Download citation
Download citation
link to html
In the title complex, [Pd(C6H4O2)(C18H12N2)], the central Pd atom has a distorted cis-planar four-coordination geometry defined by two O atoms of a 1,2-benzene­diolate dianion and two N atoms of a 2,2′-biquinoline ligand. The overall structure of the complex is not planar, with a dihedral angle of 136.23 (8)° between the quinoline and benzene­diolate mean planes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680503062X/hb6273sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680503062X/hb6273Isup2.hkl
Contains datablock I

CCDC reference: 287586

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.032
  • wR factor = 0.089
  • Data-to-parameter ratio = 16.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.52 Ratio
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

A large number of investigations have focused on the design of palladium(II) or platinum(II) complexes because of their biological significance in areas such as antitumor, antimicrovial and antiviral activity (Corbi et al., 2005; Giovagnini et al., 2005).

Palladium complexes with aromatic ligands and cis-square planar coordination geometry has been intensively studied because of their cytotoxic activity (Mansuri-Torshizi et al., 2001; Afrasiabi et al., 2004; Rebolledo et al., 2005; Padhye et al., 2005) or DNA binding properties (Cusumano & Giannetto, 1997; Tercero et al., 2003), which is the principal target in the chemotherapy of tumors (Shehata, 2001; Cusumano & Giannetto, 1997; Neidle et al., 1987).

As an extension of these studies, we have synthesized and determined the crystal structures of a number of cis-coordinated palladium complexes with aromatic ligands including Pd(bpy)(cbdca) and Pb(phen)(cbdca) (Muranishi & Okabe, 2004), Pd(phen)(ca) (Okabe et al., 2003), Pd(bpy)(nad) and Pd(biq)(nad) (Okabe et al., 2004) and Pd(bpy)(ca) (Okabe et al., 2005), where bpy is 2,2'-bipyridine, cbdca is 1,1-cyclobutanedicarboxylate, phen is 1,10-phenanthroline, nad is 2,3-naphthalenediol, biq is biquinoline and ca is catechol or 1,2-benzenediol.

In this study, the title compound, Pd(biq)(ca), (I), has been synthesized and its structure determined. In complex (I), the central Pd atom has a distorted cis-square planar coordination geometry arising from the two N atoms of biq and the two O atoms of ca (Fig. 1).

The overall structure is not planar and resembles that of Pd(biq)(nad), (II) (Okabe et al., 2004), which has the same biq moiety as (I) and two analogous anionic O atoms of the 2,3-naphthalenediol moiety. The dihedral angle between the biq and ca best planes in (I) is 136.23 (8)°, with an equivalent value for (II) of 148.73 (7)° (where a dihedral angle of 180° indicates a flat structure). This shows that the distortion of (I) from the planar conformation is larger than in (II).

The Pd—X (X = N, O) bond lengths and angles in (I) are similar to those of (II) (Table 1). This resemblance suggests similar coordination bond strength in both complexes.

Experimental top

First, biq (5.0 mg dissolved in 2 ml dimethylformamide, DMF) was reacted with palladium acetate, Pd(CH3COOH)2 (4.4 mg in 2 ml DMF) for 15 min at room temperature (molar ratio of 1:1). An equimolar amount of ca dissolved to DMF was then added with stirring. This mixture was left to stand at room temperature and yielded red plate-shaped crystals of (I) over a period of days.

Refinement top

All H atoms were located in difference Fourier maps and then repositioned in idealized locations and treated as riding, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 2000); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN (Molecular Structure Corporation, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% displacement ellipsoids for the non-H atoms.
(1,2-Benzenediolato-κ2O,O')((2,2'-biquinoline-κ2N,N')palladium(II) top
Crystal data top
[Pd(C6H4O2)(C18H12N2)]F(000) = 944.0
Mr = 470.81Dx = 1.686 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.042 (2) Åθ = 14.4–15.0°
b = 9.487 (2) ŵ = 1.02 mm1
c = 17.796 (2) ÅT = 296 K
β = 95.635 (10)°Plate, blue
V = 1855.2 (6) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.043
ω–2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 014
Tmin = 0.832, Tmax = 0.903k = 012
4749 measured reflectionsl = 2323
4267 independent reflections3 standard reflections every 150 reflections
2996 reflections with I > 2σ(I) intensity decay: 0.4%
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0349P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max = 0.002
S = 1.07Δρmax = 0.47 e Å3
4267 reflectionsΔρmin = 0.35 e Å3
262 parameters
Crystal data top
[Pd(C6H4O2)(C18H12N2)]V = 1855.2 (6) Å3
Mr = 470.81Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.042 (2) ŵ = 1.02 mm1
b = 9.487 (2) ÅT = 296 K
c = 17.796 (2) Å0.20 × 0.15 × 0.10 mm
β = 95.635 (10)°
Data collection top
Rigaku AFC-5R
diffractometer
2996 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.043
Tmin = 0.832, Tmax = 0.9033 standard reflections every 150 reflections
4749 measured reflections intensity decay: 0.4%
4267 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032262 parameters
wR(F2) = 0.089H-atom parameters constrained
S = 1.07Δρmax = 0.47 e Å3
4267 reflectionsΔρmin = 0.35 e Å3
Special details top

Refinement. Refinement using reflections with F2 > −10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.05885 (2)0.11461 (2)0.63043 (1)0.03864 (9)
O10.0582 (2)0.0464 (3)0.7018 (1)0.0486 (6)
O20.2308 (2)0.1338 (2)0.6746 (1)0.0477 (6)
N10.1090 (2)0.0813 (3)0.5725 (1)0.0363 (6)
N20.0631 (2)0.2649 (3)0.5482 (2)0.0409 (6)
C20.1195 (3)0.1450 (4)0.5050 (2)0.0387 (7)
C30.2194 (3)0.1224 (4)0.4512 (2)0.0474 (8)
C40.3056 (3)0.0267 (4)0.4649 (2)0.0486 (9)
C50.2987 (3)0.0417 (4)0.5348 (2)0.0425 (8)
C60.3882 (3)0.1396 (4)0.5528 (2)0.057 (1)
C70.3828 (4)0.1980 (5)0.6223 (2)0.062 (1)
C80.2884 (3)0.1644 (4)0.6768 (2)0.0534 (9)
C90.1985 (3)0.0728 (4)0.6616 (2)0.0458 (8)
C100.2007 (3)0.0094 (3)0.5898 (2)0.0391 (7)
C120.0208 (3)0.2425 (3)0.4903 (2)0.0404 (7)
C130.0154 (4)0.3061 (4)0.4196 (2)0.0487 (8)
C140.0775 (4)0.3945 (4)0.4086 (2)0.0553 (9)
C150.1649 (4)0.4264 (4)0.4684 (2)0.0531 (9)
C160.2619 (4)0.5215 (4)0.4608 (3)0.072 (1)
C170.3390 (4)0.5557 (5)0.5219 (4)0.092 (2)
C180.3237 (5)0.4990 (5)0.5931 (4)0.098 (2)
C190.2333 (4)0.4036 (4)0.6023 (3)0.075 (1)
C200.1538 (3)0.3630 (3)0.5397 (2)0.0496 (9)
C210.1731 (3)0.0774 (4)0.7297 (2)0.0401 (7)
C220.2017 (3)0.2026 (4)0.7679 (2)0.0485 (9)
C230.3229 (3)0.2311 (4)0.7931 (2)0.0530 (9)
C240.4124 (3)0.1369 (4)0.7801 (2)0.0519 (9)
C250.3840 (3)0.0112 (4)0.7418 (2)0.0503 (9)
C260.2644 (3)0.0181 (4)0.7160 (2)0.0411 (7)
H30.22630.17310.40620.0569*
H40.36890.00650.42810.0583*
H60.45120.16390.51660.0690*
H70.44270.26120.63370.0748*
H80.28640.20490.72450.0641*
H90.13570.05230.69870.0549*
H130.07540.28780.38040.0585*
H140.08310.43400.36130.0663*
H160.27250.56030.41390.0858*
H170.40290.61760.51660.1110*
H180.37580.52660.63480.1179*
H190.22450.36600.64980.0894*
H220.14080.26660.77650.0582*
H230.34290.31460.81880.0636*
H240.49290.15690.79700.0623*
H250.44520.05260.73350.0604*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0411 (1)0.0347 (1)0.0389 (1)0.0002 (1)0.0022 (1)0.0016 (1)
O10.041 (1)0.052 (1)0.051 (1)0.003 (1)0.002 (1)0.011 (1)
O20.047 (1)0.038 (1)0.055 (1)0.007 (1)0.009 (1)0.006 (1)
N10.038 (1)0.036 (1)0.035 (1)0.004 (1)0.004 (1)0.003 (1)
N20.042 (2)0.034 (1)0.046 (2)0.003 (1)0.001 (1)0.001 (1)
C20.041 (2)0.041 (2)0.035 (2)0.007 (1)0.006 (1)0.005 (1)
C30.047 (2)0.059 (2)0.035 (2)0.002 (2)0.002 (1)0.002 (2)
C40.042 (2)0.063 (2)0.040 (2)0.001 (2)0.002 (2)0.008 (2)
C50.038 (2)0.044 (2)0.046 (2)0.003 (2)0.006 (1)0.006 (2)
C60.043 (2)0.068 (3)0.060 (2)0.011 (2)0.001 (2)0.003 (2)
C70.053 (2)0.062 (3)0.073 (3)0.015 (2)0.012 (2)0.007 (2)
C80.051 (2)0.055 (2)0.055 (2)0.001 (2)0.009 (2)0.008 (2)
C90.043 (2)0.048 (2)0.046 (2)0.004 (2)0.001 (2)0.002 (2)
C100.036 (2)0.037 (2)0.045 (2)0.007 (1)0.008 (1)0.005 (1)
C120.046 (2)0.035 (2)0.041 (2)0.007 (1)0.005 (1)0.005 (1)
C130.060 (2)0.048 (2)0.039 (2)0.005 (2)0.005 (2)0.001 (2)
C140.070 (3)0.048 (2)0.051 (2)0.002 (2)0.017 (2)0.001 (2)
C150.052 (2)0.034 (2)0.074 (3)0.003 (2)0.014 (2)0.000 (2)
C160.060 (3)0.048 (2)0.109 (4)0.006 (2)0.021 (3)0.012 (2)
C170.058 (3)0.048 (3)0.168 (6)0.013 (2)0.005 (3)0.029 (3)
C180.085 (4)0.054 (3)0.143 (5)0.027 (3)0.052 (3)0.031 (3)
C190.080 (3)0.044 (2)0.092 (3)0.015 (2)0.032 (3)0.021 (2)
C200.044 (2)0.030 (2)0.073 (3)0.003 (1)0.003 (2)0.003 (2)
C210.040 (2)0.045 (2)0.034 (2)0.001 (1)0.001 (1)0.002 (1)
C220.049 (2)0.050 (2)0.046 (2)0.005 (2)0.002 (2)0.008 (2)
C230.056 (2)0.050 (2)0.051 (2)0.003 (2)0.001 (2)0.009 (2)
C240.049 (2)0.053 (2)0.052 (2)0.004 (2)0.007 (2)0.005 (2)
C250.045 (2)0.050 (2)0.055 (2)0.009 (2)0.001 (2)0.001 (2)
C260.049 (2)0.037 (2)0.037 (2)0.005 (1)0.000 (1)0.002 (1)
Geometric parameters (Å, º) top
Pd1—O11.987 (2)C12—C131.402 (5)
Pd1—O21.990 (2)C13—C141.353 (6)
Pd1—N12.055 (3)C13—H130.930
Pd1—N22.047 (3)C14—C151.398 (5)
O1—C211.349 (4)C14—H140.930
O2—C261.355 (4)C15—C161.417 (6)
N1—C21.340 (4)C15—C201.420 (6)
N1—C101.386 (4)C16—C171.354 (7)
N2—C121.334 (4)C16—H160.930
N2—C201.386 (4)C17—C181.402 (9)
C2—C31.405 (4)C17—H170.930
C2—C121.472 (5)C18—C191.369 (7)
C3—C41.355 (5)C18—H180.930
C3—H30.930C19—C201.403 (6)
C4—C51.398 (5)C19—H190.930
C4—H40.930C21—C221.389 (5)
C5—C61.416 (5)C21—C261.395 (5)
C5—C101.419 (4)C22—C231.396 (5)
C6—C71.350 (6)C22—H220.930
C6—H60.930C23—C241.369 (5)
C7—C81.389 (5)C23—H230.930
C7—H70.930C24—C251.394 (5)
C8—C91.366 (5)C24—H240.930
C8—H80.930C25—C261.383 (5)
C9—C101.410 (5)C25—H250.930
C9—H90.930
Pd1···C3i3.288 (4)C3···C26i3.254 (5)
Pd1···C2i3.555 (3)C3···C21i3.336 (5)
O1···C13i3.281 (4)C3···C17iii3.380 (6)
O1···C3i3.471 (4)C4···C26i3.323 (5)
O2···C4i3.093 (4)C4···C6iv3.532 (5)
O2···C8ii3.276 (4)C8···C26v3.561 (5)
O2···C3i3.298 (4)C13···C20iii3.596 (5)
O1—Pd1—O283.19 (9)C2—C12—C13121.8 (3)
O1—Pd1—N198.19 (10)C12—C13—C14119.7 (3)
O1—Pd1—N2173.8 (1)C12—C13—H13120.1
O2—Pd1—N1172.1 (1)C14—C13—H13120.1
O2—Pd1—N297.49 (10)C13—C14—C15120.0 (4)
N1—Pd1—N280.3 (1)C13—C14—H14120.0
Pd1—O1—C21109.9 (2)C15—C14—H14120.0
Pd1—O2—C26109.9 (2)C14—C15—C16122.5 (4)
Pd1—N1—C2112.0 (2)C14—C15—C20118.4 (3)
Pd1—N1—C10128.9 (2)C16—C15—C20119.1 (4)
C2—N1—C10118.6 (3)C15—C16—C17119.8 (5)
Pd1—N2—C12112.2 (2)C15—C16—H16120.1
Pd1—N2—C20127.8 (2)C17—C16—H16120.1
C12—N2—C20118.5 (3)C16—C17—C18120.8 (5)
N1—C2—C3122.4 (3)C16—C17—H17119.6
N1—C2—C12116.3 (3)C18—C17—H17119.6
C3—C2—C12121.3 (3)C17—C18—C19121.0 (5)
C2—C3—C4119.8 (3)C17—C18—H18119.5
C2—C3—H3120.1C19—C18—H18119.5
C4—C3—H3120.1C18—C19—C20119.5 (5)
C3—C4—C5119.6 (3)C18—C19—H19120.2
C3—C4—H4120.2C20—C19—H19120.2
C5—C4—H4120.2N2—C20—C15120.5 (3)
C4—C5—C6121.8 (3)N2—C20—C19120.0 (4)
C4—C5—C10119.0 (3)C15—C20—C19119.5 (3)
C6—C5—C10119.2 (3)O1—C21—C22121.8 (3)
C5—C6—C7120.5 (3)O1—C21—C26117.6 (3)
C5—C6—H6119.8C22—C21—C26120.5 (3)
C7—C6—H6119.8C21—C22—C23119.2 (3)
C6—C7—C8120.5 (4)C21—C22—H22120.4
C6—C7—H7119.7C23—C22—H22120.4
C8—C7—H7119.7C22—C23—C24120.3 (3)
C7—C8—C9121.1 (4)C22—C23—H23119.8
C7—C8—H8119.4C24—C23—H23119.9
C9—C8—H8119.4C23—C24—C25120.7 (3)
C8—C9—C10120.2 (3)C23—C24—H24119.7
C8—C9—H9119.9C25—C24—H24119.7
C10—C9—H9119.9C24—C25—C26119.7 (3)
N1—C10—C5120.4 (3)C24—C25—H25120.2
N1—C10—C9121.2 (3)C26—C25—H25120.2
C5—C10—C9118.5 (3)O2—C26—C21117.2 (3)
N2—C12—C2115.6 (3)O2—C26—C25123.0 (3)
N2—C12—C13122.5 (3)C21—C26—C25119.7 (3)
Pd1—O1—C21—C22166.0 (3)C2—N1—C10—C54.6 (5)
Pd1—O1—C21—C2611.1 (3)C2—N1—C10—C9176.1 (3)
Pd1—O2—C26—C219.5 (4)C2—C3—C4—C54.5 (5)
Pd1—O2—C26—C25167.5 (3)C2—C12—N2—C20175.6 (3)
Pd1—N1—C2—C3171.4 (3)C2—C12—C13—C14179.6 (3)
Pd1—N1—C2—C129.4 (4)C3—C2—N1—C100.4 (5)
Pd1—N1—C10—C5165.7 (2)C3—C2—C12—C136.5 (5)
Pd1—N1—C10—C913.7 (5)C3—C4—C5—C6178.2 (4)
Pd1—N2—C12—C217.1 (4)C3—C4—C5—C100.4 (5)
Pd1—N2—C12—C13162.4 (3)C4—C3—C2—C12176.6 (3)
Pd1—N2—C20—C15158.3 (3)C4—C5—C6—C7176.3 (4)
Pd1—N2—C20—C1923.8 (5)C4—C5—C10—C9176.4 (3)
O1—Pd1—O2—C2612.0 (2)C5—C6—C7—C80.9 (6)
O1—Pd1—N1—C2159.8 (2)C5—C10—C9—C80.8 (5)
O1—Pd1—N1—C1011.0 (3)C6—C5—C10—C92.2 (5)
O1—C21—C22—C23177.7 (3)C6—C7—C8—C90.6 (6)
O1—C21—C26—O21.1 (4)C7—C6—C5—C102.3 (6)
O1—C21—C26—C25178.2 (3)C7—C8—C9—C100.6 (6)
O2—Pd1—O1—C2112.6 (2)C10—N1—C2—C12178.8 (3)
O2—Pd1—N2—C12155.2 (2)C12—N2—C20—C156.8 (5)
O2—Pd1—N2—C2010.6 (3)C12—N2—C20—C19171.2 (3)
O2—C26—C21—C22176.1 (3)C12—C13—C14—C152.6 (6)
O2—C26—C25—C24176.0 (3)C13—C12—N2—C204.9 (5)
N1—Pd1—O1—C21159.6 (2)C13—C14—C15—C16178.0 (4)
N1—Pd1—N2—C1217.1 (2)C13—C14—C15—C200.6 (6)
N1—Pd1—N2—C20177.1 (3)C14—C15—C16—C17175.5 (4)
N1—C2—C3—C44.2 (5)C14—C15—C20—C19173.8 (4)
N1—C2—C12—N25.2 (4)C15—C16—C17—C180.5 (7)
N1—C2—C12—C13174.3 (3)C15—C20—C19—C183.0 (6)
N1—C10—C5—C44.2 (5)C16—C15—C20—C194.8 (6)
N1—C10—C5—C6177.1 (3)C16—C17—C18—C192.4 (7)
N1—C10—C9—C8178.5 (3)C17—C16—C15—C203.1 (6)
N2—Pd1—O2—C26161.8 (2)C17—C18—C19—C200.7 (7)
N2—Pd1—N1—C214.2 (2)C21—C22—C23—C240.1 (5)
N2—Pd1—N1—C10175.1 (3)C21—C26—C25—C241.0 (5)
N2—C12—C2—C3174.0 (3)C22—C21—C26—C251.0 (5)
N2—C12—C13—C140.2 (5)C22—C23—C24—C250.1 (6)
N2—C20—C15—C144.1 (5)C23—C22—C21—C260.6 (5)
N2—C20—C15—C16177.2 (3)C23—C24—C25—C260.5 (5)
N2—C20—C19—C18179.1 (4)C23—C24—C25—C260.5 (5)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+3/2; (iii) x, y+1, z+1; (iv) x1, y, z+1; (v) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Pd(C6H4O2)(C18H12N2)]
Mr470.81
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.042 (2), 9.487 (2), 17.796 (2)
β (°) 95.635 (10)
V3)1855.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.832, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
4749, 4267, 2996
Rint0.043
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.07
No. of reflections4267
No. of parameters262
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.35

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 2000), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976).

Comparative selected geometric parameters (Å, °) top
(I)(II)i
Pd1—O11.987 (2)1.992 (4)
Pd1—O21.990 (2)1.982 (4)
Pd1—N12.055 (3)2.039 (4)
Pd1—N22.047 (2)2.037 (4)
O1—Pd1—O283.19 (9)83.6 (2)
O1—Pd1—N198.19 (10)98.4 (2)
O1—Pd1—N2173.8 (1)171.1 (2)
O2—Pd1—N1172.1 (1)174.4 (2)
O2—Pd1—N297.49 (10)97.0 (2)
N1—Pd1—N280.3 (1)80.3 (2)
Note: (i) Okabe et al. (2004).
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds