Download citation
Download citation
link to html
The crystal structure of the title compound, C15H20N2O8, has been redetermined using low-temperature single-crystal X-ray diffraction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680300076X/wn6132sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680300076X/wn6132Isup2.hkl
Contains datablock I

CCDC reference: 204677

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.051
  • wR factor = 0.134
  • Data-to-parameter ratio = 12.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
PLAT_031 Alert B Refined Extinction Parameter within Range .... 1.25 Sigma
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

The title compound was originally synthesized by Chatterjee et al. (2000) by the crystallization of trimesic acid (TMA) from N,N-dimethylformamide (DMF) in the presence of benzene, and characterized using single-crystal X-ray diffraction at room temperature.

We have now synthesized the same 1:2 T MA:DMF adduct, (I), in the absence of benzene, characterizing the compound using low-temperature single-crystal X-ray diffraction. The same structure is found in both cases, ruling out the benzene co-solvent as an essential templating agent in the previous synthesis (Chatterjee et al., 2000). Carboxylic acid–DMF R22(7) ring motifs (Etter, 1990; Etter & MacDonald, 1990; Bernstein et al., 1995), utilizing strong O—H···O and weaker C—H···O hydrogen bonding (Desiraju & Steiner, 1999), exist at two of the three carboxylic acid groups, preventing the formation of the carboxylic acid head-to-tail R22(8) dimer motif.

The determination at low-temperature (150 K) gives a slight improvement in the final R value (5.14% compared to 5.87%), with reductions of 1.5, 0.4 and 2.2% in the a, b and c unit-cell dimensions, resulting in an overall 4.1% contraction in the unit-cell volume compared to that determined at room temperature.

Experimental top

The title compound was prepared as X-ray quality colourless crystals by the slow evaporation of an N,N-dimethylformamide solution of trimesic acid at room temperature.

Refinement top

H atoms were positioned geometrically. The coordinates of those attached to oxygen were refined freely; allother H atoms were refined using a riding model. Uiso values were set to be 1.2 times Ueq for aryl and aldehyde H, and 1.5 times Ueq for methyl and hydroxy H atoms.

Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Figures top
[Figure 1] Fig. 1. View of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size. Hydrogen bonding between TMA and DMF molecules is indicated by dashed lines.
Trimesic acid bis(N,N-dimethylformamide) solvate top
Crystal data top
C15H20N2O8F(000) = 752
Mr = 356.33Dx = 1.364 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.6529 (18) ÅCell parameters from 1416 reflections
b = 14.4143 (16) Åθ = 2.5–26.4°
c = 7.2310 (8) ŵ = 0.11 mm1
β = 90.719 (2)°T = 150 K
V = 1735.6 (3) Å3Block, colourless
Z = 40.27 × 0.16 × 0.02 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3064 independent reflections
Radiation source: sealed tube1664 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω rotation with narrow frames scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1919
Tmin = 0.971, Tmax = 0.998k = 917
8644 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: All non-H atoms found by direct methods
Least-squares matrix: fullHydrogen site location: Geom except OH coords freely refined
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.6362P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3064 reflectionsΔρmax = 0.23 e Å3
240 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0005 (4)
Crystal data top
C15H20N2O8V = 1735.6 (3) Å3
Mr = 356.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.6529 (18) ŵ = 0.11 mm1
b = 14.4143 (16) ÅT = 150 K
c = 7.2310 (8) Å0.27 × 0.16 × 0.02 mm
β = 90.719 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3064 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
1664 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.998Rint = 0.056
8644 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.23 e Å3
3064 reflectionsΔρmin = 0.22 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.33564 (17)0.6428 (2)0.0696 (4)0.0220 (7)
C20.27185 (17)0.6966 (2)0.0084 (4)0.0208 (7)
H20.22420.66730.03260.025*
C30.27729 (17)0.7922 (2)0.0067 (4)0.0206 (7)
C40.34667 (17)0.8353 (2)0.0695 (4)0.0234 (7)
H40.35020.90100.07040.028*
C50.41113 (18)0.7819 (2)0.1313 (4)0.0223 (7)
C60.40506 (17)0.6859 (2)0.1303 (4)0.0220 (7)
H60.44880.64930.17150.026*
C70.33008 (18)0.5389 (2)0.0747 (4)0.0251 (8)
O10.38163 (13)0.48977 (15)0.1405 (3)0.0345 (6)
O20.26379 (13)0.50821 (15)0.0014 (3)0.0316 (6)
H2A0.260 (2)0.455 (3)0.019 (5)0.047*
C80.21036 (18)0.8513 (2)0.0593 (4)0.0238 (8)
O30.14420 (13)0.80494 (16)0.0989 (3)0.0328 (6)
H30.105 (2)0.839 (3)0.135 (5)0.049*
O40.21653 (13)0.93499 (15)0.0756 (3)0.0319 (6)
C90.48552 (19)0.8249 (2)0.2024 (4)0.0270 (8)
O50.48175 (14)0.91764 (16)0.2115 (3)0.0375 (6)
H50.527 (2)0.936 (3)0.252 (5)0.056*
O60.54328 (13)0.78065 (16)0.2484 (3)0.0418 (7)
O70.23200 (13)0.33931 (16)0.0409 (3)0.0399 (7)
C100.2856 (2)0.2795 (2)0.0544 (5)0.0332 (9)
H100.33990.29950.05830.040*
N10.27062 (16)0.18998 (18)0.0638 (4)0.0321 (7)
C110.3350 (2)0.1219 (2)0.0824 (5)0.0428 (10)
H11A0.38610.15420.09960.064*
H11B0.32380.08220.18970.064*
H11C0.33820.08370.02950.064*
C120.1889 (2)0.1561 (3)0.0598 (6)0.0538 (11)
H12A0.15560.19950.01000.081*
H12B0.18780.09510.00020.081*
H12C0.16780.15080.18660.081*
O80.02931 (13)0.91508 (17)0.2006 (3)0.0419 (7)
C130.0486 (2)0.9956 (3)0.2403 (5)0.0366 (9)
H130.10391.01140.23330.044*
N20.00169 (16)1.0615 (2)0.2917 (4)0.0336 (7)
C140.0872 (2)1.0426 (3)0.3040 (6)0.0569 (12)
H14A0.11491.06770.19470.085*
H14B0.10841.07180.41560.085*
H14C0.09580.97540.31000.085*
C150.0248 (3)1.1553 (3)0.3322 (6)0.0626 (13)
H15A0.08361.15800.32870.094*
H15B0.00661.17320.45550.094*
H15C0.00211.19790.23980.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0220 (17)0.0214 (18)0.0225 (18)0.0018 (14)0.0016 (14)0.0002 (15)
C20.0224 (17)0.0224 (18)0.0177 (17)0.0023 (14)0.0015 (14)0.0012 (14)
C30.0232 (17)0.0190 (18)0.0197 (17)0.0005 (14)0.0051 (14)0.0010 (14)
C40.0296 (18)0.0192 (18)0.0212 (17)0.0024 (15)0.0016 (14)0.0006 (15)
C50.0221 (17)0.0243 (19)0.0203 (17)0.0015 (14)0.0007 (14)0.0001 (15)
C60.0222 (17)0.0249 (19)0.0191 (18)0.0036 (15)0.0029 (14)0.0041 (15)
C70.0229 (18)0.0251 (19)0.0274 (19)0.0006 (15)0.0045 (15)0.0029 (16)
O10.0295 (12)0.0233 (13)0.0510 (15)0.0017 (11)0.0133 (11)0.0098 (12)
O20.0335 (13)0.0161 (12)0.0455 (15)0.0001 (11)0.0133 (11)0.0016 (12)
C80.0249 (18)0.023 (2)0.0235 (19)0.0002 (16)0.0004 (14)0.0003 (16)
O30.0258 (13)0.0240 (13)0.0490 (16)0.0010 (11)0.0150 (12)0.0027 (12)
O40.0333 (13)0.0178 (14)0.0448 (15)0.0011 (11)0.0041 (11)0.0000 (11)
C90.0252 (18)0.027 (2)0.029 (2)0.0030 (16)0.0042 (15)0.0014 (17)
O50.0307 (14)0.0258 (14)0.0562 (17)0.0071 (12)0.0125 (12)0.0020 (13)
O60.0300 (14)0.0351 (15)0.0608 (17)0.0037 (12)0.0180 (13)0.0018 (13)
O70.0386 (14)0.0196 (13)0.0619 (18)0.0030 (12)0.0142 (12)0.0018 (13)
C100.032 (2)0.026 (2)0.041 (2)0.0041 (18)0.0091 (17)0.0013 (18)
N10.0368 (17)0.0194 (16)0.0403 (18)0.0025 (13)0.0030 (14)0.0032 (14)
C110.054 (3)0.024 (2)0.050 (2)0.0022 (18)0.003 (2)0.0005 (19)
C120.045 (2)0.029 (2)0.087 (3)0.0134 (19)0.004 (2)0.002 (2)
O80.0334 (14)0.0361 (16)0.0565 (17)0.0044 (12)0.0088 (12)0.0096 (14)
C130.034 (2)0.035 (2)0.040 (2)0.0037 (19)0.0128 (17)0.0026 (19)
N20.0332 (16)0.0341 (18)0.0336 (17)0.0077 (14)0.0074 (13)0.0021 (15)
C140.033 (2)0.065 (3)0.072 (3)0.018 (2)0.011 (2)0.030 (2)
C150.069 (3)0.030 (2)0.090 (3)0.002 (2)0.037 (3)0.005 (2)
Geometric parameters (Å, º) top
C1—C61.388 (4)C10—N11.316 (4)
C1—C21.392 (4)C10—H100.9500
C1—C71.500 (4)N1—C121.447 (4)
C2—C31.382 (4)N1—C111.460 (4)
C2—H20.9500C11—H11A0.9800
C3—C41.393 (4)C11—H11B0.9800
C3—C81.486 (4)C11—H11C0.9800
C4—C51.398 (4)C12—H12A0.9800
C4—H40.9500C12—H12B0.9800
C5—C61.388 (4)C12—H12C0.9800
C5—C91.483 (4)O8—C131.238 (4)
C6—H60.9500C13—N21.323 (4)
C7—O11.215 (4)C13—H130.9500
C7—O21.308 (4)N2—C151.451 (5)
O2—H2A0.79 (4)N2—C141.453 (4)
C8—O41.217 (4)C14—H14A0.9800
C8—O31.323 (4)C14—H14B0.9800
O3—H30.85 (4)C14—H14C0.9800
C9—O61.204 (4)C15—H15A0.9800
C9—O51.340 (4)C15—H15B0.9800
O5—H50.86 (4)C15—H15C0.9800
O7—C101.245 (4)
C6—C1—C2119.5 (3)C10—N1—C12120.5 (3)
C6—C1—C7119.3 (3)C10—N1—C11121.7 (3)
C2—C1—C7121.1 (3)C12—N1—C11117.9 (3)
C3—C2—C1120.6 (3)N1—C11—H11A109.5
C3—C2—H2119.7N1—C11—H11B109.5
C1—C2—H2119.7H11A—C11—H11B109.5
C2—C3—C4119.8 (3)N1—C11—H11C109.5
C2—C3—C8121.7 (3)H11A—C11—H11C109.5
C4—C3—C8118.6 (3)H11B—C11—H11C109.5
C3—C4—C5120.2 (3)N1—C12—H12A109.5
C3—C4—H4119.9N1—C12—H12B109.5
C5—C4—H4119.9H12A—C12—H12B109.5
C6—C5—C4119.4 (3)N1—C12—H12C109.5
C6—C5—C9118.6 (3)H12A—C12—H12C109.5
C4—C5—C9122.0 (3)H12B—C12—H12C109.5
C1—C6—C5120.6 (3)O8—C13—N2125.1 (3)
C1—C6—H6119.7O8—C13—H13117.5
C5—C6—H6119.7N2—C13—H13117.5
O1—C7—O2124.4 (3)C13—N2—C15122.2 (3)
O1—C7—C1123.2 (3)C13—N2—C14120.5 (3)
O2—C7—C1112.3 (3)C15—N2—C14117.3 (3)
C7—O2—H2A109 (3)N2—C14—H14A109.5
O4—C8—O3123.3 (3)N2—C14—H14B109.5
O4—C8—C3122.4 (3)H14A—C14—H14B109.5
O3—C8—C3114.3 (3)N2—C14—H14C109.5
C8—O3—H3115 (2)H14A—C14—H14C109.5
O6—C9—O5123.5 (3)H14B—C14—H14C109.5
O6—C9—C5123.3 (3)N2—C15—H15A109.5
O5—C9—C5113.2 (3)N2—C15—H15B109.5
C9—O5—H5106 (3)H15A—C15—H15B109.5
O7—C10—N1123.2 (3)N2—C15—H15C109.5
O7—C10—H10118.4H15A—C15—H15C109.5
N1—C10—H10118.4H15B—C15—H15C109.5
C6—C1—C2—C30.4 (5)C6—C1—C7—O2175.5 (3)
C7—C1—C2—C3179.1 (3)C2—C1—C7—O25.8 (4)
C1—C2—C3—C41.0 (5)C2—C3—C8—O4174.0 (3)
C1—C2—C3—C8179.5 (3)C4—C3—C8—O46.5 (5)
C2—C3—C4—C51.0 (5)C2—C3—C8—O35.8 (4)
C8—C3—C4—C5179.5 (3)C4—C3—C8—O3173.6 (3)
C3—C4—C5—C60.4 (4)C6—C5—C9—O65.0 (5)
C3—C4—C5—C9178.9 (3)C4—C5—C9—O6176.5 (3)
C2—C1—C6—C50.3 (5)C6—C5—C9—O5174.6 (3)
C7—C1—C6—C5178.4 (3)C4—C5—C9—O54.0 (4)
C4—C5—C6—C10.3 (5)O7—C10—N1—C120.5 (5)
C9—C5—C6—C1178.3 (3)O7—C10—N1—C11179.1 (3)
C6—C1—C7—O14.7 (5)O8—C13—N2—C15178.5 (4)
C2—C1—C7—O1174.0 (3)O8—C13—N2—C140.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O70.79 (4)1.73 (4)2.507 (3)168 (4)
O3—H3···O80.85 (4)1.75 (4)2.599 (3)176 (4)
O5—H5···O1i0.86 (4)1.88 (4)2.732 (3)171 (4)
Symmetry code: (i) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H20N2O8
Mr356.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)16.6529 (18), 14.4143 (16), 7.2310 (8)
β (°) 90.719 (2)
V3)1735.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.27 × 0.16 × 0.02
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.971, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
8644, 3064, 1664
Rint0.056
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.134, 1.03
No. of reflections3064
No. of parameters240
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: SMART (Siemens, 1994), SAINT (Siemens, 1994), SAINT, SHELXTL (Bruker, 1997), SHELXTL and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O70.79 (4)1.73 (4)2.507 (3)168 (4)
O3—H3···O80.85 (4)1.75 (4)2.599 (3)176 (4)
O5—H5···O1i0.86 (4)1.88 (4)2.732 (3)171 (4)
Symmetry code: (i) x+1, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds