Download citation
Download citation
link to html
In the structure of [Cu(ClO4)2(PA)2(μ-phen)]·PA [PA = pyridine-4-carbox­aldehyde oxime or 4-pyridine­aldoxime (C6H6N2O) and phen = 1,10-phenanthroline (C12H8N2)], the coordination geometry around the CuII atom may be described as a distorted octahedron. Four N atoms, two from a phen ligand and two from PA ligands, occupy the equatorial positions, while two O atoms from two perchlorate groups occupy the axial positions. The PA mol­ecules which are not involved in the CuII coordination link the complexes through O—H...N and O—H...O hydrogen bonds, forming layers parallel to the ac plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803018737/ci6266sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803018737/ci6266Isup2.hkl
Contains datablock I

CCDC reference: 222836

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.069
  • wR factor = 0.122
  • Data-to-parameter ratio = 12.7

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT242_ALERT_2_B Check Low U(eq) as Compared to Neighbors .... Cl1
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.99 PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT231_ALERT_4_C Hirshfeld Test (Solvent) N8 - C30 = 7.62 su PLAT241_ALERT_2_C Check High U(eq) as Compared to Neighbors .... O1 PLAT244_ALERT_4_C Low Solvent U(eq) as Compared to Neighbors .... Cl2 PLAT341_ALERT_3_C Low Bond Precision on C-C bonds (x 1000) Ang ... 9 PLAT430_ALERT_2_C Short Inter D...A Contact O4 .. O4 = 2.86 Ang. PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 3 Cl O4
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

It is well known that the design of complexes of the copper ion with various organic ligands is an interesting field (Richards & Durrant, 2002; Melnik et al., 2000) because of their diversity in coordination chemistry and model applications in biomolecules. As a strong bidentate ligand and a chromophoric group, 1,10-phenanthroline (phen) is involved in many copper complexes (Liu et al., 2002; Chen et al., 2003; Wang et al., 2002; Devi & Zubieta, 2003; Clarke et al., 2003; Guo et al., 2002). 4-Pyridinealdoxime (PA) can be considered as a linear bridging ligand and few complexes of transition metals with PA have been reported (Allan & Paton, 1993). We report here, the structure of a coordination aggregate, (I), constructed by Cu(ClO4)2, phen and PA, in which the PA functions as a terminal ligand.

The asymmetric unit of (I) contains a discrete [Cu(PA)2(µ-phen)(ClO4)2] complex and a PA molecule. A displacement ellipsoid plot of the complex is shown in Fig. 1. The coordination environment of the central CuII atom can be described as a distorted octahadron with two N atoms (N1 and N2) from a phen ligand and two N atoms (N3 and N5) from PA ligands occupying the equatorial positions, and two O atoms (O1 and O6) from two perchlorate groups occupying the axial positions. The CuII atom is displaced from the equatorial plane by 0.095 (3) Å, in the direction of O1. The average Cu—N distance of 2.005 (11) Å is comparable to that [2.020 (3) Å] found in [Cu(phen)2py(ClO4)]+ (py = pyridine; Niu et al., 2001). The length of the two axial Cu—O coordination bonds are not equal. The Cu1—O6 bond length [2.960 (5) Å] is considerably longer than Cu1—O1 bond length [2.357 (4) Å]. The shorter Cu—O length is slightly longer than that found between CuII and the O atom of a water molecule (2.274 Å; Liu et al., 2002). The longer Cu—O distance suggests a very weak bonding. However, it is still shorter than that found in [Cu(phen)2py(ClO4)]+ (Niu et al., 2001). The fact that atoms O1 and O6 have smaller displacement parameters compared to those of the other O atoms of perchlorate groups confirms the interactions between CuII and perchlorate groups.

The phen ligand is planar and it makes a dihedral angle of 4.0 (2)° with the equatorial plane. The coordinated PA molecules play a role of terminal ligand instead of the expected linear bridging ligand. However, the PA molecules which are not involved in the CuII coordination connect the complexes through hydrogen bondings. As can be seen from Fig. 2, the O—H···N and O—H···O hydrogen bonds (Table 2) between the complexes and uncoordinted PA molecules, as well as O—H···O hydrogen bonds between coordinated PA molecules and perchlorate groups, result in the formation of thick layers parallel to the ac plane.

Experimental top

To a methanol solution (20 ml) of Cu(ClO4)2·6H2O (0.5 mmol) and phen (0.5 mmol), 4-pyridinealdoxime (1.0 mmol) was added. The mixture was stirred for 2 h in air before being left at room temperature for 30 min. The resulting dark-blue solution was filtered and allowed to evaporate at room temperature. After 2 d, blue crystals of the complex suitable for X-ray analysis were obtained. They were collected by suction filtration and air-dried. All chemicals were purchased commercially and used without further purification.

Refinement top

H atoms were placed in geometrical positions and allowed for using a riding model [C—H = 0.93 Å, O—H = 0.82 Å and Uiso(H) = 1.2Ueq(parent C) and 1.5Ueq(parent N)].

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 35% probability displacement ellipsoids and the atomic-numbering scheme. The coordination bonds are shown as open lines and dashed line indicates a longer coordination bond.
[Figure 2] Fig. 2. A view of the molecular packing down the a axis.
(1,10-phenanthroline)diperchloratobis(pyridine-4-carboxaldehyde oxime-κN1)copper(II)–pyridine-4-carboxaldehyde oxime (1/1) top
Crystal data top
[Cu(ClO4)2(C6H6N2O)2(C12H8N2)]·C6H6N2OZ = 2
Mr = 809.03F(000) = 826
Triclinic, P1Dx = 1.570 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2981 (7) ÅCell parameters from 3143 reflections
b = 13.525 (2) Åθ = 2.3–20.4°
c = 16.5280 (13) ŵ = 0.87 mm1
α = 104.16 (2)°T = 293 K
β = 90.05 (2)°Plate, blue
γ = 107.34 (2)°0.3 × 0.1 × 0.08 mm
V = 1711.3 (4) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
5970 independent reflections
Radiation source: fine-focus sealed tube3289 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 15X15microns pixels mm-1θmax = 25.0°, θmin = 2.3°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
k = 1516
Tmin = 0.726, Tmax = 0.933l = 1919
7700 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.001P)2 + 0.5P]
where P = (Fo2 + 2Fc2)/3
5970 reflections(Δ/σ)max < 0.001
469 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Cu(ClO4)2(C6H6N2O)2(C12H8N2)]·C6H6N2Oγ = 107.34 (2)°
Mr = 809.03V = 1711.3 (4) Å3
Triclinic, P1Z = 2
a = 8.2981 (7) ÅMo Kα radiation
b = 13.525 (2) ŵ = 0.87 mm1
c = 16.5280 (13) ÅT = 293 K
α = 104.16 (2)°0.3 × 0.1 × 0.08 mm
β = 90.05 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5970 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3289 reflections with I > 2σ(I)
Tmin = 0.726, Tmax = 0.933Rint = 0.048
7700 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.02Δρmax = 0.48 e Å3
5970 reflectionsΔρmin = 0.33 e Å3
469 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.09414 (9)0.26802 (5)0.16579 (4)0.0465 (2)
Cl10.3914 (2)0.17811 (11)0.04745 (9)0.0556 (4)
Cl20.1104 (2)0.50287 (13)0.30679 (10)0.0591 (4)
O10.2588 (5)0.1597 (3)0.1023 (2)0.0719 (12)
O20.3431 (6)0.2234 (3)0.0134 (2)0.0885 (14)
O30.5380 (6)0.2547 (4)0.0957 (3)0.1069 (17)
O40.4224 (6)0.0828 (3)0.0081 (3)0.1054 (17)
O50.2428 (6)0.5396 (4)0.2866 (3)0.0916 (14)
O60.0907 (7)0.4202 (4)0.2409 (3)0.1094 (18)
O70.0371 (7)0.5866 (4)0.3219 (5)0.167 (3)
O80.1382 (8)0.4670 (5)0.3779 (3)0.138 (2)
O90.6744 (5)0.1994 (3)0.2955 (2)0.0736 (12)
H9B0.75450.18690.32030.110*
O100.6307 (6)0.4008 (4)0.6276 (2)0.0974 (15)
H10B0.72840.40090.63540.146*
O110.5907 (9)0.1546 (4)0.4727 (3)0.134 (2)
H11A0.60940.21960.48280.201*
N10.0218 (6)0.2489 (3)0.0534 (2)0.0450 (11)
N20.2399 (5)0.4030 (3)0.1425 (2)0.0395 (10)
N30.0832 (6)0.1422 (4)0.1854 (3)0.0520 (12)
N40.5769 (7)0.1088 (4)0.2756 (3)0.0619 (14)
N50.2095 (6)0.2973 (3)0.2811 (3)0.0502 (12)
N60.5813 (7)0.3645 (4)0.5427 (3)0.0684 (15)
N71.0796 (8)0.1207 (5)0.3561 (3)0.0804 (17)
N80.7362 (10)0.1303 (6)0.4518 (3)0.110 (2)
C10.1479 (7)0.1669 (4)0.0085 (3)0.0557 (16)
H1A0.19930.11010.03160.067*
C20.2049 (8)0.1635 (5)0.0716 (4)0.0686 (18)
H2A0.29330.10530.10140.082*
C30.1312 (9)0.2449 (5)0.1055 (4)0.0681 (18)
H3A0.16910.24330.15890.082*
C40.0031 (7)0.3328 (5)0.0606 (3)0.0517 (15)
C50.0897 (9)0.4232 (6)0.0894 (4)0.0679 (18)
H5A0.05570.42720.14180.081*
C60.2189 (8)0.5034 (5)0.0440 (4)0.0631 (18)
H6A0.27240.56130.06550.076*
C70.2752 (8)0.5011 (5)0.0365 (4)0.0516 (15)
C80.4124 (8)0.5794 (5)0.0871 (4)0.0628 (17)
H8A0.47170.63920.06920.075*
C90.4589 (8)0.5679 (4)0.1623 (4)0.0648 (17)
H9A0.54960.61960.19640.078*
C100.3700 (8)0.4789 (4)0.1872 (3)0.0561 (16)
H10A0.40350.47170.23860.067*
C110.1921 (7)0.4140 (4)0.0674 (3)0.0381 (13)
C120.0546 (7)0.3301 (4)0.0190 (3)0.0421 (13)
C130.0586 (8)0.0470 (5)0.1752 (3)0.0560 (16)
H13A0.04440.03940.15750.067*
C140.1785 (9)0.0401 (4)0.1896 (3)0.0581 (16)
H14A0.15750.10550.18060.070*
C150.3278 (8)0.0302 (5)0.2171 (3)0.0483 (15)
C160.3574 (8)0.0662 (5)0.2269 (3)0.0635 (17)
H16A0.45970.07500.24480.076*
C170.2325 (8)0.1497 (5)0.2097 (3)0.0593 (16)
H17A0.25370.21470.21540.071*
C180.4503 (8)0.1211 (5)0.2371 (3)0.0577 (17)
H18A0.43530.18850.22150.069*
C190.1289 (7)0.3255 (4)0.3488 (3)0.0516 (15)
H19A0.01910.32780.34100.062*
C200.2002 (8)0.3516 (4)0.4297 (3)0.0532 (15)
H20A0.13980.37150.47490.064*
C210.3612 (8)0.3475 (4)0.4425 (3)0.0443 (14)
C220.4432 (8)0.3179 (4)0.3727 (4)0.0617 (16)
H22A0.55220.31370.37870.074*
C230.3638 (8)0.2945 (4)0.2941 (3)0.0586 (16)
H23A0.42260.27560.24790.070*
C240.4397 (8)0.3784 (4)0.5283 (3)0.0578 (16)
H24A0.38560.40830.57250.069*
C251.1135 (10)0.0145 (7)0.3731 (4)0.084 (2)
H25A1.22250.02570.36610.101*
C261.0002 (12)0.0399 (5)0.3999 (4)0.082 (2)
H26A1.03200.11420.41110.098*
C270.8359 (10)0.0193 (5)0.4099 (3)0.0652 (18)
C280.7996 (9)0.1284 (5)0.3925 (4)0.0698 (19)
H28A0.69160.17100.39850.084*
C290.9241 (11)0.1747 (6)0.3662 (4)0.077 (2)
H29A0.89620.24890.35500.092*
C300.7029 (11)0.0268 (6)0.4362 (4)0.089 (2)
H30A0.59530.01650.44190.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0473 (5)0.0518 (4)0.0409 (4)0.0090 (3)0.0018 (3)0.0206 (3)
Cl10.0565 (11)0.0523 (10)0.0617 (10)0.0215 (8)0.0161 (9)0.0154 (8)
Cl20.0558 (11)0.0681 (11)0.0616 (10)0.0278 (9)0.0058 (8)0.0207 (8)
O10.062 (3)0.081 (3)0.089 (3)0.033 (2)0.037 (2)0.038 (2)
O20.114 (4)0.098 (3)0.074 (3)0.045 (3)0.021 (3)0.045 (3)
O30.070 (3)0.109 (4)0.111 (4)0.008 (3)0.006 (3)0.016 (3)
O40.112 (4)0.061 (3)0.152 (4)0.044 (3)0.056 (4)0.022 (3)
O50.075 (3)0.113 (4)0.110 (4)0.058 (3)0.006 (3)0.034 (3)
O60.173 (6)0.105 (4)0.074 (3)0.091 (4)0.002 (3)0.008 (3)
O70.063 (4)0.105 (4)0.322 (9)0.004 (4)0.040 (5)0.061 (5)
O80.174 (6)0.228 (6)0.092 (4)0.136 (5)0.064 (4)0.096 (4)
O90.067 (3)0.075 (3)0.072 (3)0.000 (2)0.001 (2)0.033 (2)
O100.106 (4)0.133 (4)0.055 (3)0.060 (3)0.029 (3)0.000 (3)
O110.191 (7)0.129 (5)0.105 (4)0.097 (5)0.011 (4)0.013 (3)
N10.047 (3)0.048 (3)0.044 (3)0.017 (2)0.004 (2)0.016 (2)
N20.043 (3)0.041 (3)0.034 (2)0.015 (2)0.001 (2)0.007 (2)
N30.056 (4)0.053 (3)0.051 (3)0.013 (3)0.002 (3)0.024 (2)
N40.052 (4)0.067 (4)0.057 (3)0.006 (3)0.006 (3)0.029 (3)
N50.052 (3)0.056 (3)0.046 (3)0.019 (3)0.001 (3)0.017 (2)
N60.081 (4)0.078 (4)0.043 (3)0.034 (3)0.017 (3)0.002 (3)
N70.086 (5)0.073 (4)0.082 (4)0.009 (4)0.012 (3)0.037 (3)
N80.164 (8)0.140 (6)0.057 (4)0.101 (6)0.000 (4)0.015 (4)
C10.050 (4)0.057 (4)0.054 (4)0.005 (3)0.005 (3)0.017 (3)
C20.056 (4)0.082 (5)0.055 (4)0.005 (4)0.014 (3)0.015 (4)
C30.072 (5)0.093 (5)0.044 (4)0.031 (4)0.008 (4)0.020 (4)
C40.046 (4)0.078 (4)0.040 (3)0.026 (4)0.008 (3)0.024 (3)
C50.072 (5)0.097 (5)0.057 (4)0.039 (4)0.014 (4)0.044 (4)
C60.060 (5)0.076 (5)0.079 (5)0.029 (4)0.023 (4)0.055 (4)
C70.053 (4)0.052 (4)0.064 (4)0.026 (3)0.016 (3)0.029 (3)
C80.065 (5)0.052 (4)0.085 (5)0.022 (4)0.026 (4)0.036 (4)
C90.068 (5)0.041 (4)0.076 (5)0.006 (3)0.002 (4)0.012 (3)
C100.063 (4)0.046 (4)0.052 (4)0.009 (3)0.001 (3)0.009 (3)
C110.040 (3)0.039 (3)0.043 (3)0.022 (3)0.007 (3)0.013 (3)
C120.044 (4)0.051 (3)0.041 (3)0.023 (3)0.003 (3)0.018 (3)
C130.059 (4)0.056 (4)0.057 (4)0.021 (4)0.011 (3)0.019 (3)
C140.076 (5)0.044 (4)0.056 (4)0.016 (4)0.005 (3)0.019 (3)
C150.045 (4)0.052 (4)0.041 (3)0.005 (3)0.002 (3)0.013 (3)
C160.064 (5)0.056 (4)0.070 (4)0.016 (4)0.013 (3)0.018 (3)
C170.059 (5)0.055 (4)0.072 (4)0.021 (4)0.002 (4)0.026 (3)
C180.057 (4)0.053 (4)0.055 (4)0.001 (4)0.004 (3)0.017 (3)
C190.047 (4)0.063 (4)0.055 (4)0.023 (3)0.003 (3)0.024 (3)
C200.055 (4)0.065 (4)0.045 (4)0.026 (3)0.004 (3)0.017 (3)
C210.057 (4)0.041 (3)0.040 (3)0.016 (3)0.005 (3)0.019 (3)
C220.052 (4)0.083 (4)0.057 (4)0.026 (3)0.010 (3)0.023 (3)
C230.051 (4)0.089 (5)0.044 (4)0.031 (4)0.007 (3)0.021 (3)
C240.067 (5)0.064 (4)0.042 (4)0.022 (4)0.001 (3)0.009 (3)
C250.089 (7)0.093 (6)0.068 (5)0.008 (5)0.004 (4)0.040 (4)
C260.104 (7)0.052 (5)0.075 (5)0.001 (5)0.020 (5)0.021 (4)
C270.095 (6)0.057 (5)0.044 (4)0.029 (5)0.007 (4)0.007 (3)
C280.080 (5)0.056 (5)0.072 (4)0.016 (4)0.007 (4)0.019 (3)
C290.092 (6)0.062 (5)0.078 (5)0.020 (5)0.012 (4)0.026 (4)
C300.143 (8)0.070 (5)0.058 (4)0.050 (5)0.003 (4)0.006 (4)
Geometric parameters (Å, º) top
Cu1—N31.986 (5)C5—H5A0.93
Cu1—N21.993 (4)C6—C71.421 (7)
Cu1—N12.014 (4)C6—H6A0.93
Cu1—N52.026 (4)C7—C111.390 (6)
Cu1—O12.357 (4)C7—C81.401 (8)
Cu1—O62.960 (5)C8—C91.360 (7)
Cl1—O41.392 (4)C8—H8A0.93
Cl1—O21.413 (4)C9—C101.369 (7)
Cl1—O31.426 (4)C9—H9A0.93
Cl1—O11.430 (4)C10—H10A0.93
Cl2—O71.371 (5)C11—C121.419 (7)
Cl2—O81.372 (4)C13—C141.368 (7)
Cl2—O51.404 (4)C13—H13A0.93
Cl2—O61.406 (4)C14—C151.352 (7)
O9—N41.367 (5)C14—H14A0.93
O9—H9B0.82C15—C161.368 (7)
O10—N61.386 (5)C15—C181.452 (7)
O10—H10B0.82C16—C171.375 (7)
O11—N81.366 (8)C16—H16A0.93
O11—H11A0.82C17—H17A0.93
N1—C11.333 (6)C18—H18A0.93
N1—C121.350 (6)C19—C201.381 (6)
N2—C101.317 (6)C19—H19A0.93
N2—C111.358 (5)C20—C211.372 (7)
N3—C171.327 (7)C20—H20A0.93
N3—C131.335 (6)C21—C221.376 (7)
N4—C181.262 (7)C21—C241.467 (7)
N5—C231.312 (6)C22—C231.376 (7)
N5—C191.338 (6)C22—H22A0.93
N6—C241.275 (7)C23—H23A0.93
N7—C291.314 (8)C24—H24A0.93
N7—C251.336 (8)C25—C261.370 (9)
N8—C301.301 (8)C25—H25A0.93
C1—C21.392 (7)C26—C271.393 (9)
C1—H1A0.93C26—H26A0.93
C2—C31.342 (7)C27—C281.371 (7)
C2—H2A0.93C27—C301.440 (9)
C3—C41.408 (7)C28—C291.379 (8)
C3—H3A0.93C28—H28A0.93
C4—C121.396 (6)C29—H29A0.93
C4—C51.414 (7)C30—H30A0.93
C5—C61.340 (8)
N3—Cu1—N2170.4 (2)C9—C8—C7120.0 (5)
N3—Cu1—N191.45 (18)C9—C8—H8A120.0
N2—Cu1—N182.81 (18)C7—C8—H8A120.0
N3—Cu1—N590.61 (17)C8—C9—C10118.9 (6)
N2—Cu1—N594.71 (17)C8—C9—H9A120.5
N1—Cu1—N5176.18 (18)C10—C9—H9A120.5
N3—Cu1—O191.59 (18)N2—C10—C9123.7 (5)
N2—Cu1—O196.12 (15)N2—C10—H10A118.1
N1—Cu1—O190.40 (15)C9—C10—H10A118.1
N5—Cu1—O192.76 (17)N2—C11—C7122.7 (5)
N3—Cu1—O693.53 (19)N2—C11—C12117.0 (5)
N2—Cu1—O678.72 (15)C7—C11—C12120.2 (5)
N1—Cu1—O688.83 (14)N1—C12—C4122.4 (5)
N5—Cu1—O687.83 (16)N1—C12—C11117.0 (4)
O1—Cu1—O6174.84 (14)C4—C12—C11120.6 (5)
O4—Cl1—O2109.6 (3)N3—C13—C14122.8 (6)
O4—Cl1—O3111.8 (3)N3—C13—H13A118.6
O2—Cl1—O3107.8 (3)C14—C13—H13A118.6
O4—Cl1—O1110.9 (3)C15—C14—C13119.5 (6)
O2—Cl1—O1108.8 (3)C15—C14—H14A120.2
O3—Cl1—O1107.8 (3)C13—C14—H14A120.2
O7—Cl2—O8108.0 (4)C14—C15—C16118.9 (6)
O7—Cl2—O5108.6 (3)C14—C15—C18119.2 (6)
O8—Cl2—O5110.9 (3)C16—C15—C18121.9 (6)
O7—Cl2—O6108.6 (4)C15—C16—C17118.4 (6)
O8—Cl2—O6109.3 (3)C15—C16—H16A120.8
O5—Cl2—O6111.5 (3)C17—C16—H16A120.8
Cl1—O1—Cu1131.0 (2)N3—C17—C16123.4 (6)
Cl2—O6—Cu1150.7 (3)N3—C17—H17A118.3
N4—O9—H9B109.5C16—C17—H17A118.3
N6—O10—H10B109.5N4—C18—C15120.1 (6)
N8—O11—H11A109.5N4—C18—H18A120.0
C1—N1—C12118.7 (5)C15—C18—H18A120.0
C1—N1—Cu1129.8 (4)N5—C19—C20123.4 (5)
C12—N1—Cu1111.3 (3)N5—C19—H19A118.3
C10—N2—C11117.8 (5)C20—C19—H19A118.3
C10—N2—Cu1130.5 (4)C21—C20—C19119.1 (5)
C11—N2—Cu1111.7 (3)C21—C20—H20A120.4
C17—N3—C13116.9 (5)C19—C20—H20A120.4
C17—N3—Cu1121.0 (4)C20—C21—C22117.2 (5)
C13—N3—Cu1122.1 (4)C20—C21—C24119.4 (5)
C18—N4—O9113.6 (5)C22—C21—C24123.3 (6)
C23—N5—C19116.9 (5)C21—C22—C23120.0 (6)
C23—N5—Cu1123.8 (4)C21—C22—H22A120.0
C19—N5—Cu1119.3 (4)C23—C22—H22A120.0
C24—N6—O10110.2 (5)N5—C23—C22123.3 (5)
C29—N7—C25115.6 (7)N5—C23—H23A118.3
C30—N8—O11108.1 (8)C22—C23—H23A118.3
N1—C1—C2122.2 (5)N6—C24—C21120.7 (5)
N1—C1—H1A118.9N6—C24—H24A119.7
C2—C1—H1A118.9C21—C24—H24A119.7
C3—C2—C1119.4 (6)N7—C25—C26125.1 (7)
C3—C2—H2A120.3N7—C25—H25A117.5
C1—C2—H2A120.3C26—C25—H25A117.5
C2—C3—C4120.4 (5)C25—C26—C27118.1 (7)
C2—C3—H3A119.8C25—C26—H26A120.9
C4—C3—H3A119.8C27—C26—H26A120.9
C12—C4—C3117.0 (5)C28—C27—C26117.3 (7)
C12—C4—C5117.4 (5)C28—C27—C30118.5 (8)
C3—C4—C5125.6 (6)C26—C27—C30124.2 (7)
C6—C5—C4122.6 (6)C27—C28—C29119.6 (7)
C6—C5—H5A118.7C27—C28—H28A120.2
C4—C5—H5A118.7C29—C28—H28A120.2
C5—C6—C7120.8 (6)N7—C29—C28124.2 (6)
C5—C6—H6A119.6N7—C29—H29A117.9
C7—C6—H6A119.6C28—C29—H29A117.9
C11—C7—C8116.8 (5)N8—C30—C27118.7 (8)
C11—C7—C6118.4 (6)N8—C30—H30A120.7
C8—C7—C6124.7 (6)C27—C30—H30A120.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9B···N7i0.821.882.660 (7)160
O10—H10B···O7ii0.822.012.823 (7)169
O11—H11A···N60.822.052.816 (7)156
Symmetry codes: (i) x2, y, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(ClO4)2(C6H6N2O)2(C12H8N2)]·C6H6N2O
Mr809.03
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.2981 (7), 13.525 (2), 16.5280 (13)
α, β, γ (°)104.16 (2), 90.05 (2), 107.34 (2)
V3)1711.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.3 × 0.1 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.726, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
7700, 5970, 3289
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.122, 1.02
No. of reflections5970
No. of parameters469
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.33

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—N31.986 (5)Cu1—N52.026 (4)
Cu1—N21.993 (4)Cu1—O12.357 (4)
Cu1—N12.014 (4)Cu1—O62.960 (5)
N3—Cu1—N2170.4 (2)N1—Cu1—O190.40 (15)
N3—Cu1—N191.45 (18)N5—Cu1—O192.76 (17)
N2—Cu1—N182.81 (18)N3—Cu1—O693.53 (19)
N3—Cu1—N590.61 (17)N2—Cu1—O678.72 (15)
N2—Cu1—N594.71 (17)N1—Cu1—O688.83 (14)
N1—Cu1—N5176.18 (18)N5—Cu1—O687.83 (16)
N3—Cu1—O191.59 (18)O1—Cu1—O6174.84 (14)
N2—Cu1—O196.12 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9B···N7i0.821.882.660 (7)160
O10—H10B···O7ii0.822.012.823 (7)169
O11—H11A···N60.822.052.816 (7)156
Symmetry codes: (i) x2, y, z; (ii) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds