Download citation
Download citation
link to html
In the title compound, C13H12F3N5O2, intra­molecular N—H...F, N—H...N, C—H...O and C—H...N hydrogen bonds, and π–π stacking interactions generate a columnar structure along the a axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805040997/kp6072sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805040997/kp6072Isup2.hkl
Contains datablock I

CCDC reference: 296598

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C)= 0.004 Å
  • R factor = 0.061
  • wR factor = 0.131
  • Data-to-parameter ratio = 13.3

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

It is well known that substituted ureas containing a triazine group exhibit remarkable bioactivities such as herbicidal (Baumeister, et al., 1994), plant-growth regulatory (Douglass & Moon, 1987), antitubercular (Patel, et al., 2003) and antibacterial activity against Staphylococcus aureus and Escherichia coli (Patel, et al., 2003). We report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1 and the selected bond lengths and angles are given in Table 1. The dihedral angle between the planes of the 1,3,5-triazine and trifluorophenyl fragments is 10.1 (2)°. Four intramolecular hydrogen bonds, N—H···F, N—H···N, C—H···O and C—H···N (Desiraju & Steiner, 1999), are observed in the molecule (Table 2, Fig 1). In the crystal structure, the molecules are stacked along the a axis, forming a columnar structure (Fig. 2). In the column, the interplanar distance of 3.35 (9) Å between benzene rings suggests ππ stacking interactions;this is shorter than the 'π-cloud thickness' (3.42 Å; Pauling, 1960).

Experimental top

4-Methoxy-N,6-dimethyl-1,3,5-triazin-2-amine (1.54 g, 10 mmol) was added to an anhydrous acetonitrile solution of 2,3,4-trifluorophenyl isocyanate (1.91 g, 10 mmol), and the mixture was stirred at 333 K for 3 h under nitrogen. A colourless precipatate was isolated, recrystallized from ethyl acetate–hexane mixture (3: 1 v/v) and dried in vacuo to give a pure compound in 86.2% yield. Colourless needle-like single crystals (m.p. 425–426 K) suitable for X-ray analysis were obtained by slow evaporation of a methanol solution. Analysis calculated for C13H12F3N5O2: C47.71%, H3.70%, N21.40%; found: C47.74, H3.68, N21.45%.

Refinement top

All H atoms were placed in calculated positions and were refined isotropically, with Uiso(H) values constrained to 1.2Ueq(C, N), using a riding model, with C—H = 0.93–0.96 Å and N—H = 0.82 Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids. Intramolecular hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. A packing diagram for (I), with a pronounced column along the a axisa realised by ππ stacking.
N-(4-Methoxy-6-methyl-1,3,5-triazin-2-yl)-N-methyl-N'-(2,3,4- trifluorophenyl)urea top
Crystal data top
C13H12F3N5O2Z = 4
Mr = 327.28F(000) = 672
Monoclinic, P21/cDx = 1.504 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 4.4215 (9) ŵ = 0.13 mm1
b = 17.836 (4) ÅT = 291 K
c = 18.337 (4) ÅNeedle, colourless
β = 91.55 (3)°0.20 × 0.18 × 0.18 mm
V = 1445.6 (5) Å3
Data collection top
Bruker SMART EPEX CCD area-detector
diffractometer
2853 independent reflections
Radiation source: sealed tube2004 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 55
Tmin = 0.97, Tmax = 0.98k = 2122
7065 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.05P)2 + 0.66P]
where P = (Fo2 + 2Fc2)/3
2853 reflections(Δ/σ)max < 0.001
215 parametersΔρmax = 0.18 e Å3
5 restraintsΔρmin = 0.17 e Å3
Crystal data top
C13H12F3N5O2V = 1445.6 (5) Å3
Mr = 327.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.4215 (9) ŵ = 0.13 mm1
b = 17.836 (4) ÅT = 291 K
c = 18.337 (4) Å0.20 × 0.18 × 0.18 mm
β = 91.55 (3)°
Data collection top
Bruker SMART EPEX CCD area-detector
diffractometer
2853 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2004 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 0.98Rint = 0.030
7065 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0615 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
2853 reflectionsΔρmin = 0.17 e Å3
215 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.3580 (6)0.84685 (14)0.32140 (14)0.0406 (6)
C21.5591 (6)0.88786 (17)0.27943 (15)0.0487 (7)
C31.6664 (6)0.95676 (15)0.30487 (15)0.0469 (7)
C41.5759 (7)0.98402 (15)0.37179 (16)0.0514 (7)
H4A1.64841.02990.38890.062*
C51.3753 (6)0.94236 (14)0.41338 (15)0.0447 (7)
H5A1.31660.96030.45850.054*
C61.2646 (6)0.87501 (13)0.38789 (14)0.0375 (5)
C70.9725 (6)0.83402 (14)0.49500 (14)0.0396 (6)
C80.6650 (5)0.71991 (12)0.48405 (13)0.0338 (5)
C90.6187 (6)0.64629 (14)0.37602 (14)0.0414 (6)
C100.3586 (6)0.61059 (15)0.48179 (16)0.0463 (6)
C110.6924 (8)0.78659 (17)0.59864 (15)0.0567 (8)
H11A0.55520.74730.61140.085*
H11B0.59720.83430.60550.085*
H11C0.87180.78340.62920.085*
C120.7034 (7)0.63214 (17)0.30054 (15)0.0584 (8)
H12A0.65870.67560.27140.088*
H12B0.59100.59010.28160.088*
H12C0.91600.62150.29920.088*
C130.1304 (7)0.57229 (18)0.58781 (16)0.0582 (8)
H13A0.31460.56620.61610.087*
H13B0.00650.53230.59880.087*
H13C0.03930.61950.59950.087*
F11.2525 (4)0.78291 (9)0.29433 (8)0.0572 (5)
F21.6510 (5)0.86056 (11)0.21506 (9)0.0727 (6)
F31.8663 (4)0.99406 (11)0.26409 (10)0.0703 (6)
H1E1.066 (9)0.794 (2)0.395 (2)0.093 (13)*
N11.0659 (5)0.82664 (12)0.42591 (12)0.0393 (5)
N20.7756 (5)0.77826 (11)0.52014 (11)0.0396 (5)
N30.7406 (5)0.70746 (12)0.41227 (11)0.0419 (5)
N40.4283 (5)0.59705 (12)0.41078 (13)0.0497 (6)
N50.4759 (5)0.67087 (12)0.51916 (11)0.0435 (5)
O11.0486 (5)0.88538 (11)0.53478 (10)0.0605 (6)
O20.1962 (5)0.57057 (12)0.51147 (12)0.0624 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0446 (15)0.0360 (13)0.0409 (13)0.0014 (11)0.0032 (10)0.0044 (10)
C20.0457 (17)0.0573 (17)0.0431 (14)0.0115 (12)0.0015 (11)0.0110 (12)
C30.0426 (16)0.0490 (15)0.0492 (16)0.0039 (12)0.0036 (12)0.0202 (13)
C40.0546 (18)0.0369 (14)0.0627 (18)0.0168 (12)0.0017 (14)0.0009 (13)
C50.0561 (18)0.0360 (13)0.0421 (15)0.0113 (12)0.0018 (12)0.0010 (11)
C60.0334 (14)0.0323 (12)0.0464 (13)0.0006 (10)0.0069 (10)0.0010 (10)
C70.0428 (14)0.0370 (13)0.0386 (13)0.0070 (11)0.0042 (10)0.0073 (10)
C80.0368 (13)0.0260 (11)0.0388 (13)0.0026 (9)0.0021 (10)0.0036 (9)
C90.0387 (14)0.0380 (13)0.0474 (15)0.0066 (11)0.0035 (11)0.0080 (11)
C100.0474 (16)0.0370 (14)0.0545 (17)0.0041 (12)0.0005 (13)0.0037 (12)
C110.077 (2)0.0531 (17)0.0407 (15)0.0197 (15)0.0131 (14)0.0090 (13)
C120.068 (2)0.0570 (18)0.0508 (17)0.0022 (15)0.0040 (14)0.0226 (14)
C130.061 (2)0.0563 (18)0.0579 (18)0.0167 (15)0.0171 (15)0.0016 (14)
F10.0779 (13)0.0422 (9)0.0517 (10)0.0155 (8)0.0050 (8)0.0119 (7)
F20.0875 (14)0.0882 (14)0.0434 (10)0.0012 (11)0.0216 (9)0.0016 (9)
F30.0673 (12)0.0705 (12)0.0735 (12)0.0222 (10)0.0101 (9)0.0225 (9)
N10.0459 (13)0.0348 (11)0.0374 (12)0.0092 (9)0.0022 (9)0.0090 (9)
N20.0468 (13)0.0375 (11)0.0347 (11)0.0103 (9)0.0059 (9)0.0031 (9)
N30.0451 (13)0.0359 (11)0.0449 (12)0.0030 (9)0.0055 (10)0.0094 (9)
N40.0510 (15)0.0378 (12)0.0606 (15)0.0133 (10)0.0051 (11)0.0065 (10)
N50.0460 (13)0.0427 (12)0.0419 (13)0.0039 (10)0.0020 (10)0.0030 (10)
O10.0864 (16)0.0516 (12)0.0440 (11)0.0313 (11)0.0113 (10)0.0175 (9)
O20.0653 (15)0.0620 (13)0.0606 (13)0.0290 (11)0.0131 (11)0.0061 (10)
Geometric parameters (Å, º) top
C1—F11.324 (3)C9—N31.380 (3)
C1—C61.392 (4)C9—N41.384 (3)
C1—C21.398 (4)C9—C121.466 (4)
C2—F21.350 (3)C10—O21.158 (3)
C2—C31.393 (4)C10—N41.368 (4)
C3—F31.349 (3)C10—N51.369 (3)
C3—C41.389 (4)C11—N21.503 (3)
C4—C51.399 (4)C11—H11A0.9600
C4—H4A0.9300C11—H11B0.9600
C5—C61.374 (3)C11—H11C0.9600
C5—H5A0.9300C12—H12A0.9600
C6—N11.427 (3)C12—H12B0.9600
C7—O11.213 (3)C12—H12C0.9600
C7—N11.350 (3)C13—O21.438 (4)
C7—N21.408 (3)C13—H13A0.9600
C8—N21.320 (3)C13—H13B0.9600
C8—N51.381 (3)C13—H13C0.9600
C8—N31.385 (3)N1—H1E0.82 (4)
F1—C1—C6122.0 (2)N4—C10—N5121.5 (2)
F1—C1—C2117.9 (2)N2—C11—H11A109.5
C6—C1—C2120.1 (2)N2—C11—H11B109.5
F2—C2—C3120.2 (3)H11A—C11—H11B109.5
F2—C2—C1120.2 (3)N2—C11—H11C109.5
C3—C2—C1119.5 (3)H11A—C11—H11C109.5
F3—C3—C4121.7 (3)H11B—C11—H11C109.5
F3—C3—C2118.2 (3)C9—C12—H12A109.5
C4—C3—C2120.0 (2)C9—C12—H12B109.5
C3—C4—C5119.9 (2)H12A—C12—H12B109.5
C3—C4—H4A120.1C9—C12—H12C109.5
C5—C4—H4A120.1H12A—C12—H12C109.5
C6—C5—C4120.3 (3)H12B—C12—H12C109.5
C6—C5—H5A119.9O2—C13—H13A109.5
C4—C5—H5A119.9O2—C13—H13B109.5
C5—C6—C1120.1 (2)H13A—C13—H13B109.5
C5—C6—N1125.5 (2)O2—C13—H13C109.5
C1—C6—N1114.3 (2)H13A—C13—H13C109.5
O1—C7—N1123.5 (2)H13B—C13—H13C109.5
O1—C7—N2120.0 (2)C7—N1—C6127.4 (2)
N1—C7—N2116.5 (2)C7—N1—H1E137 (3)
N2—C8—N5119.1 (2)C6—N1—H1E94 (3)
N2—C8—N3120.5 (2)C8—N2—C7128.1 (2)
N5—C8—N3120.4 (2)C8—N2—C11117.5 (2)
N3—C9—N4121.0 (2)C7—N2—C11114.4 (2)
N3—C9—C12119.0 (2)C9—N3—C8118.9 (2)
N4—C9—C12120.0 (2)C10—N4—C9118.8 (2)
O2—C10—N4119.8 (3)C10—N5—C8119.3 (2)
O2—C10—N5118.7 (3)C10—O2—C13126.1 (2)
F1—C1—C2—F23.0 (4)N3—C8—N2—C70.2 (4)
C6—C1—C2—F2179.7 (2)N5—C8—N2—C111.3 (3)
F1—C1—C2—C3177.7 (2)N3—C8—N2—C11177.8 (2)
C6—C1—C2—C30.4 (4)O1—C7—N2—C8178.3 (3)
F2—C2—C3—F31.1 (4)N1—C7—N2—C81.4 (4)
C1—C2—C3—F3178.3 (2)O1—C7—N2—C113.6 (4)
F2—C2—C3—C4178.8 (3)N1—C7—N2—C11176.7 (2)
C1—C2—C3—C40.6 (4)N4—C9—N3—C81.2 (4)
F3—C3—C4—C5178.0 (3)C12—C9—N3—C8178.8 (2)
C2—C3—C4—C50.4 (4)N2—C8—N3—C9179.4 (2)
C3—C4—C5—C60.8 (4)N5—C8—N3—C91.4 (4)
C4—C5—C6—C11.8 (4)O2—C10—N4—C9178.9 (3)
C4—C5—C6—N1178.2 (3)N5—C10—N4—C90.9 (4)
F1—C1—C6—C5178.7 (2)N3—C9—N4—C101.0 (4)
C2—C1—C6—C51.6 (4)C12—C9—N4—C10178.5 (3)
F1—C1—C6—N14.4 (3)O2—C10—N5—C8178.7 (3)
C2—C1—C6—N1178.4 (2)N4—C10—N5—C81.2 (4)
O1—C7—N1—C60.5 (5)N2—C8—N5—C10179.5 (2)
N2—C7—N1—C6179.8 (2)N3—C8—N5—C101.4 (4)
C5—C6—N1—C76.4 (4)N4—C10—O2—C13172.1 (3)
C1—C6—N1—C7170.2 (3)N5—C10—O2—C138.0 (5)
N5—C8—N2—C7179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1E···F10.81 (4)2.05 (4)2.687 (3)135 (3)
N1—H1E···N30.81 (4)2.14 (4)2.575 (3)114 (3)
C5—H5A···O10.932.292.872 (3)120
C11—H11A···N50.962.192.688 (4)111

Experimental details

Crystal data
Chemical formulaC13H12F3N5O2
Mr327.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)4.4215 (9), 17.836 (4), 18.337 (4)
β (°) 91.55 (3)
V3)1445.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.20 × 0.18 × 0.18
Data collection
DiffractometerBruker SMART EPEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.97, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
7065, 2853, 2004
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.131, 1.01
No. of reflections2853
No. of parameters215
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SHELXTL (Bruker, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
C1—F11.324 (3)C8—N31.385 (3)
C2—F21.350 (3)C9—N31.380 (3)
C3—F31.349 (3)C9—N41.384 (3)
C6—N11.427 (3)C10—O21.158 (3)
C7—O11.213 (3)C10—N41.368 (4)
C7—N11.350 (3)C10—N51.369 (3)
C7—N21.408 (3)C11—N21.503 (3)
C8—N21.320 (3)C13—O21.438 (4)
C8—N51.381 (3)
O1—C7—N1123.5 (2)C8—N2—C7128.1 (2)
O1—C7—N2120.0 (2)C8—N2—C11117.5 (2)
N4—C9—C12120.0 (2)C7—N2—C11114.4 (2)
C7—N1—C6127.4 (2)C10—O2—C13126.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1E···F10.81 (4)2.05 (4)2.687 (3)135 (3)
N1—H1E···N30.81 (4)2.14 (4)2.575 (3)114 (3)
C5—H5A···O10.932.29002.872 (3)120
C11—H11A···N50.962.19002.688 (4)111
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds