Download citation
Download citation
link to html
The crystal structure of the title compound, C18H15Cl2N3O, shows that the Cl atoms take part in inter­molecular C—H...Cl inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805029624/jh6017sup1.cif
Contains datablocks I, 50808a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805029624/jh6017Isup2.hkl
Contains datablock I

CCDC reference: 287615

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.034
  • wR factor = 0.094
  • Data-to-parameter ratio = 13.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Schiff base ligands derived from 4-aminoantipyrine, such as thenoyltrifluoroacetone and 4-hydroxy-3-methoxybenzaldehyde, have been reported (Yu et al., 2002; Diao et al., 2005), which show the synthesis and crystal structure. In the present study, we report the synthesis and structure of the title compound, (I).

In (I) (Fig. 1), the central system (C7–C10/N1–N3/O1) is planar, with an r.m.s. deviation of fitted atoms of 0.0776 Å, and the dihedral angle with the phenyl ring (C13–C18) is 55.98 (6)°. The 2,4-dichlorobenzene group (C1–C7/Cl1/Cl2) is planar, with an r.m.s. deviation of fitted atoms of 0.0192 Å, and the dihedral angle to the central system is 24.25 (5)°. The Cl atoms participate in C—H···Cl interactions (Table 2).

Experimental top

An anhydrous ethanol solution of 2,4-dichlorobenzaldehyde (1.75 g, 10 mmol) was added to an anhydrous ethanol solution of 4-amino-1,5-dimethyl-2-phenylpyrazolidin-3-one (2.03 g, 10 mmol), and the mixture was stirred at 350 K for 5 h under nitrogen. A yellow precipitate appeared. The product was isolated, recrystallized from ethanol and then dried in vacuo to give pure compound (I) in 78% yield. Bright-yellow single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution of (I).

Refinement top

H atoms were included in calculated positions and refined using a riding-model approximation [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic CH; C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl CH3].

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the title compound, with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Intermolecular hydrogen-bonding interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted.
(I) top
Crystal data top
C18H15Cl2N3OF(000) = 744
Mr = 360.23Dx = 1.426 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.4236 (7) ÅCell parameters from 3316 reflections
b = 7.3711 (5) Åθ = 2.9–25.3°
c = 24.5011 (18) ŵ = 0.40 mm1
β = 99.693 (1)°T = 294 K
V = 1677.6 (2) Å3Block, yellow
Z = 40.44 × 0.32 × 0.24 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2935 independent reflections
Radiation source: fine-focus sealed tube2235 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1111
Tmin = 0.802, Tmax = 0.909k = 88
8814 measured reflectionsl = 2629
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.3505P]
where P = (Fo2 + 2Fc2)/3
2935 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C18H15Cl2N3OV = 1677.6 (2) Å3
Mr = 360.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.4236 (7) ŵ = 0.40 mm1
b = 7.3711 (5) ÅT = 294 K
c = 24.5011 (18) Å0.44 × 0.32 × 0.24 mm
β = 99.693 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2935 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2235 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 0.909Rint = 0.022
8814 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.08Δρmax = 0.19 e Å3
2935 reflectionsΔρmin = 0.29 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.44691 (6)0.05518 (7)1.06469 (2)0.06103 (19)
Cl20.81732 (6)0.27063 (10)1.22497 (2)0.0750 (2)
C110.0882 (2)0.8016 (3)0.98549 (9)0.0506 (5)
H11A0.12370.89690.96480.076*
H11B0.14850.79121.02110.076*
H11C0.00850.82900.99030.076*
N10.03425 (16)0.4330 (2)0.88548 (6)0.0409 (4)
N20.00620 (16)0.5959 (2)0.90848 (6)0.0401 (4)
N30.28447 (15)0.4723 (2)1.01440 (6)0.0382 (4)
C10.46740 (19)0.3109 (2)1.07464 (7)0.0373 (4)
C20.5203 (2)0.1435 (3)1.09530 (8)0.0423 (5)
C30.6284 (2)0.1288 (3)1.14104 (8)0.0506 (5)
H30.66360.01601.15380.061*
C40.6822 (2)0.2856 (3)1.16710 (8)0.0483 (5)
C50.6326 (2)0.4533 (3)1.14840 (8)0.0476 (5)
H50.66980.55791.16670.057*
C60.5271 (2)0.4646 (3)1.10224 (8)0.0432 (5)
H60.49500.57831.08920.052*
C70.35588 (19)0.3251 (2)1.02526 (7)0.0391 (4)
H70.33680.22621.00160.047*
C80.18082 (18)0.4828 (2)0.96690 (7)0.0354 (4)
C90.08972 (19)0.6280 (2)0.95513 (7)0.0370 (4)
C100.14472 (19)0.3513 (2)0.92327 (7)0.0385 (4)
O10.19010 (15)0.19821 (18)0.91639 (6)0.0526 (4)
C120.0797 (2)0.7352 (3)0.87217 (9)0.0567 (6)
H12A0.12330.82120.89370.085*
H12B0.15280.68010.84530.085*
H12C0.01150.79630.85360.085*
C130.0674 (2)0.3308 (2)0.84841 (7)0.0401 (4)
C140.0177 (2)0.2350 (3)0.80691 (8)0.0522 (5)
H140.07830.24340.80270.063*
C150.1117 (3)0.1268 (3)0.77185 (9)0.0634 (6)
H150.07880.06150.74400.076*
C160.2532 (3)0.1153 (3)0.77790 (9)0.0634 (6)
H160.31600.04110.75440.076*
C170.3025 (2)0.2133 (3)0.81859 (9)0.0609 (6)
H170.39920.20740.82190.073*
C180.2097 (2)0.3205 (3)0.85452 (8)0.0502 (5)
H180.24290.38490.88250.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0749 (4)0.0349 (3)0.0688 (4)0.0005 (2)0.0010 (3)0.0033 (2)
Cl20.0586 (4)0.1057 (5)0.0524 (3)0.0053 (3)0.0145 (3)0.0102 (3)
C110.0579 (13)0.0362 (11)0.0545 (12)0.0072 (9)0.0000 (10)0.0071 (9)
N10.0411 (9)0.0369 (8)0.0417 (9)0.0088 (7)0.0021 (7)0.0070 (7)
N20.0436 (9)0.0316 (8)0.0421 (9)0.0093 (7)0.0016 (7)0.0014 (7)
N30.0379 (8)0.0362 (9)0.0382 (8)0.0043 (7)0.0002 (7)0.0002 (7)
C10.0360 (10)0.0365 (10)0.0390 (10)0.0048 (8)0.0053 (8)0.0031 (8)
C20.0441 (11)0.0368 (11)0.0453 (11)0.0026 (8)0.0057 (9)0.0035 (8)
C30.0493 (12)0.0500 (12)0.0504 (12)0.0101 (10)0.0020 (10)0.0131 (10)
C40.0374 (11)0.0660 (14)0.0395 (11)0.0035 (10)0.0009 (9)0.0073 (10)
C50.0431 (11)0.0498 (12)0.0481 (12)0.0034 (9)0.0020 (9)0.0044 (10)
C60.0432 (11)0.0365 (11)0.0483 (11)0.0039 (8)0.0029 (9)0.0014 (9)
C70.0399 (10)0.0358 (10)0.0396 (10)0.0026 (8)0.0005 (8)0.0016 (8)
C80.0366 (10)0.0320 (9)0.0363 (10)0.0034 (8)0.0029 (8)0.0003 (7)
C90.0394 (10)0.0306 (9)0.0396 (10)0.0012 (8)0.0028 (8)0.0003 (8)
C100.0371 (10)0.0357 (10)0.0407 (10)0.0055 (8)0.0014 (8)0.0004 (8)
O10.0561 (9)0.0393 (8)0.0568 (9)0.0165 (7)0.0064 (7)0.0112 (6)
C120.0669 (14)0.0482 (13)0.0505 (13)0.0213 (11)0.0036 (11)0.0082 (10)
C130.0437 (11)0.0380 (10)0.0350 (10)0.0044 (8)0.0039 (8)0.0001 (8)
C140.0519 (12)0.0560 (13)0.0465 (12)0.0063 (10)0.0020 (10)0.0098 (10)
C150.0748 (17)0.0605 (15)0.0508 (13)0.0085 (12)0.0014 (12)0.0173 (11)
C160.0762 (17)0.0577 (14)0.0479 (13)0.0105 (12)0.0138 (12)0.0039 (11)
C170.0474 (12)0.0814 (17)0.0491 (13)0.0108 (12)0.0056 (10)0.0055 (12)
C180.0468 (12)0.0630 (14)0.0387 (11)0.0011 (10)0.0015 (9)0.0008 (10)
Geometric parameters (Å, º) top
Cl1—C21.735 (2)C5—H50.9300
Cl2—C41.742 (2)C6—H60.9300
C11—C91.481 (3)C7—H70.9300
C11—H11A0.9600C8—C91.372 (2)
C11—H11B0.9600C8—C101.440 (2)
C11—H11C0.9600C10—O11.229 (2)
N1—N21.406 (2)C12—H12A0.9600
N1—C101.407 (2)C12—H12B0.9600
N1—C131.420 (2)C12—H12C0.9600
N2—C91.353 (2)C13—C181.377 (3)
N2—C121.456 (2)C13—C141.383 (3)
N3—C71.281 (2)C14—C151.379 (3)
N3—C81.390 (2)C14—H140.9300
C1—C61.389 (3)C15—C161.369 (3)
C1—C21.394 (3)C15—H150.9300
C1—C71.467 (2)C16—C171.374 (3)
C2—C31.386 (3)C16—H160.9300
C3—C41.375 (3)C17—C181.380 (3)
C3—H30.9300C17—H170.9300
C4—C51.373 (3)C18—H180.9300
C5—C61.377 (3)
C9—C11—H11A109.5C9—C8—N3123.10 (16)
C9—C11—H11B109.5C9—C8—C10107.91 (15)
H11A—C11—H11B109.5N3—C8—C10128.97 (16)
C9—C11—H11C109.5N2—C9—C8110.28 (15)
H11A—C11—H11C109.5N2—C9—C11120.91 (16)
H11B—C11—H11C109.5C8—C9—C11128.81 (17)
N2—N1—C10108.80 (14)O1—C10—N1122.62 (16)
N2—N1—C13120.67 (14)O1—C10—C8132.50 (17)
C10—N1—C13122.58 (15)N1—C10—C8104.87 (15)
C9—N2—N1107.46 (13)N2—C12—H12A109.5
C9—N2—C12125.05 (16)N2—C12—H12B109.5
N1—N2—C12119.41 (15)H12A—C12—H12B109.5
C7—N3—C8119.45 (15)N2—C12—H12C109.5
C6—C1—C2117.03 (17)H12A—C12—H12C109.5
C6—C1—C7121.27 (16)H12B—C12—H12C109.5
C2—C1—C7121.69 (17)C18—C13—C14120.56 (18)
C3—C2—C1122.12 (18)C18—C13—N1121.62 (16)
C3—C2—Cl1117.99 (15)C14—C13—N1117.77 (17)
C1—C2—Cl1119.87 (15)C15—C14—C13119.5 (2)
C4—C3—C2118.27 (19)C15—C14—H14120.3
C4—C3—H3120.9C13—C14—H14120.3
C2—C3—H3120.9C16—C15—C14120.2 (2)
C5—C4—C3121.57 (18)C16—C15—H15119.9
C5—C4—Cl2119.31 (17)C14—C15—H15119.9
C3—C4—Cl2119.12 (16)C15—C16—C17120.0 (2)
C4—C5—C6119.14 (19)C15—C16—H16120.0
C4—C5—H5120.4C17—C16—H16120.0
C6—C5—H5120.4C16—C17—C18120.6 (2)
C5—C6—C1121.87 (18)C16—C17—H17119.7
C5—C6—H6119.1C18—C17—H17119.7
C1—C6—H6119.1C13—C18—C17119.10 (19)
N3—C7—C1120.66 (17)C13—C18—H18120.4
N3—C7—H7119.7C17—C18—H18120.4
C1—C7—H7119.7
C10—N1—N2—C98.62 (19)C12—N2—C9—C1124.1 (3)
C13—N1—N2—C9158.31 (16)N3—C8—C9—N2175.64 (16)
C10—N1—N2—C12158.89 (17)C10—C8—C9—N22.7 (2)
C13—N1—N2—C1251.4 (2)N3—C8—C9—C115.3 (3)
C6—C1—C2—C30.4 (3)C10—C8—C9—C11176.38 (19)
C7—C1—C2—C3178.23 (17)N2—N1—C10—O1172.16 (17)
C6—C1—C2—Cl1177.69 (14)C13—N1—C10—O123.2 (3)
C7—C1—C2—Cl13.6 (2)N2—N1—C10—C86.80 (19)
C1—C2—C3—C41.2 (3)C13—N1—C10—C8155.80 (16)
Cl1—C2—C3—C4176.92 (15)C9—C8—C10—O1176.2 (2)
C2—C3—C4—C50.8 (3)N3—C8—C10—O12.0 (3)
C2—C3—C4—Cl2179.59 (14)C9—C8—C10—N12.63 (19)
C3—C4—C5—C60.4 (3)N3—C8—C10—N1179.17 (17)
Cl2—C4—C5—C6179.18 (15)N2—N1—C13—C1835.2 (3)
C4—C5—C6—C11.3 (3)C10—N1—C13—C18110.3 (2)
C2—C1—C6—C50.8 (3)N2—N1—C13—C14147.44 (18)
C7—C1—C6—C5179.52 (17)C10—N1—C13—C1467.1 (2)
C8—N3—C7—C1179.09 (15)C18—C13—C14—C150.7 (3)
C6—C1—C7—N318.1 (3)N1—C13—C14—C15176.71 (19)
C2—C1—C7—N3163.25 (17)C13—C14—C15—C160.4 (4)
C7—N3—C8—C9173.14 (17)C14—C15—C16—C170.7 (4)
C7—N3—C8—C104.8 (3)C15—C16—C17—C181.6 (4)
N1—N2—C9—C87.0 (2)C14—C13—C18—C170.1 (3)
C12—N2—C9—C8155.10 (18)N1—C13—C18—C17177.43 (19)
N1—N2—C9—C11172.20 (17)C16—C17—C18—C131.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.932.313.005 (2)131
C6—H6···Cl1i0.932.793.703 (2)168
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H15Cl2N3O
Mr360.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)9.4236 (7), 7.3711 (5), 24.5011 (18)
β (°) 99.693 (1)
V3)1677.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.44 × 0.32 × 0.24
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.802, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
8814, 2935, 2235
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.094, 1.08
No. of reflections2935
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.29

Computer programs: SMART (Bruker, 1999), SMART, SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) top
Cl1—C21.735 (2)N3—C71.281 (2)
Cl2—C41.742 (2)N3—C81.390 (2)
N1—N21.406 (2)
N2—N1—C10108.80 (14)C9—N2—C12125.05 (16)
N2—N1—C13120.67 (14)N1—N2—C12119.41 (15)
C10—N1—C13122.58 (15)C7—N3—C8119.45 (15)
C9—N2—N1107.46 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.932.313.005 (2)131.0
C6—H6···Cl1i0.932.793.703 (2)168.4
Symmetry code: (i) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds