google Scholar
Brunger, A. T., DeLaBarre, B., Davies, J. M. & Weis, W. I. (2009). Acta Cryst. D65, 128–133. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brünger, A. T., Karplus, M. & Petsko, G. A. (1989). Acta Cryst. A45, 50–61. CrossRef Web of Science IUCr Journals Google Scholar
Brünger, A. T., Kuriyan, J. & Karplus, M. (1987). Science, 235, 458–460. PubMed Web of Science Google Scholar
Chapman, M. S. (1995). Acta Cryst. A51, 69–80. CrossRef CAS Web of Science IUCr Journals Google Scholar
Chatani, E., Hayashi, R., Moriyama, H. & Ueki, T. (2002). Protein Sci. 11, 72–81. Web of Science CrossRef PubMed CAS Google Scholar
Cheetham, J. C., Artymiuk, P. J. & Phillips, D. C. (1992). J. Mol. Biol. 224, 613–628. CrossRef PubMed CAS Web of Science Google Scholar
Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S. & Richardson, D. C. (2010). Acta Cryst. D66, 12–21. Web of Science CrossRef CAS IUCr Journals Google Scholar
Clayton, A., Siebold, C., Gilbert, R. J., Sutton, G. C., Harlos, K., McIlhinney, R. A., Jones, E. Y. & Aricescu, A. R. (2009). J. Mol. Biol. 392, 1125–1132. CrossRef PubMed CAS Google Scholar
Coppens, P., Boehme, R., Price, P. F. & Stevens, E. D. (1981). Acta Cryst. A37, 857–863. CrossRef CAS IUCr Journals Web of Science Google Scholar
Dauter, Z., Lamzin, V. S. & Wilson, K. S. (1995). Curr. Opin. Struct. Biol. 5, 784–790. CrossRef CAS PubMed Web of Science Google Scholar
Dauter, Z., Lamzin, V. S. & Wilson, K. S. (1997). Curr. Opin. Struct. Biol. 7, 681–688. CrossRef CAS PubMed Web of Science Google Scholar
Davis, I. W., Leaver-Fay, A., Chen, V. B., Block, J. N., Kapral, G. J., Wang, X., Murray, L. W., Arendall, W. B., Snoeyink, J., Richardson, J. S. & Richardson, D. C. (2007). Nucleic Acids Res. 35, W375–W383. Web of Science CrossRef PubMed Google Scholar
Deisenhofer, J., Remington, S. J. & Steigemann, W. (1985). Methods Enzymol. 115, 303–323. CrossRef CAS PubMed Web of Science Google Scholar
DeLaBarre, B. & Brunger, A. T. (2006). Acta Cryst. D62, 923–932. Web of Science CrossRef CAS IUCr Journals Google Scholar
DeLano, W. L. (2002). PyMOL. http://www.pymol.org. Google Scholar
Diamond, R. (1971). Acta Cryst. A27, 436–452. CrossRef CAS IUCr Journals Web of Science Google Scholar
Dunitz, J. D. & White, D. N. J. (1973). Acta Cryst. A29, 93–94. CrossRef IUCr Journals Web of Science Google Scholar
Emsley, P. & Cowtan, K. (2004). Acta Cryst. D60, 2126–2132. Web of Science CrossRef CAS IUCr Journals Google Scholar
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. (2010). Acta Cryst. D66, 486–501. Web of Science CrossRef CAS IUCr Journals Google Scholar
Engh, R. A. & Huber, R. (1991). Acta Cryst. A47, 392–400. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fokine, A. & Urzhumtsev, A. (2002). Acta Cryst. D58, 1387–1392. Web of Science CrossRef CAS IUCr Journals Google Scholar
French, S. & Wilson, K. (1978). Acta Cryst. A34, 517–525. CrossRef CAS IUCr Journals Web of Science Google Scholar
Grosse-Kunstleve, R. W. & Adams, P. D. (2002). J. Appl. Cryst. 35, 477–480. Web of Science CrossRef CAS IUCr Journals Google Scholar
Grosse-Kunstleve, R. W. & Adams, P. D. (2010). Comput. Crystallogr. Newsl. 1, 4–11. Google Scholar
Grosse-Kunstleve, R. W., Afonine, P. V. & Adams, P. D. (2004). IUCr Comput. Comm. Newsl. 4, 19–36. Google Scholar
Grosse-Kunstleve, R. W., Afonine, P. V., Sauter, N. K. & Adams, P. D. (2005). IUCr Comput. Comm. Newsl. 5, 69–91. Google Scholar
Grosse-Kunstleve, R. W., Moriarty, N. W. & Adams, P. D. (2009). ASME Conf. Proc. 4, 1477–1485. Google Scholar
Grosse-Kunstleve, R. W., Sauter, N. K. & Adams, P. D. (2004). IUCr Comput. Comm. Newsl. 3, 22–31. Google Scholar
Grosse-Kunstleve, R. W., Sauter, N. K., Moriarty, N. W. & Adams, P. D. (2002). J. Appl. Cryst. 35, 126–136. Web of Science CrossRef CAS IUCr Journals Google Scholar
Grosse-Kunstleve, R. W., Wong, B., Mustyakimov, M. & Adams, P. D. (2011). Acta Cryst. A67, 269–275. Web of Science CrossRef IUCr Journals Google Scholar
Guillot, B., Lecomte, C., Cousson, A., Scherf, C. & Jelsch, C. (2001). Acta Cryst. D57, 981–989. CrossRef CAS IUCr Journals Google Scholar
Guncar, G., Klemencic, I., Turk, B., Turk, V., Karaoglanovic Carmona, A., Juliano, L. & Turk, D. (2000). Structure, 8, 305–313. PubMed CAS Google Scholar
Habash, J., Raftery, J., Nuttall, R., Price, H. J., Wilkinson, C., Kalb (Gilboa), A. J. & Helliwell, J. R. (2000). Acta Cryst. D56, 541–550. Google Scholar
Headd, J. J., Echols, N., Afonine, P. V., Grosse-Kunstleve, R. W., Chen, V. B., Moriarty, N. W., Richardson, D. C., Richardson, J. S. & Adams, P. D. (2012). Acta Cryst. D68, 381–390. Web of Science CrossRef CAS IUCr Journals Google Scholar
Helliwell, J. R. (2008). Crystallogr. Rev. 14, 189–250. Web of Science CrossRef CAS Google Scholar
Hendrickson, W. A. (1985). Methods Enzymol. 115, 252–270. CrossRef CAS PubMed Google Scholar
Hendrickson, W. A. & Lattman, E. E. (1970). Acta Cryst. B26, 136–143. CrossRef CAS IUCr Journals Google Scholar
Janssen, B. J., Christodoulidou, A., McCarthy, A., Lambris, J. D. & Gros, P. (2006). Nature (London), 444, 213–216. Web of Science CrossRef PubMed CAS Google Scholar
Jiang, J.-S. & Brünger, A. T. (1994). J. Mol. Biol. 243, 100–115. CrossRef CAS PubMed Web of Science Google Scholar
Johnson, C. K. & Levy, H. A. (1974). International Tables for X-ray Crystallography, Vol. IV, edited by J. A. Ibers & W. C. Hamilton, pp. 311–335. Birmingham: Kynoch Press. Google Scholar
Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. (1991). Acta Cryst. A47, 110–119. CrossRef CAS Web of Science IUCr Journals Google Scholar
Joosten, R. P. et al. (2009). J. Appl. Cryst. 42, 376–384. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kleywegt, G. J. (1996). Acta Cryst. D52, 842–857. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kleywegt, G. J. (1999). Acta Cryst. D55, 1878–1884. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kleywegt, G. J. (2001). International Tables for Crystallography, Vol. F, edited by M. G. Rossmann & E. Arnold, ch. 21.1. Dordrecht: Kluwer Academic Publishers. Google Scholar
Kleywegt, G. J. & Jones, T. A. (1995). Structure, 3, 535–540. CrossRef CAS PubMed Web of Science Google Scholar
Korostelev, A., Bertram, R. & Chapman, M. S. (2002). Acta Cryst. D58, 761–767. CrossRef CAS IUCr Journals Google Scholar
Li, S., Wang, H., Peng, B., Zhang, M., Zhang, D., Hou, S., Guo, Y. & Ding, J. (2009). Proc. Natl Acad. Sci. USA, 106, 4349–4354. Web of Science CrossRef PubMed CAS Google Scholar
Liu, D. C. & Nocedal, J. (1989). Math. Program. 45, 503–528. CrossRef Web of Science Google Scholar
Lunin, V. Yu. (1988). Acta Cryst. A44, 144–150. CrossRef CAS Web of Science IUCr Journals Google Scholar
Lunin, V. Y., Afonine, P. V. & Urzhumtsev, A. G. (2002). Acta Cryst. A58, 270–282. Web of Science CrossRef CAS IUCr Journals Google Scholar
Lunina, N. L., Lunin, V. Y. & Podjarny, A. D. (2002). CCP4 Newsl. Protein Crystallogr. 41, contribution 10. Google Scholar
Lunin, V. Yu. & Skovoroda, T. P. (1991). Acta Cryst. A47, 45–52. CrossRef CAS Web of Science IUCr Journals Google Scholar
Lunin, V. Yu. & Skovoroda, T. P. (1995). Acta Cryst. A51, 880–887. CrossRef CAS Web of Science IUCr Journals Google Scholar
Lunin, V. Yu. & Urzhumtsev, A. G. (1984). Acta Cryst. A40, 269–277. CrossRef CAS Web of Science IUCr Journals Google Scholar
Maslen, E. N., Fox, A. G. & O'Keefe, M. A. (1992). International Tables for Crystallography, Vol. C, edited by A. J. C. Wilson, pp. 476–516. Dordrecht: Kluwer Academic Publishers. Google Scholar
Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. (2009). Acta Cryst. D65, 1074–1080. Web of Science CrossRef CAS IUCr Journals Google Scholar
Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Long, F. & Vagin, A. A. (2011). Acta Cryst. D67, 355–367. Web of Science CrossRef CAS IUCr Journals Google Scholar
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997). Acta Cryst. D53, 240–255. CrossRef CAS Web of Science IUCr Journals Google Scholar
Neutron News (1992). Vol. 3, No. 3, pp. 29–37. Google Scholar
Ohishi, H., Tozuka, Y., Da-Yang, Z., Ishida, T. & Nakatani, K. (2007). Biochem. Biophys. Res. Commun. 358, 24–28. Web of Science CrossRef PubMed CAS Google Scholar
Oldfield, T. J. (2001). Acta Cryst. D57, 82–94. Web of Science CrossRef CAS IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326. CrossRef CAS PubMed Web of Science Google Scholar
Painter, J. & Merritt, E. A. (2006a). Acta Cryst. D62, 439–450. CrossRef CAS IUCr Journals Google Scholar
Painter, J. & Merritt, E. A. (2006b). J. Appl. Cryst. 39, 109–111. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pannu, N. S., Murshudov, G. N., Dodson, E. J. & Read, R. J. (1998). Acta Cryst. D54, 1285–1294. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pannu, N. S. & Read, R. J. (1996). Acta Cryst. A52, 659–668. CrossRef CAS Web of Science IUCr Journals Google Scholar
Parsons, S. (2003). Acta Cryst. D59, 1995–2003. Web of Science CrossRef CAS IUCr Journals Google Scholar
Petrova, T. E. & Podjarny, A. D. (2004). Rep. Prog. Phys. 67, 1565–1605. Web of Science CrossRef CAS Google Scholar
Phillips, S. E. (1980). J. Mol. Biol. 142, 531–554. CrossRef CAS PubMed Web of Science Google Scholar
Pražnikar, J., Afonine, P. V., Gunčar, G., Adams, P. D. & Turk, D. (2009). Acta Cryst. D65, 921–931. Web of Science CrossRef IUCr Journals Google Scholar
Prince, E. & Finger, L. W. (1973). Acta Cryst. B29, 179–183. CrossRef IUCr Journals Web of Science Google Scholar
Qiu, C., Tarrant, M. K., Choi, S. H., Sathyamurthy, A., Bose, R., Banjade, S., Pal, A., Bornmann, W. G., Lemmon, M. A., Cole, P. A. & Leahy, D. J. (2008). Structure, 16, 460–467. CrossRef PubMed CAS Google Scholar
Read, R. J. (1986). Acta Cryst. A42, 140–149. CrossRef CAS Web of Science IUCr Journals Google Scholar
Read, R. J. (1990). Acta Cryst. A46, 900–912. CrossRef CAS Web of Science IUCr Journals Google Scholar
Read, R. J. (1999). Acta Cryst. D55, 1759–1764. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rice, L. M. & Brünger, A. T. (1994). Proteins, 19, 277–290. CrossRef CAS PubMed Web of Science Google Scholar
Roach, J. (2003). Methods Enzymol. 374, 137–145. Web of Science CrossRef PubMed CAS Google Scholar
Rose, R. B., Endrizzi, J. A., Cronk, J. D., Holton, J. & Alber, T. (2000). Biochemistry, 39, 15062–15070. CrossRef PubMed CAS Google Scholar
Satyshur, K. A., Worzalla, G. A., Meyer, L. S., Heiniger, E. K., Aukema, K. G., Misic, A. M. & Forest, K. T. (2007). Structure, 15, 363–376. CrossRef PubMed CAS Google Scholar
Schneider, T. R. (1996). Proceedings of the CCP4 Study Weekend. Macromolecular Refinement, edited by E. Dodson, M. Moore, A. Ralph & S. Bailey, pp. 133–144. Warrington: Daresbury Laboratory. Google Scholar
Schomaker, V. & Trueblood, K. N. (1968). Acta Cryst. B24, 63–76. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. & Schneider, T. R. (1997). Methods Enzymol. 277, 319–343. CrossRef PubMed CAS Google Scholar
Sheriff, S. & Hendrickson, W. A. (1987). Acta Cryst. A43, 118–121. CrossRef CAS Web of Science IUCr Journals Google Scholar
Stuart, D. I. & Phillips, D. C. (1985). Methods Enzymol. 115, 117–142. CrossRef CAS PubMed Google Scholar
Sutton, R. B., Ernst, J. A. & Brunger, A. T. (1999). J. Cell Biol. 147, 589–598. Web of Science CrossRef PubMed CAS Google Scholar
Szep, S., Park, S., Boder, E. T., Van Duyne, G. D. & Saven, J. G. (2009). Proteins, 74, 603–611. Web of Science CrossRef PubMed CAS Google Scholar
Terwilliger, T. C., Grosse-Kunstleve, R. W., Afonine, P. V., Adams, P. D., Moriarty, N. W., Zwart, P., Read, R. J., Turk, D. & Hung, L.-W. (2007). Acta Cryst. D63, 597–610. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tronrud, D. E. (1994). Proceedings of the CCP4 Study Weekend. From First Map to Final Model, edited by S. Bailey, R. Hubbard & D. Waller, pp. 111–124. Warrington: Daresbury Laboratory. Google Scholar
Tronrud, D. W. (1996). Proceedings of the CCP4 Study Weekend. Macromolecular Refinement, edited by E. Dodson, M. Moore, A. Ralph & S. Bailey, pp. 1–10. Warrington: Daresbury Laboratory. Google Scholar
Tronrud, D. E. (1997). Methods Enzymol. 277, 306–319. CrossRef CAS PubMed Web of Science Google Scholar
Tsukimoto, K., Takada, R., Araki, Y., Suzuki, K., Karita, S., Wakagi, T., Shoun, H., Watanabe, T. & Fushinobu, S. (2010). FEBS Lett. 584, 1205–1211. CrossRef CAS PubMed Google Scholar
Turk, D. (2007). Evolving Methods for Macromolecular Crystallography, edited by R. J. Read & J. L. Sussman, pp. 111–122. New York: Springer. Google Scholar
Urzhumtsev, A., Afonine, P. V. & Adams, P. D. (2009). Acta Cryst. D65, 1283–1291. Web of Science CrossRef CAS IUCr Journals Google Scholar
Urzhumtsev, A., Afonine, P. V. & Adams, P. D. (2011). Comput. Crystallogr. Newsl. 2, 42–84. Google Scholar
Urzhumtsev, A. G., Lunin, V. Yu. & Luzyanina, T. B. (1989). Acta Cryst. A45, 34–39. CrossRef CAS Web of Science IUCr Journals Google Scholar
Urzhumtsev, A. G., Lunin, V. Yu. & Vernoslova, E. A. (1989). J. Appl. Cryst. 22, 500–506. CrossRef CAS Web of Science IUCr Journals Google Scholar
Urzhumtsev, A. G., Skovoroda, T. P. & Lunin, V. Y. (1996). J. Appl. Cryst. 29, 741–744. CrossRef CAS Web of Science IUCr Journals Google Scholar
Urzhumtseva, L., Afonine, P. V., Adams, P. D. & Urzhumtsev, A. (2009). Acta Cryst. D65, 297–300. Web of Science CrossRef CAS IUCr Journals Google Scholar
Urzhumtseva, L. & Urzhumtsev, A. (2011). J. Appl. Cryst. 44, 865–872. Web of Science CrossRef CAS IUCr Journals Google Scholar
Usón, I., Pohl, E., Schneider, T. R., Dauter, Z., Schmidt, A., Fritz, H. J. & Sheldrick, G. M. (1999). Acta Cryst. D55, 1158–1167. Web of Science CrossRef IUCr Journals Google Scholar
Vagin, A. A. & Murshudov, G. N. (2004). IUCr Comput. Comm. Newsl. 4, 59–72. Google Scholar
Vagin, A. A., Steiner, R. A., Lebedev, A. A., Potterton, L., McNicholas, S., Long, F. & Murshudov, G. N. (2004). Acta Cryst. D60, 2184–2195. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vedadi, M. et al. (2007). Mol. Biochem. Parasitol. 151, 100–110. Web of Science CrossRef PubMed CAS Google Scholar
Volkov, A., Messerschmidt, M. & Coppens, P. (2007). Acta Cryst. D63, 160–170. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vrielink, A. & Sampson, N. (2003). Curr. Opin. Struct. Biol. 13, 709–715. Web of Science CrossRef PubMed CAS Google Scholar
Wang, J., Meijers, R., Xiong, Y., Liu, J., Sakihama, T., Zhang, R., Joachimiak, A. & Reinherz, E. L. (2001). Proc. Natl Acad. Sci. USA, 98, 10799–10804. Web of Science CrossRef PubMed CAS Google Scholar
Waasmaier, D. & Kirfel, A. (1995). Acta Cryst. A51, 416–431. CrossRef CAS Web of Science IUCr Journals Google Scholar
Winn, M. D. et al. (2011). Acta Cryst. D67, 235–242. Web of Science CrossRef CAS IUCr Journals Google Scholar
Winn, M. D., Isupov, M. N. & Murshudov, G. N. (2001). Acta Cryst. D57, 122–133. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wlodawer, A. & Hendrickson, W. A. (1981). Acta Cryst. A37, C8. CrossRef IUCr Journals Google Scholar
Wlodawer, A. & Hendrickson, W. A. (1982). Acta Cryst. A38, 239–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Zwart, P. H., Grosse-Kunstleve, R. W. & Adams, P. D. (2005). CCP4 Newsl. Protein Crystallogr. 43, contribution 7. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.