Download citation
Download citation
link to html
In the title compound, C20H20O6, the biphenyl twist angle is 48.2 (1)°. All three ester groups are planar and they make dihedral angles of 63.6 (1), 56.8 (1) and 41.6 (1)° with the attached benzene ring. C—H...O inter­actions contribute to both mol­ecular and crystal stability.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805029090/is6115sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805029090/is6115Isup2.hkl
Contains datablock I

CCDC reference: 287602

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.074
  • wR factor = 0.217
  • Data-to-parameter ratio = 18.4

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.56 Ratio PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for C14
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.62 Ratio PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C20 H20 O6
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Compounds with an aromatic–aromatic bond, i.e. a single bond between aromatic rings such as phenyl rings, and their derivatives with extended structures (oligomers and polymers) have received considerable interest owing to their intriguing structural motifs and unique electroconductive, nonlinear optical and luminescence properties (Kovacic & Jones, 1987; Tour, 1996). The interest in the study of biphenyl derivatives is one of looking for the hydrogen bonding and C—H···O interactions in aromatic compounds (Dobson & Gerkin, 1999c) and the influence of the hydrogen bonding substituents on such interactions. The structural analysis of the title compound, (I), was undertaken in order to look for hydrogen bonds, if any, and the C—H···O interactions that make up for the stability.

The angles in phenyl ring A range from 117.6 (2) to 121.6 (2)° and in B from 117.4 (2) to 121.8 (3)°, deviating from 120°, a feature that is also observed in decachlorobiphenyl (Pedersen, 1975). All other distances and angles fall within normal limits (Table 1). In the ethyl ester, atom C15 deviates from the mean-square ester plane by 1.119 (1) Å. The dihedral angle between the two rings comprising the biphenyl core, the biphenyl twist angle, is 48.2 (1)° (Fig. 1). The deviation from orthogonality could be attributed to the absence of the hydrogen-bonding substituent in the ortho position of the second phenyl ring. For hydrogen-bonding substituents in the ortho position, the twist angles in the literature are 87.3 (1)° (Dobson & Gerkin, 1999a) and 87.5 (2)° (Dobson & Gerkin, 1999b). When there is no hydrogen-bonding substitutent in the ortho position, the twist angle [36.3 (1)°] deviates from orthogonality as evidenced by Sutherland & Rawas (1983). The twist angle of the present compound is comparable to that of the two polymorphic structures with the absence of ortho substitution in the second ring (Subbiah Pandi et al., 2002).

The non-H atoms of the ester group lie very nearly in a plane. The ester planes O1/C13/O2/C14/C15, O3/C16/O4/C17 and O5/C18/O6/C19 are inclined at angles of 63.6 (1)°, 56.8 (1)° and 41.6 (1)°, respectively, to ring A. The two methyl ester planes are very nearly orthogonal [89.1 (1) and 89.0 (1)°] to ring B and are oriented at an angle of 52.5 (1)° to each other. The ethyl ester plane makes a dihedral angle of 68.8 (1)° with ring B, 35.2 (2)° with the first methyl ester and 82.2 (1)° with the second methyl ester.

In addition to the van der Waals forces, the crystal packing is further stabilized by C—H···O hydrogen bonds. Atom C17 of the methoxycarbonyl group interacts with atom O3 at (−1/2 + x, 1/2 − y, −1/2 + z), which generates a C—H···O interaction in a chain motif C(5) along the c axis (Fig. 2).

Experimental top

A mixture of DMF (dimethyl formamide)–DMA (dimethyl acetal) (2.5 mmol) and β-phenylethyl crotanate (1 mmol) was refluxed for 4 h and then cooled to 333 K. DMAD (dimethyl acetylene dicarboxilate) (1.5 mmol) was added and the reaction was continued for another 30 min. The compound was recrystallized using an ethyl acetate and hexane mixture (1:1) to afford good quality crystals.

Refinement top

The H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å, and with Uiso(H) values of 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atom.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing of (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines, and H atoms not involved in hydrogen bonding have been omitted.
2-Ethyl 3,4-dimethyl 4'-methylbiphenyl-2,3,4-tricarboxylate top
Crystal data top
C20H20O6F(000) = 752
Mr = 356.36Dx = 1.266 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3056 reflections
a = 6.7650 (6) Åθ = 2.4–27.9°
b = 23.8952 (19) ŵ = 0.09 mm1
c = 12.0094 (10) ÅT = 293 K
β = 105.670 (1)°Block, colourless
V = 1869.2 (3) Å30.23 × 0.21 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3295 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 28.0°, θmin = 1.7°
ω scansh = 88
21287 measured reflectionsk = 3130
4398 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.217H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1204P)2 + 0.2698P]
where P = (Fo2 + 2Fc2)/3
4398 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H20O6V = 1869.2 (3) Å3
Mr = 356.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.7650 (6) ŵ = 0.09 mm1
b = 23.8952 (19) ÅT = 293 K
c = 12.0094 (10) Å0.23 × 0.21 × 0.19 mm
β = 105.670 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3295 reflections with I > 2σ(I)
21287 measured reflectionsRint = 0.025
4398 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.217H-atom parameters constrained
S = 1.09Δρmax = 0.32 e Å3
4398 reflectionsΔρmin = 0.20 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.2520 (3)0.20486 (7)0.75542 (15)0.0735 (5)
O21.1006 (3)0.13339 (7)0.64428 (14)0.0740 (5)
O30.9915 (3)0.23666 (8)0.96656 (15)0.0865 (6)
O40.8275 (2)0.20413 (6)0.79192 (12)0.0589 (4)
O50.9565 (4)0.12263 (10)1.19172 (16)0.0965 (7)
O60.7289 (3)0.15045 (9)1.03081 (15)0.0787 (5)
C11.2643 (3)0.07016 (9)0.86501 (19)0.0562 (5)
C21.1657 (3)0.12252 (8)0.84392 (17)0.0526 (5)
C31.0524 (3)0.14307 (9)0.91630 (17)0.0527 (5)
C41.0355 (3)0.11120 (9)1.01143 (18)0.0571 (5)
C51.1356 (3)0.06035 (10)1.0330 (2)0.0646 (6)
H51.12870.03961.09740.077*
C61.2453 (3)0.03998 (10)0.9609 (2)0.0644 (6)
H61.30850.00520.97640.077*
C71.3942 (3)0.04745 (9)0.79344 (19)0.0574 (5)
C81.3752 (4)0.00794 (10)0.7560 (2)0.0688 (6)
H81.27600.03070.77330.083*
C91.5020 (4)0.02946 (11)0.6936 (2)0.0763 (7)
H91.48650.06660.66990.092*
C101.6505 (4)0.00265 (12)0.6655 (2)0.0716 (7)
C111.6690 (4)0.05744 (12)0.7018 (2)0.0720 (7)
H111.76750.08010.68340.086*
C121.5440 (3)0.07979 (10)0.7652 (2)0.0647 (6)
H121.56090.11690.78900.078*
C131.1810 (3)0.15853 (9)0.74366 (18)0.0556 (5)
C141.0986 (6)0.16402 (14)0.5388 (2)0.0992 (11)
H14A1.14640.20200.55730.119*
H14B1.18750.14590.49850.119*
C150.8881 (9)0.1641 (3)0.4673 (4)0.186 (3)
H15A0.83140.12720.46580.279*
H15B0.88510.17530.39010.279*
H15C0.80850.18990.49880.279*
C160.9555 (3)0.20011 (9)0.89624 (17)0.0555 (5)
C170.7308 (4)0.25823 (11)0.7612 (2)0.0767 (7)
H17A0.64270.26620.80990.115*
H17B0.65110.25760.68180.115*
H17C0.83450.28660.77150.115*
C180.9069 (4)0.12911 (10)1.0888 (2)0.0629 (6)
C190.5938 (5)0.17025 (13)1.0980 (3)0.0863 (8)
H19A0.54620.13901.13390.129*
H19B0.47840.18921.04800.129*
H19C0.66740.19561.15660.129*
C201.7892 (5)0.02138 (16)0.5980 (3)0.1012 (11)
H20A1.88090.00720.58570.152*
H20B1.70760.03490.52470.152*
H20C1.86740.05170.64070.152*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0883 (12)0.0572 (9)0.0785 (11)0.0153 (8)0.0285 (9)0.0105 (8)
O20.0986 (13)0.0649 (10)0.0539 (9)0.0087 (9)0.0129 (9)0.0102 (7)
O30.1146 (15)0.0699 (11)0.0614 (10)0.0028 (10)0.0004 (10)0.0107 (8)
O40.0630 (9)0.0591 (9)0.0490 (8)0.0046 (7)0.0056 (6)0.0052 (6)
O50.1218 (17)0.1114 (17)0.0569 (11)0.0112 (13)0.0251 (11)0.0199 (10)
O60.0628 (10)0.1073 (14)0.0641 (10)0.0014 (9)0.0137 (8)0.0097 (9)
C10.0432 (10)0.0577 (12)0.0607 (12)0.0073 (8)0.0023 (9)0.0123 (9)
C20.0464 (10)0.0535 (11)0.0514 (11)0.0102 (8)0.0020 (8)0.0095 (8)
C30.0471 (10)0.0560 (11)0.0479 (10)0.0100 (8)0.0005 (8)0.0068 (8)
C40.0504 (11)0.0652 (13)0.0493 (11)0.0144 (9)0.0025 (9)0.0087 (9)
C50.0559 (12)0.0716 (14)0.0593 (13)0.0095 (10)0.0039 (10)0.0255 (11)
C60.0508 (11)0.0617 (13)0.0742 (15)0.0004 (10)0.0054 (11)0.0237 (11)
C70.0467 (10)0.0568 (12)0.0598 (12)0.0016 (9)0.0007 (9)0.0112 (9)
C80.0596 (13)0.0618 (14)0.0751 (15)0.0035 (10)0.0013 (11)0.0157 (11)
C90.0815 (17)0.0641 (14)0.0699 (15)0.0112 (13)0.0023 (13)0.0015 (11)
C100.0604 (13)0.0893 (18)0.0549 (13)0.0139 (12)0.0020 (10)0.0057 (12)
C110.0536 (12)0.0894 (18)0.0684 (15)0.0093 (12)0.0084 (11)0.0004 (13)
C120.0521 (11)0.0662 (14)0.0725 (14)0.0106 (10)0.0113 (11)0.0029 (11)
C130.0548 (11)0.0547 (12)0.0573 (12)0.0019 (9)0.0152 (9)0.0085 (9)
C140.155 (3)0.089 (2)0.0556 (15)0.000 (2)0.0315 (18)0.0127 (13)
C150.156 (5)0.291 (8)0.102 (3)0.031 (5)0.017 (3)0.091 (4)
C160.0579 (11)0.0585 (12)0.0472 (11)0.0092 (9)0.0092 (9)0.0032 (9)
C170.0837 (17)0.0708 (15)0.0722 (15)0.0205 (13)0.0154 (13)0.0156 (12)
C180.0693 (14)0.0611 (13)0.0557 (13)0.0177 (10)0.0126 (11)0.0058 (10)
C190.0812 (17)0.0902 (19)0.093 (2)0.0099 (15)0.0332 (15)0.0198 (15)
C200.095 (2)0.133 (3)0.0725 (18)0.037 (2)0.0159 (16)0.0019 (17)
Geometric parameters (Å, º) top
O1—C131.200 (3)C8—H80.9300
O2—C131.316 (3)C9—C101.377 (4)
O2—C141.459 (3)C9—H90.9300
O3—C161.193 (3)C10—C111.375 (4)
O4—C161.320 (2)C10—C201.509 (4)
O4—C171.451 (3)C11—C121.389 (4)
O5—C181.200 (3)C11—H110.9300
O6—C181.320 (3)C12—H120.9300
O6—C191.452 (3)C14—C151.450 (6)
C1—C61.394 (3)C14—H14A0.9700
C1—C21.408 (3)C14—H14B0.9700
C1—C71.488 (3)C15—H15A0.9600
C2—C31.395 (3)C15—H15B0.9600
C2—C131.506 (3)C15—H15C0.9600
C3—C41.403 (3)C17—H17A0.9600
C3—C161.504 (3)C17—H17B0.9600
C4—C51.381 (3)C17—H17C0.9600
C4—C181.496 (4)C19—H19A0.9600
C5—C61.373 (4)C19—H19B0.9600
C5—H50.9300C19—H19C0.9600
C6—H60.9300C20—H20A0.9600
C7—C121.387 (3)C20—H20B0.9600
C7—C81.393 (3)C20—H20C0.9600
C8—C91.381 (4)
C13—O2—C14117.6 (2)O1—C13—O2125.6 (2)
C16—O4—C17116.2 (2)O1—C13—C2123.0 (2)
C18—O6—C19117.0 (2)O2—C13—C2111.32 (18)
C6—C1—C2117.6 (2)C15—C14—O2107.0 (3)
C6—C1—C7119.3 (2)C15—C14—H14A110.3
C2—C1—C7123.03 (18)O2—C14—H14A110.3
C3—C2—C1120.94 (18)C15—C14—H14B110.3
C3—C2—C13117.73 (18)O2—C14—H14B110.3
C1—C2—C13121.3 (2)H14A—C14—H14B108.6
C2—C3—C4119.7 (2)C14—C15—H15A109.5
C2—C3—C16120.58 (18)C14—C15—H15B109.5
C4—C3—C16119.6 (2)H15A—C15—H15B109.5
C5—C4—C3119.1 (2)C14—C15—H15C109.5
C5—C4—C18118.21 (19)H15A—C15—H15C109.5
C3—C4—C18122.6 (2)H15B—C15—H15C109.5
C6—C5—C4121.0 (2)O3—C16—O4125.1 (2)
C6—C5—H5119.5O3—C16—C3123.6 (2)
C4—C5—H5119.5O4—C16—C3111.34 (17)
C5—C6—C1121.6 (2)O4—C17—H17A109.5
C5—C6—H6119.2O4—C17—H17B109.5
C1—C6—H6119.2H17A—C17—H17B109.5
C12—C7—C8117.4 (2)O4—C17—H17C109.5
C12—C7—C1121.5 (2)H17A—C17—H17C109.5
C8—C7—C1121.0 (2)H17B—C17—H17C109.5
C9—C8—C7120.8 (2)O5—C18—O6123.7 (2)
C9—C8—H8119.6O5—C18—C4123.7 (2)
C7—C8—H8119.6O6—C18—C4112.52 (19)
C10—C9—C8121.8 (3)O6—C19—H19A109.5
C10—C9—H9119.1O6—C19—H19B109.5
C8—C9—H9119.1H19A—C19—H19B109.5
C11—C10—C9117.6 (2)O6—C19—H19C109.5
C11—C10—C20121.0 (3)H19A—C19—H19C109.5
C9—C10—C20121.4 (3)H19B—C19—H19C109.5
C10—C11—C12121.5 (2)C10—C20—H20A109.5
C10—C11—H11119.2C10—C20—H20B109.5
C12—C11—H11119.2H20A—C20—H20B109.5
C7—C12—C11120.9 (2)C10—C20—H20C109.5
C7—C12—H12119.6H20A—C20—H20C109.5
C11—C12—H12119.6H20B—C20—H20C109.5
C6—C1—C2—C30.4 (3)C8—C9—C10—C20179.5 (2)
C7—C1—C2—C3177.32 (18)C9—C10—C11—C120.5 (4)
C6—C1—C2—C13178.86 (19)C20—C10—C11—C12179.2 (2)
C7—C1—C2—C131.9 (3)C8—C7—C12—C110.2 (3)
C1—C2—C3—C40.2 (3)C1—C7—C12—C11177.7 (2)
C13—C2—C3—C4179.42 (17)C10—C11—C12—C70.5 (4)
C1—C2—C3—C16177.27 (17)C14—O2—C13—O10.5 (4)
C13—C2—C3—C162.0 (3)C14—O2—C13—C2178.1 (2)
C2—C3—C4—C51.4 (3)C3—C2—C13—O159.1 (3)
C16—C3—C4—C5176.08 (19)C1—C2—C13—O1120.2 (2)
C2—C3—C4—C18176.49 (18)C3—C2—C13—O2118.6 (2)
C16—C3—C4—C186.1 (3)C1—C2—C13—O262.1 (2)
C3—C4—C5—C62.1 (3)C13—O2—C14—C15126.1 (4)
C18—C4—C5—C6175.9 (2)C17—O4—C16—O32.2 (3)
C4—C5—C6—C11.6 (3)C17—O4—C16—C3177.66 (19)
C2—C1—C6—C50.3 (3)C2—C3—C16—O3121.6 (3)
C7—C1—C6—C5176.75 (19)C4—C3—C16—O355.8 (3)
C6—C1—C7—C12129.3 (2)C2—C3—C16—O458.3 (2)
C2—C1—C7—C1247.6 (3)C4—C3—C16—O4124.3 (2)
C6—C1—C7—C848.2 (3)C19—O6—C18—O54.2 (4)
C2—C1—C7—C8134.9 (2)C19—O6—C18—C4178.8 (2)
C12—C7—C8—C90.2 (3)C5—C4—C18—O540.7 (3)
C1—C7—C8—C9177.3 (2)C3—C4—C18—O5141.4 (2)
C7—C8—C9—C100.3 (4)C5—C4—C18—O6136.4 (2)
C8—C9—C10—C110.1 (4)C3—C4—C18—O641.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O3i0.962.523.473 (3)171
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H20O6
Mr356.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.7650 (6), 23.8952 (19), 12.0094 (10)
β (°) 105.670 (1)
V3)1869.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.21 × 0.19
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21287, 4398, 3295
Rint0.025
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.217, 1.09
No. of reflections4398
No. of parameters239
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.20

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003), SHELXL97.

Selected geometric parameters (Å, º) top
O2—C131.316 (3)O4—C171.451 (3)
O2—C141.459 (3)O6—C181.320 (3)
O4—C161.320 (2)O6—C191.452 (3)
C13—O2—C14117.6 (2)C10—C9—C8121.8 (3)
C16—O4—C17116.2 (2)C11—C10—C9117.6 (2)
C18—O6—C19117.0 (2)C10—C11—C12121.5 (2)
C6—C1—C2117.6 (2)O1—C13—O2125.6 (2)
C5—C6—C1121.6 (2)O3—C16—O4125.1 (2)
C12—C7—C8117.4 (2)O5—C18—O6123.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···O3i0.962.523.473 (3)171
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds