Download citation
Download citation
link to html
The title compound, C25H28O6, β-mangostin, is a xanthone which was isolated from Cratoxylum formosum ssp. pruniforum. O—H...O and C—H...O intra­molecular hydrogen bonds are observed in the mol­ecular structure. In the crystal packing, inversion-related mol­ecules are stacked along the a axis with C—H...π and π–π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805042303/ci6734sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805042303/ci6734Isup2.hkl
Contains datablock I

CCDC reference: 296718

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.043
  • wR factor = 0.140
  • Data-to-parameter ratio = 19.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT142_ALERT_4_C su on b - Axis Small or Missing (x 100000) ..... 10 Ang. PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C16 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

In our search for bioactive compounds from medicinal plants, we have investigated Cratoxylum formosum ssp. pruniflorum, which has been used for traditional medicine in Southeast Asia (Usher et al., 1984). The main components of this plant are xanthones and anthraquinones. We have previously reported the crystal structures of an anthraquinone and xanthones which were isolated from this plant, viz 3-O-(geranyl)anthraquinone (Boonnak, Chantrapromma, Fun, Anjum et al., 2005), xanthone V1 (Chantrapromma et al., 2005), prunifloxanthone A (Boonnak, Chantrapromma, Fun & Karalai, 2005) and macluraxanthone (Fun et al., 2006). The title compound, (I), β-mangostin, is another xanthone which is a secondary metabolite occurring in this plant. It has previously been isolated from Garcinia mangostana (Asai et al., 1995) and Cratoxylum cochinchinense (Nguyen & Harrison, 1999). Compound (I) has exhibited cytotoxicity against human leukaemia HL 60 cells (Matsumoto et al., 2003) and has antiproliferative effects against human colon cancer DLD-1 cells (Matsumoto et al., 2005).

The present single-crystal structure determination of (I) is part of our on-going search for bioactive compounds from Thai medicinal plants (Chantrapromma et al., 2003, 2004, 2005; Boonnak, Chantrapromma, Fun, Anjum et al., 2005; Boonnak, Chantrapromma, Fun & Karalai, 2005; Fun et al., 2005, 2006). The structure-activity relationship (SAR) of xanthone derivatives will be investigated further.

The molecular structure of (I) is shown in Fig. 1, and selected bond distances and angles are given in Table 1. The bond distances and angles show normal values (Allen et al., 1987) and are comparable with those in closely related structures (Boonnak, Chantrapromma, Fun & Chatchanok, 2005; Chantrapromma et al., 2005; Fun et al., 2006).

The xanthene ring system of (I) (C1–C13/O3) is almost planar, with all atoms lying within 0.088 (1) Å of the mean plane. The dihedral angle between the two benzene rings of xanthene is 3.97 (5)°. The two hydroxyl groups are each coplanar with the attached rings. The methoxy group attached at atom C3 is coplanar with the xanthene ring system, with a C20—O6—C3—C2 torsion angle of 179.94 (11)°, while the other methoxy group attached at atom C12 is twisted away, with a C19–O5–C12–C11 torsion angle of −94.83 (13)°, indicating a (-)-anticlinal conformation (Fig. 1).

The two 3-methylbut-2-enyl substituents are attached to the xanthene ring system at C2 and C13; the torsion angles C1–C2–C21–C22 and C12–C13–C14—C15 are 100.42 (13) and 98.57 (12)°, respectively, both indicating a (+)-anticlinal conformation (Fig. 1). The attachment of the two 3-methylbut-2-enyl substituents is different from that observed in prunifloxanthone A (Boonnak, Chantrapromma, Fun & Karalai, 2005), in which one of them is in a (+)-anticlinal conformation and the other in a (-)-anticlinal conformation. This is due to the attachment of a methoxy group at atom C12 in (I) compared with a hydroxyl group attached at the same position in prunifloxanthone A. We expect that these differences would affect the bioactivities of these compounds.

O1—H1O1···O2 and O4—H1O4···O5 intramolecular hydrogen bonds generate S(6) and S(5) ring motifs, respectively (Bernstein et al., 1995). There are also intramolecular C—H···O interactions present: C14—H14A···O2 generates an S(6) ring motif, C14—H14B···O5 generates an S(5) ring motif and C21—H21B···O1 generates an S(5) ring motif (Table 2). The crystal structure is stabilized by C—H···π interactions involving the C8–C13 benzene ring (centroid Cg1). The xanthene ring systems of inversion-related molecules are stacked in such a way that the centroids of the O3/C5–C9 ring at (x, y, z) and the C1–C6 benzene ring at (1 − x,-y,1 − z) are 3.5697 (6) Å apart, indicating significant ππ interaction (Fig. 2).

Experimental top

Air-dried roots of C. formosum ssp. pruniflorum (4 kg) were ground and extracted with hexane and CH2Cl2 (2 × 20 l for each solvent) for 5 d at room temperature. The residue obtained after evaporation of the solvent was subjected to quick column chromatography over silica gel and eluted with a gradient of EtOAc–hexane to afford ten fractions (F1–F10). Fraction F2 was separated by column chromatography (CC) and eluted with 100% CH2Cl2 to afford four fractions (2 A–two-dimensional). Fraction 2 A was further purified by CC with 30% EtOAc–hexane to give compound (I). Compound (I) was recrystallized from CHCl3–CH3OH (4:1 v/v) to yield, after several days, yellow needle-shaped single-crystals (m.p. 445–447 K).

Refinement top

Atom H1O4 was located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H = 0.82 Å and C—H = 0.93–0.97 Å. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for hydroxyl and methyl H atoms, and 1.2Ueq for the remaining H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines.
1,6-Dihydroxy-3,7-dimethoxy-2,8-bis(3-methyl-2-butenyl)-9H-xanthen-9-one top
Crystal data top
C25H28O6Z = 2
Mr = 424.27F(000) = 452
Triclinic, P1Dx = 1.309 Mg m3
Hall symbol: -P 1Melting point = 445–447 K
a = 7.8938 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1976 (1) ÅCell parameters from 5720 reflections
c = 13.7937 (2) Åθ = 1.5–29.0°
α = 79.311 (1)°µ = 0.09 mm1
β = 80.926 (1)°T = 100 K
γ = 87.850 (1)°Needle, yellow
V = 1077.40 (2) Å30.50 × 0.28 × 0.23 mm
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
5720 independent reflections
Radiation source: fine-focus sealed tube4623 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 8.33 pixels mm-1θmax = 29.0°, θmin = 1.5°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1313
Tmin = 0.969, Tmax = 0.979l = 1818
16706 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0749P)2 + 0.1769P]
where P = (Fo2 + 2Fc2)/3
5720 reflections(Δ/σ)max = 0.001
291 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C25H28O6γ = 87.850 (1)°
Mr = 424.27V = 1077.40 (2) Å3
Triclinic, P1Z = 2
a = 7.8938 (1) ÅMo Kα radiation
b = 10.1976 (1) ŵ = 0.09 mm1
c = 13.7937 (2) ÅT = 100 K
α = 79.311 (1)°0.50 × 0.28 × 0.23 mm
β = 80.926 (1)°
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
5720 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4623 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.979Rint = 0.018
16706 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.30 e Å3
5720 reflectionsΔρmin = 0.21 e Å3
291 parameters
Special details top

Experimental. The data were collected with the Oxford Cyrosystem Cobra low-temperature attachment

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.56817 (13)0.26595 (9)0.33464 (7)0.0476 (2)
H1O10.54920.31110.37860.071*
O20.56808 (13)0.32975 (9)0.50530 (7)0.0502 (2)
O30.78715 (11)0.03314 (8)0.59857 (6)0.03704 (19)
O40.78030 (14)0.03519 (10)0.92394 (7)0.0510 (3)
H1O40.753 (3)0.096 (2)0.9588 (17)0.093 (7)*
O50.63229 (11)0.27839 (9)0.88553 (6)0.0429 (2)
O60.78391 (12)0.15344 (9)0.28254 (7)0.0458 (2)
C10.64106 (14)0.14889 (11)0.37044 (8)0.0334 (2)
C20.67944 (14)0.05629 (11)0.30825 (8)0.0340 (2)
C30.75272 (14)0.06629 (11)0.34706 (8)0.0347 (2)
C40.78828 (15)0.09603 (11)0.44443 (8)0.0360 (2)
H40.83630.17780.46890.043*
C50.74976 (14)0.00012 (11)0.50364 (8)0.0318 (2)
C60.67570 (14)0.12306 (10)0.47054 (8)0.0314 (2)
C70.63607 (14)0.22030 (11)0.53537 (8)0.0336 (2)
C80.67746 (13)0.18158 (10)0.63669 (8)0.0310 (2)
C90.74985 (14)0.05417 (11)0.66330 (8)0.0319 (2)
C100.79042 (15)0.00587 (11)0.75780 (8)0.0367 (2)
H100.84490.07640.77190.044*
C110.74791 (15)0.08299 (12)0.83007 (8)0.0364 (2)
C120.67072 (14)0.20900 (11)0.80712 (8)0.0341 (2)
C130.64127 (13)0.26295 (11)0.71148 (8)0.0322 (2)
C140.58846 (15)0.40903 (11)0.68901 (9)0.0372 (2)
H14A0.50230.42030.64510.045*
H14B0.53950.43860.75040.045*
C150.74385 (16)0.49067 (11)0.63991 (9)0.0403 (3)
H150.78170.48740.57300.048*
C160.83292 (17)0.56687 (12)0.68156 (11)0.0458 (3)
C170.9924 (2)0.63696 (16)0.62400 (16)0.0701 (5)
H17A1.00840.62170.55650.105*
H17B1.08980.60280.65480.105*
H17C0.98060.73100.62400.105*
C180.7855 (3)0.5911 (2)0.78640 (13)0.0748 (5)
H18A0.69850.52920.82190.112*
H18B0.74260.68070.78520.112*
H18C0.88500.57900.81930.112*
C190.4588 (2)0.25895 (19)0.93526 (12)0.0634 (4)
H19A0.43550.31490.98470.095*
H19B0.44330.16720.96690.095*
H19C0.38160.28180.88740.095*
C200.8581 (2)0.27955 (14)0.31634 (11)0.0526 (3)
H20A0.87010.33170.26440.079*
H20B0.78540.32540.37420.079*
H20C0.96890.26670.33330.079*
C210.64444 (15)0.08650 (12)0.20152 (8)0.0378 (2)
H21A0.59710.00780.18590.045*
H21B0.55930.15740.19520.045*
C220.80319 (16)0.12797 (13)0.12721 (8)0.0392 (3)
H220.88110.06040.11410.047*
C230.84422 (17)0.25062 (14)0.07827 (9)0.0446 (3)
C241.0069 (2)0.27493 (18)0.00411 (12)0.0635 (4)
H24A1.06980.19260.00320.095*
H24B1.07570.33880.02300.095*
H24C0.97870.30880.06120.095*
C250.7399 (2)0.37381 (15)0.09134 (12)0.0612 (4)
H25A0.63510.34940.13580.092*
H25B0.71390.41860.02770.092*
H25C0.80400.43230.11880.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0666 (6)0.0390 (5)0.0400 (4)0.0147 (4)0.0180 (4)0.0089 (4)
O20.0737 (7)0.0352 (5)0.0473 (5)0.0175 (4)0.0243 (5)0.0132 (4)
O30.0483 (5)0.0312 (4)0.0346 (4)0.0075 (3)0.0122 (3)0.0102 (3)
O40.0758 (7)0.0458 (5)0.0335 (4)0.0075 (5)0.0161 (4)0.0079 (4)
O50.0478 (5)0.0472 (5)0.0367 (4)0.0008 (4)0.0032 (4)0.0178 (4)
O60.0559 (5)0.0439 (5)0.0427 (5)0.0091 (4)0.0109 (4)0.0202 (4)
C10.0345 (5)0.0323 (5)0.0334 (5)0.0003 (4)0.0060 (4)0.0055 (4)
C20.0330 (5)0.0373 (6)0.0324 (5)0.0029 (4)0.0045 (4)0.0080 (4)
C30.0337 (5)0.0366 (5)0.0360 (5)0.0013 (4)0.0033 (4)0.0134 (4)
C40.0398 (6)0.0315 (5)0.0385 (5)0.0051 (4)0.0076 (5)0.0104 (4)
C50.0320 (5)0.0320 (5)0.0322 (5)0.0008 (4)0.0057 (4)0.0073 (4)
C60.0328 (5)0.0300 (5)0.0325 (5)0.0007 (4)0.0058 (4)0.0078 (4)
C70.0363 (5)0.0298 (5)0.0363 (5)0.0010 (4)0.0080 (4)0.0081 (4)
C80.0313 (5)0.0297 (5)0.0334 (5)0.0004 (4)0.0059 (4)0.0083 (4)
C90.0328 (5)0.0296 (5)0.0346 (5)0.0003 (4)0.0055 (4)0.0092 (4)
C100.0425 (6)0.0318 (5)0.0368 (5)0.0026 (4)0.0100 (5)0.0064 (4)
C110.0402 (6)0.0377 (6)0.0322 (5)0.0037 (4)0.0071 (4)0.0066 (4)
C120.0341 (5)0.0353 (5)0.0347 (5)0.0031 (4)0.0033 (4)0.0120 (4)
C130.0288 (5)0.0323 (5)0.0371 (5)0.0010 (4)0.0045 (4)0.0106 (4)
C140.0388 (6)0.0338 (5)0.0422 (6)0.0059 (4)0.0087 (5)0.0140 (4)
C150.0479 (7)0.0301 (5)0.0426 (6)0.0043 (5)0.0037 (5)0.0092 (4)
C160.0453 (7)0.0333 (6)0.0588 (8)0.0013 (5)0.0135 (6)0.0034 (5)
C170.0550 (9)0.0444 (8)0.1042 (14)0.0088 (7)0.0070 (9)0.0009 (8)
C180.0985 (14)0.0741 (11)0.0615 (10)0.0284 (10)0.0253 (9)0.0210 (8)
C190.0572 (9)0.0776 (11)0.0538 (8)0.0012 (8)0.0113 (7)0.0247 (8)
C200.0613 (8)0.0436 (7)0.0587 (8)0.0121 (6)0.0116 (7)0.0246 (6)
C210.0381 (6)0.0438 (6)0.0339 (5)0.0022 (5)0.0085 (4)0.0104 (4)
C220.0410 (6)0.0463 (6)0.0316 (5)0.0022 (5)0.0070 (4)0.0099 (5)
C230.0470 (7)0.0507 (7)0.0367 (6)0.0043 (5)0.0069 (5)0.0086 (5)
C240.0582 (9)0.0731 (10)0.0523 (8)0.0146 (8)0.0031 (7)0.0003 (7)
C250.0781 (11)0.0452 (8)0.0587 (9)0.0021 (7)0.0056 (8)0.0091 (6)
Geometric parameters (Å, º) top
O1—C11.3489 (13)C14—H14B0.97
O1—H1O10.82C15—C161.3274 (18)
O2—C71.2488 (13)C15—H150.93
O3—C51.3663 (13)C16—C181.499 (2)
O3—C91.3670 (12)C16—C171.506 (2)
O4—C111.3566 (14)C17—H17A0.96
O4—H1O40.85 (2)C17—H17B0.96
O5—C121.3881 (13)C17—H17C0.96
O5—C191.4348 (18)C18—H18A0.96
O6—C31.3602 (13)C18—H18B0.96
O6—C201.4217 (16)C18—H18C0.96
C1—C21.3844 (15)C19—H19A0.96
C1—C61.4246 (15)C19—H19B0.96
C2—C31.4067 (16)C19—H19C0.96
C2—C211.5140 (15)C20—H20A0.96
C3—C41.3914 (16)C20—H20B0.96
C4—C51.3846 (15)C20—H20C0.96
C4—H40.93C21—C221.5078 (17)
C5—C61.3924 (15)C21—H21A0.97
C6—C71.4484 (14)C21—H21B0.97
C7—C81.4647 (15)C22—C231.3316 (18)
C8—C91.4081 (14)C22—H220.93
C8—C131.4288 (14)C23—C251.499 (2)
C9—C101.3878 (15)C23—C241.5074 (19)
C10—C111.3749 (16)C24—H24A0.96
C10—H100.93C24—H24B0.96
C11—C121.4049 (16)C24—H24C0.96
C12—C131.3838 (15)C25—H25A0.96
C13—C141.5205 (15)C25—H25B0.96
C14—C151.5039 (17)C25—H25C0.96
C14—H14A0.97
C1—O1—H1O1109.5C14—C15—H15116.4
C5—O3—C9120.03 (8)C15—C16—C18124.13 (13)
C11—O4—H1O4107.9 (15)C15—C16—C17120.94 (14)
C12—O5—C19112.64 (10)C18—C16—C17114.93 (14)
C3—O6—C20118.14 (10)C16—C17—H17A109.5
O1—C1—C2118.57 (10)C16—C17—H17B109.5
O1—C1—C6119.72 (10)H17A—C17—H17B109.5
C2—C1—C6121.71 (10)C16—C17—H17C109.5
C1—C2—C3118.00 (10)H17A—C17—H17C109.5
C1—C2—C21120.94 (10)H17B—C17—H17C109.5
C3—C2—C21121.07 (10)C16—C18—H18A109.5
O6—C3—C4122.87 (10)C16—C18—H18B109.5
O6—C3—C2114.84 (10)H18A—C18—H18B109.5
C4—C3—C2122.28 (10)C16—C18—H18C109.5
C5—C4—C3117.78 (10)H18A—C18—H18C109.5
C5—C4—H4121.1H18B—C18—H18C109.5
C3—C4—H4121.1O5—C19—H19A109.5
O3—C5—C4115.82 (9)O5—C19—H19B109.5
O3—C5—C6121.11 (9)H19A—C19—H19B109.5
C4—C5—C6123.07 (10)O5—C19—H19C109.5
C5—C6—C1117.16 (10)H19A—C19—H19C109.5
C5—C6—C7121.22 (9)H19B—C19—H19C109.5
C1—C6—C7121.62 (9)O6—C20—H20A109.5
O2—C7—C6120.73 (10)O6—C20—H20B109.5
O2—C7—C8122.92 (10)H20A—C20—H20B109.5
C6—C7—C8116.34 (9)O6—C20—H20C109.5
C9—C8—C13118.07 (9)H20A—C20—H20C109.5
C9—C8—C7118.04 (9)H20B—C20—H20C109.5
C13—C8—C7123.83 (9)C22—C21—C2112.75 (9)
O3—C9—C10113.79 (9)C22—C21—H21A109.0
O3—C9—C8123.23 (9)C2—C21—H21A109.0
C10—C9—C8122.97 (10)C22—C21—H21B109.0
C11—C10—C9118.17 (10)C2—C21—H21B109.0
C11—C10—H10120.9H21A—C21—H21B107.8
C9—C10—H10120.9C23—C22—C21127.21 (12)
O4—C11—C10119.05 (10)C23—C22—H22116.4
O4—C11—C12120.54 (10)C21—C22—H22116.4
C10—C11—C12120.40 (10)C22—C23—C25124.85 (13)
C13—C12—O5122.03 (10)C22—C23—C24120.62 (13)
C13—C12—C11122.14 (10)C25—C23—C24114.52 (13)
O5—C12—C11115.78 (10)C23—C24—H24A109.5
C12—C13—C8117.97 (10)C23—C24—H24B109.5
C12—C13—C14118.56 (10)H24A—C24—H24B109.5
C8—C13—C14123.21 (10)C23—C24—H24C109.5
C15—C14—C13108.98 (9)H24A—C24—H24C109.5
C15—C14—H14A109.9H24B—C24—H24C109.5
C13—C14—H14A109.9C23—C25—H25A109.5
C15—C14—H14B109.9C23—C25—H25B109.5
C13—C14—H14B109.9H25A—C25—H25B109.5
H14A—C14—H14B108.3C23—C25—H25C109.5
C16—C15—C14127.13 (12)H25A—C25—H25C109.5
C16—C15—H15116.4H25B—C25—H25C109.5
O1—C1—C2—C3178.93 (10)C5—O3—C9—C81.87 (16)
C6—C1—C2—C30.71 (17)C13—C8—C9—O3178.85 (9)
O1—C1—C2—C211.41 (17)C7—C8—C9—O31.74 (16)
C6—C1—C2—C21178.95 (10)C13—C8—C9—C101.36 (17)
C20—O6—C3—C40.80 (18)C7—C8—C9—C10178.47 (10)
C20—O6—C3—C2179.94 (11)O3—C9—C10—C11176.04 (10)
C1—C2—C3—O6178.76 (10)C8—C9—C10—C114.15 (18)
C21—C2—C3—O61.58 (16)C9—C10—C11—O4177.40 (11)
C1—C2—C3—C40.50 (17)C9—C10—C11—C122.07 (17)
C21—C2—C3—C4179.16 (10)C19—O5—C12—C1387.73 (14)
O6—C3—C4—C5179.47 (10)C19—O5—C12—C1194.83 (13)
C2—C3—C4—C50.27 (17)O4—C11—C12—C13177.68 (11)
C9—O3—C5—C4178.43 (9)C10—C11—C12—C132.86 (18)
C9—O3—C5—C60.85 (16)O4—C11—C12—O50.25 (16)
C3—C4—C5—O3179.84 (9)C10—C11—C12—O5179.71 (10)
C3—C4—C5—C60.88 (17)O5—C12—C13—C8177.12 (9)
O3—C5—C6—C1179.91 (9)C11—C12—C13—C85.61 (17)
C4—C5—C6—C10.68 (17)O5—C12—C13—C148.53 (16)
O3—C5—C6—C70.19 (16)C11—C12—C13—C14168.74 (10)
C4—C5—C6—C7179.42 (10)C9—C8—C13—C123.47 (15)
O1—C1—C6—C5179.49 (10)C7—C8—C13—C12173.45 (10)
C2—C1—C6—C50.15 (16)C9—C8—C13—C14170.59 (10)
O1—C1—C6—C70.61 (17)C7—C8—C13—C1412.48 (17)
C2—C1—C6—C7179.75 (10)C12—C13—C14—C1598.57 (12)
C5—C6—C7—O2179.28 (11)C8—C13—C14—C1575.46 (13)
C1—C6—C7—O20.83 (18)C13—C14—C15—C16103.65 (14)
C5—C6—C7—C80.26 (16)C14—C15—C16—C183.8 (2)
C1—C6—C7—C8179.84 (9)C14—C15—C16—C17176.53 (12)
O2—C7—C8—C9178.35 (11)C1—C2—C21—C22100.42 (13)
C6—C7—C8—C90.64 (15)C3—C2—C21—C2279.23 (14)
O2—C7—C8—C131.42 (18)C2—C21—C22—C23104.99 (14)
C6—C7—C8—C13177.57 (10)C21—C22—C23—C252.4 (2)
C5—O3—C9—C10178.33 (9)C21—C22—C23—C24178.49 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.821.822.5558 (13)148
O4—H1O4···O50.85 (2)2.21 (2)2.6994 (14)117 (2)
C14—H14A···O20.972.272.8283 (15)116
C14—H14B···O50.972.432.8573 (15)106
C18—H18A···O50.962.593.413 (2)144
C21—H21B···O10.972.402.8103 (15)105
C20—H20C···Cg1i0.962.843.6661 (16)144
C21—H21A···Cg1ii0.972.843.5627 (13)132
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC25H28O6
Mr424.27
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.8938 (1), 10.1976 (1), 13.7937 (2)
α, β, γ (°)79.311 (1), 80.926 (1), 87.850 (1)
V3)1077.40 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.28 × 0.23
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.969, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
16706, 5720, 4623
Rint0.018
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.140, 1.06
No. of reflections5720
No. of parameters291
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.21

Computer programs: APEX2 (Bruker, 2005), APEX2, SAINT (Bruker, 2005), SHELXTL (Sheldrick, 1998), SHELXTL and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
O1—C11.3489 (13)O5—C191.4348 (18)
O2—C71.2488 (13)O6—C31.3602 (13)
O3—C51.3663 (13)O6—C201.4217 (16)
O3—C91.3670 (12)C15—C161.3274 (18)
O4—C111.3566 (14)C22—C231.3316 (18)
O5—C121.3881 (13)
C12—O5—C19112.64 (10)C3—O6—C20118.14 (10)
O1—C1—C2—C3178.93 (10)C19—O5—C12—C1387.73 (14)
C20—O6—C3—C40.80 (18)O4—C11—C12—C13177.68 (11)
C21—C2—C3—C4179.16 (10)C11—C12—C13—C14168.74 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.821.822.5558 (13)148
O4—H1O4···O50.85 (2)2.21 (2)2.6994 (14)117 (2)
C14—H14A···O20.972.272.8283 (15)116
C14—H14B···O50.972.432.8573 (15)106
C18—H18A···O50.962.593.413 (2)144
C21—H21B···O10.972.402.8103 (15)105
C20—H20C···Cg1i0.962.843.6661 (16)144
C21—H21A···Cg1ii0.972.843.5627 (13)132
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds