Download citation
Download citation
link to html
In the structure of the title mononuclear Sn complex, [Sn(C6H5)3Cl(H2O)]·2C5H5N, the SnIV atom is coordinated in a slightly distorted trigonal–bipyramidal geometry by three phenyl C atoms, one water mol­ecule and one Cl anion. Two pyridine mol­ecules are O—H...N hydrogen bonded to the coordinated water mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805042315/lh6561sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805042315/lh6561Isup2.hkl
Contains datablock I

CCDC reference: 296610

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.019
  • wR factor = 0.049
  • Data-to-parameter ratio = 18.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Sn1 - C16 .. 5.32 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Sn1 - C22 .. 5.24 su
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 28.38 From the CIF: _reflns_number_total 5668 Count of symmetry unique reflns 3538 Completeness (_total/calc) 160.20% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2130 Fraction of Friedel pairs measured 0.602 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

In recent years, there have been many reports on the syntheses and structure determinations of various organotin(IV) compounds (e.g. Lockhart et al., 1987; Teoh et al., 1997; Basu et al., 2005). These compounds have special applications, such as as PVC stabilizers, agricultural biocides, additives for antifouling paints, and catalysts for the production of polyurethanes and silicones, and are potential antitumor agents (Thoonen et al., 2004). Furthermore, several structures of Ph3SnCl(H2O) cocrystallized with other molecules have been determined, for example 3-[2-(1,10-phenanthrolyl)]-5,6-diphenyl-1,2,4-triazine (Ladd et al., 1984), 3,4,7,8-tetramethyl-1,10-phenanthroline (Ng & Kumar Das, 1996), [N,N'-bis(3-methoxysalicylidene)propane-1,3-diamine]nickel(II) (Clarke et al., 1994), di-2-pyridylketone 2-aminobenzoylhydrazone (Lanelli et al., 1995), o-phenanthroline (Ng & Kumar Das, 1996), 2,2':6',2''-terpyridyl (Prasad et al., 1982), 18-crown-6 (Amini et al., 2003), 8-methoxyquinoline (Khoo et al., 2000) and di-2-pyridyl-2-thenoylhydrazone (Carcelli et al., 1995). In these structures, there is hydrogen bonding between the coordinated water molecule of Ph3SnCl(H2O) and the cocrystallized molecule in the structure. In this paper, we report a structure in which two pyridine molecules are hydrogen bonded to Ph3SnCl(H2O).

In the molecular structure of the title compound, (I), the Sn atom is five-coordinated in a slightly distorted trigonal-bipyramidal geometry by three C atoms of three phenyl groups in the equatorial plane, and by one Cl anion and one water molecule in the axial positions (Fig. 1). The slight distortion from the ideal trigonal-bipyramidal geometry is reflected in the O1—Sn1—Cl1 angle of 175.34 (8)°, and the three C—Sn—C angles of 116.54 (9), 119.84 (7) and 122.39 (7)°. The two pyridine molecules are connected to the coordinated water molecule through O—H···O hydrogen bonds (Fig. 1 and Table 2).

Experimental top

A mixture of Ph3SnCl (0.385 g, 0.1 mmol) and pyridine (0.198 g, 0.2 mmol) in 95% ethanol (13 ml) was stirred for 0.5 h. The mixture was then transferred and sealed into an 18 ml Teflon-lined autoclave, which was heated at 393 K for 89 h. After the mixture was cooled to room temperature, colorless blocks of the title complex were filtered off, washed with ether and dried at ambient temperature in air (yield 56% based on Sn). Analysis calculated for the title compound: C 59.88, H 4.85, N 4.99%; found: C 59.65, H 4.93, N 5.02%.

Refinement top

All H atoms bonded to C atoms were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms of the coordinated water molecule were located in a difference Fourier map and then refined isotropically.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of the structure of (I), showing displacement ellipsoids at the 30% probability level. Dashed lines indicate hydrogen bonds.
Aquachlorotriphenyltin(IV) pyridine disolvate top
Crystal data top
[Sn(C6H5)3Cl(H2O)]·2C5H5NDx = 1.389 Mg m3
Mr = 561.66Melting point: not measured K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2c -2nCell parameters from 8982 reflections
a = 15.492 (5) Åθ = 2.2–28.2°
b = 15.925 (5) ŵ = 1.07 mm1
c = 10.885 (5) ÅT = 293 K
V = 2685.4 (17) Å3Needle, colorless
Z = 40.43 × 0.13 × 0.11 mm
F(000) = 1136
Data collection top
Bruker APEX CCD area-detector
diffractometer
5668 independent reflections
Radiation source: fine-focus sealed tube5086 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1420
Tmin = 0.623, Tmax = 0.882k = 2020
15753 measured reflectionsl = 1014
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0281P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.049(Δ/σ)max = 0.002
S = 1.04Δρmax = 0.30 e Å3
5668 reflectionsΔρmin = 0.22 e Å3
307 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0062 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2299 Friedels
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.005 (16)
Crystal data top
[Sn(C6H5)3Cl(H2O)]·2C5H5NV = 2685.4 (17) Å3
Mr = 561.66Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 15.492 (5) ŵ = 1.07 mm1
b = 15.925 (5) ÅT = 293 K
c = 10.885 (5) Å0.43 × 0.13 × 0.11 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
5668 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5086 reflections with I > 2σ(I)
Tmin = 0.623, Tmax = 0.882Rint = 0.020
15753 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.049Δρmax = 0.30 e Å3
S = 1.04Δρmin = 0.22 e Å3
5668 reflectionsAbsolute structure: Flack (1983), 2299 Friedels
307 parametersAbsolute structure parameter: 0.005 (16)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.51354 (18)0.82066 (19)0.6124 (3)0.0883 (9)
H10.48450.85400.66900.106*
C20.5405 (2)0.85287 (16)0.5045 (3)0.0850 (8)
H20.53040.90890.48530.102*
C30.5825 (2)0.80206 (19)0.4246 (3)0.0785 (8)
H30.60170.82270.34950.094*
C40.59618 (16)0.72082 (16)0.4556 (2)0.0691 (6)
H40.62460.68650.39950.083*
C50.52989 (14)0.73769 (15)0.6370 (3)0.0776 (6)
H50.51070.71550.71120.093*
C60.46244 (16)0.43538 (16)0.4866 (2)0.0700 (6)
H60.46640.48740.44820.084*
C70.40878 (17)0.3772 (2)0.4368 (2)0.0813 (8)
H70.37590.38960.36770.098*
C80.40433 (19)0.3001 (2)0.4905 (3)0.0876 (9)
H80.36940.25840.45740.105*
C90.45174 (18)0.28495 (17)0.5935 (2)0.0793 (8)
H90.44910.23310.63270.095*
C100.50346 (12)0.34791 (12)0.6381 (3)0.0643 (5)
H100.53590.33730.70830.077*
C110.77724 (13)0.68223 (14)0.7079 (2)0.0551 (5)
H110.74400.68840.63730.066*
C120.79864 (17)0.75269 (15)0.7782 (3)0.0721 (7)
H120.77990.80570.75420.087*
C130.8473 (2)0.7435 (2)0.8825 (3)0.0827 (11)
H130.86170.79050.92890.099*
C140.8745 (2)0.6664 (2)0.9188 (2)0.0852 (9)
H140.90710.66080.99010.102*
C150.85403 (17)0.59632 (15)0.8499 (2)0.0642 (6)
H150.87310.54380.87570.077*
C160.80552 (13)0.60262 (12)0.74313 (17)0.0445 (4)
C170.69499 (16)0.39679 (14)0.85288 (19)0.0580 (5)
H170.69190.44980.88850.070*
C180.66487 (18)0.32782 (19)0.9169 (2)0.0774 (8)
H180.64090.33510.99450.093*
C190.6699 (2)0.2496 (2)0.8680 (3)0.0825 (11)
H190.65030.20350.91230.099*
C200.70402 (17)0.23894 (15)0.7529 (3)0.0772 (8)
H200.70680.18550.71850.093*
C210.73442 (14)0.30760 (14)0.6877 (2)0.0573 (6)
H210.75830.29970.61020.069*
C220.72966 (11)0.38797 (12)0.73637 (18)0.0425 (4)
C230.76955 (15)0.49598 (10)0.4412 (3)0.0456 (5)
C240.8438 (2)0.49805 (15)0.3697 (3)0.0692 (8)
H240.89770.49780.40750.083*
C250.8386 (3)0.50045 (16)0.2425 (3)0.0848 (11)
H250.88900.50260.19610.102*
C260.7610 (3)0.49965 (14)0.1849 (4)0.0792 (10)
H260.75820.50120.09960.095*
C270.6874 (3)0.49658 (15)0.2522 (3)0.0794 (10)
H270.63410.49510.21280.095*
C280.6912 (2)0.49569 (13)0.3795 (3)0.0621 (7)
H280.64010.49490.42440.075*
N10.57166 (13)0.68770 (12)0.56033 (19)0.0644 (5)
N20.50952 (11)0.42256 (11)0.58661 (17)0.0599 (5)
O10.63289 (8)0.53842 (9)0.6501 (2)0.0478 (3)
Sn10.776999 (6)0.493730 (5)0.63796 (5)0.03979 (5)
Cl10.93047 (3)0.44400 (3)0.64344 (8)0.06432 (13)
H1B0.5994 (19)0.5037 (13)0.646 (5)0.070 (8)*
H1A0.6200 (15)0.5809 (15)0.619 (3)0.071 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0821 (17)0.0832 (17)0.100 (3)0.0289 (13)0.0149 (17)0.0179 (18)
C20.0815 (18)0.0560 (14)0.117 (2)0.0082 (13)0.0076 (17)0.0160 (15)
C30.0849 (19)0.0792 (18)0.0715 (17)0.0070 (15)0.0072 (14)0.0237 (15)
C40.0689 (16)0.0708 (15)0.0674 (16)0.0067 (12)0.0105 (12)0.0028 (12)
C50.0716 (13)0.0954 (16)0.0657 (14)0.0131 (12)0.0106 (19)0.019 (2)
C60.0600 (14)0.0763 (15)0.0737 (16)0.0057 (12)0.0032 (12)0.0255 (13)
C70.0631 (16)0.126 (2)0.0551 (15)0.0085 (16)0.0078 (12)0.0116 (16)
C80.0811 (19)0.107 (2)0.0747 (18)0.0416 (17)0.0023 (15)0.0173 (17)
C90.0820 (17)0.0642 (14)0.092 (2)0.0183 (13)0.0126 (14)0.0155 (12)
C100.0534 (10)0.0744 (13)0.0652 (12)0.0008 (9)0.0013 (16)0.020 (2)
C110.0560 (13)0.0454 (11)0.0638 (14)0.0054 (9)0.0009 (10)0.0016 (10)
C120.0772 (17)0.0462 (12)0.093 (2)0.0100 (11)0.0196 (15)0.0111 (12)
C130.101 (2)0.080 (2)0.068 (2)0.0286 (19)0.0122 (16)0.0331 (17)
C140.114 (2)0.090 (2)0.0513 (15)0.0262 (17)0.0139 (14)0.0147 (14)
C150.0842 (17)0.0615 (13)0.0469 (12)0.0112 (12)0.0106 (11)0.0039 (10)
C160.0449 (10)0.0453 (10)0.0433 (11)0.0086 (8)0.0050 (8)0.0002 (8)
C170.0689 (14)0.0574 (13)0.0476 (13)0.0010 (11)0.0028 (10)0.0040 (9)
C180.0793 (18)0.096 (2)0.0571 (15)0.0071 (14)0.0074 (13)0.0312 (15)
C190.0777 (19)0.067 (2)0.102 (3)0.0175 (15)0.0097 (18)0.0453 (18)
C200.0747 (17)0.0393 (12)0.117 (2)0.0087 (11)0.0142 (17)0.0076 (13)
C210.0597 (13)0.0438 (11)0.0685 (14)0.0029 (9)0.0012 (10)0.0043 (9)
C220.0402 (11)0.0404 (10)0.0469 (11)0.0004 (7)0.0049 (8)0.0035 (8)
C230.0565 (14)0.0373 (11)0.0431 (14)0.0018 (7)0.0031 (9)0.0023 (7)
C240.0648 (17)0.087 (2)0.0559 (17)0.0105 (11)0.0123 (13)0.0073 (11)
C250.096 (3)0.100 (3)0.058 (2)0.0137 (14)0.0288 (19)0.0092 (12)
C260.117 (3)0.080 (2)0.0407 (14)0.0020 (14)0.0075 (17)0.0036 (9)
C270.092 (3)0.094 (2)0.0523 (18)0.0076 (14)0.0194 (17)0.0043 (11)
C280.0617 (16)0.0771 (18)0.0475 (15)0.0072 (11)0.0006 (12)0.0027 (9)
N10.0623 (11)0.0561 (10)0.0750 (13)0.0096 (9)0.0040 (10)0.0142 (9)
N20.0497 (10)0.0562 (10)0.0737 (13)0.0021 (8)0.0049 (8)0.0047 (8)
O10.0475 (7)0.0400 (6)0.0559 (10)0.0022 (6)0.0022 (8)0.0001 (9)
Sn10.04407 (7)0.03517 (6)0.04012 (7)0.00214 (4)0.00003 (10)0.00169 (12)
Cl10.0463 (2)0.0562 (2)0.0904 (4)0.00624 (17)0.0004 (4)0.0133 (5)
Geometric parameters (Å, º) top
C1—C21.347 (4)C15—C161.388 (3)
C1—C51.372 (3)C15—H150.9300
C1—H10.9300C16—Sn12.124 (2)
C2—C31.355 (4)C17—C181.382 (3)
C2—H20.9300C17—C221.384 (3)
C3—C41.354 (4)C17—H170.9300
C3—H30.9300C18—C191.357 (4)
C4—N11.312 (3)C18—H180.9300
C4—H40.9300C19—C201.370 (4)
C5—N11.323 (3)C19—H190.9300
C5—H50.9300C20—C211.386 (3)
C6—N21.326 (3)C20—H200.9300
C6—C71.358 (4)C21—C221.387 (3)
C6—H60.9300C21—H210.9300
C7—C81.361 (4)C22—Sn12.127 (2)
C7—H70.9300C23—C281.387 (4)
C8—C91.362 (4)C23—C241.390 (4)
C8—H80.9300C23—Sn12.145 (3)
C9—C101.372 (3)C24—C251.387 (5)
C9—H90.9300C24—H240.9300
C10—N21.318 (3)C25—C261.356 (6)
C10—H100.9300C25—H250.9300
C11—C161.395 (3)C26—C271.357 (6)
C11—C121.398 (3)C26—H260.9300
C11—H110.9300C27—C281.387 (5)
C12—C131.371 (4)C27—H270.9300
C12—H120.9300C28—H280.9300
C13—C141.356 (4)O1—Sn12.3469 (14)
C13—H130.9300O1—H1B0.76 (3)
C14—C151.382 (3)O1—H1A0.78 (3)
C14—H140.9300Sn1—Cl12.5068 (9)
C2—C1—C5118.7 (3)C22—C17—H17119.6
C2—C1—H1120.7C19—C18—C17120.8 (3)
C5—C1—H1120.7C19—C18—H18119.6
C1—C2—C3118.7 (2)C17—C18—H18119.6
C1—C2—H2120.6C18—C19—C20119.7 (3)
C3—C2—H2120.6C18—C19—H19120.2
C4—C3—C2119.1 (2)C20—C19—H19120.2
C4—C3—H3120.5C19—C20—C21120.1 (3)
C2—C3—H3120.5C19—C20—H20119.9
N1—C4—C3123.7 (3)C21—C20—H20119.9
N1—C4—H4118.1C20—C21—C22120.9 (2)
C3—C4—H4118.1C20—C21—H21119.5
N1—C5—C1123.1 (3)C22—C21—H21119.5
N1—C5—H5118.4C17—C22—C21117.67 (19)
C1—C5—H5118.4C17—C22—Sn1120.99 (15)
N2—C6—C7124.0 (2)C21—C22—Sn1121.32 (16)
N2—C6—H6118.0C28—C23—C24117.0 (3)
C7—C6—H6118.0C28—C23—Sn1122.0 (2)
C6—C7—C8118.3 (2)C24—C23—Sn1121.0 (2)
C6—C7—H7120.8C25—C24—C23120.7 (3)
C8—C7—H7120.8C25—C24—H24119.6
C7—C8—C9119.1 (3)C23—C24—H24119.6
C7—C8—H8120.4C26—C25—C24120.8 (3)
C9—C8—H8120.4C26—C25—H25119.6
C8—C9—C10118.4 (3)C24—C25—H25119.6
C8—C9—H9120.8C25—C26—C27119.8 (4)
C10—C9—H9120.8C25—C26—H26120.1
N2—C10—C9123.4 (3)C27—C26—H26120.1
N2—C10—H10118.3C26—C27—C28120.2 (4)
C9—C10—H10118.3C26—C27—H27119.9
C16—C11—C12120.3 (2)C28—C27—H27119.9
C16—C11—H11119.9C27—C28—C23121.4 (3)
C12—C11—H11119.9C27—C28—H28119.3
C13—C12—C11119.9 (3)C23—C28—H28119.3
C13—C12—H12120.1C4—N1—C5116.6 (2)
C11—C12—H12120.1C10—N2—C6116.7 (2)
C14—C13—C12120.6 (3)Sn1—O1—H1B115.2 (18)
C14—C13—H13119.7Sn1—O1—H1A118.7 (18)
C12—C13—H13119.7H1B—O1—H1A116 (3)
C13—C14—C15120.1 (3)C16—Sn1—C22116.54 (9)
C13—C14—H14119.9C16—Sn1—C23122.39 (7)
C15—C14—H14119.9C22—Sn1—C23119.84 (7)
C14—C15—C16121.3 (2)C16—Sn1—O185.41 (7)
C14—C15—H15119.3C22—Sn1—O183.32 (7)
C16—C15—H15119.3C23—Sn1—O190.01 (9)
C15—C16—C11117.8 (2)C16—Sn1—Cl192.74 (6)
C15—C16—Sn1120.33 (16)C22—Sn1—Cl193.72 (5)
C11—C16—Sn1121.88 (16)C23—Sn1—Cl194.59 (7)
C18—C17—C22120.8 (2)O1—Sn1—Cl1175.34 (8)
C18—C17—H17119.6
C5—C1—C2—C30.1 (5)C24—C23—C28—C270.6 (3)
C1—C2—C3—C40.1 (5)Sn1—C23—C28—C27179.56 (16)
C2—C3—C4—N10.7 (5)C3—C4—N1—C51.3 (4)
C2—C1—C5—N10.7 (5)C1—C5—N1—C41.3 (4)
N2—C6—C7—C81.7 (4)C9—C10—N2—C60.1 (4)
C6—C7—C8—C91.7 (4)C7—C6—N2—C100.9 (4)
C7—C8—C9—C101.0 (4)C15—C16—Sn1—C2247.86 (19)
C8—C9—C10—N20.2 (4)C11—C16—Sn1—C22132.59 (16)
C16—C11—C12—C130.3 (4)C15—C16—Sn1—C23144.87 (17)
C11—C12—C13—C140.4 (5)C11—C16—Sn1—C2334.7 (2)
C12—C13—C14—C150.5 (5)C15—C16—Sn1—O1128.05 (18)
C13—C14—C15—C160.1 (5)C11—C16—Sn1—O152.40 (17)
C14—C15—C16—C110.6 (4)C15—C16—Sn1—Cl147.67 (17)
C14—C15—C16—Sn1179.0 (2)C11—C16—Sn1—Cl1131.88 (16)
C12—C11—C16—C150.8 (3)C17—C22—Sn1—C1618.84 (18)
C12—C11—C16—Sn1178.80 (17)C21—C22—Sn1—C16159.47 (16)
C22—C17—C18—C191.1 (4)C17—C22—Sn1—C23148.77 (16)
C17—C18—C19—C201.0 (5)C21—C22—Sn1—C2332.92 (18)
C18—C19—C20—C211.0 (4)C17—C22—Sn1—O162.62 (17)
C19—C20—C21—C221.0 (4)C21—C22—Sn1—O1119.08 (17)
C18—C17—C22—C211.2 (3)C17—C22—Sn1—Cl1113.77 (16)
C18—C17—C22—Sn1179.52 (19)C21—C22—Sn1—Cl164.53 (16)
C20—C21—C22—C171.1 (3)C28—C23—Sn1—C16103.04 (16)
C20—C21—C22—Sn1179.48 (17)C24—C23—Sn1—C1676.77 (17)
C28—C23—C24—C250.5 (3)C28—C23—Sn1—C2263.82 (17)
Sn1—C23—C24—C25179.27 (17)C24—C23—Sn1—C22116.37 (16)
C23—C24—C25—C260.9 (4)C28—C23—Sn1—O118.48 (15)
C24—C25—C26—C270.1 (4)C24—C23—Sn1—O1161.33 (16)
C25—C26—C27—C281.1 (4)C28—C23—Sn1—Cl1160.78 (14)
C26—C27—C28—C231.5 (3)C24—C23—Sn1—Cl119.42 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.78 (3)1.96 (3)2.740 (2)170 (3)
O1—H1B···N20.76 (3)2.01 (3)2.745 (2)164 (6)

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3Cl(H2O)]·2C5H5N
Mr561.66
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)15.492 (5), 15.925 (5), 10.885 (5)
V3)2685.4 (17)
Z4
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.43 × 0.13 × 0.11
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.623, 0.882
No. of measured, independent and
observed [I > 2σ(I)] reflections
15753, 5668, 5086
Rint0.020
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.049, 1.04
No. of reflections5668
No. of parameters307
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.22
Absolute structureFlack (1983), 2299 Friedels
Absolute structure parameter0.005 (16)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990), SHELXL97.

Selected geometric parameters (Å, º) top
C16—Sn12.124 (2)O1—Sn12.3469 (14)
C22—Sn12.127 (2)Sn1—Cl12.5068 (9)
C23—Sn12.145 (3)
C16—Sn1—C22116.54 (9)C23—Sn1—O190.01 (9)
C16—Sn1—C23122.39 (7)C16—Sn1—Cl192.74 (6)
C22—Sn1—C23119.84 (7)C22—Sn1—Cl193.72 (5)
C16—Sn1—O185.41 (7)C23—Sn1—Cl194.59 (7)
C22—Sn1—O183.32 (7)O1—Sn1—Cl1175.34 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.78 (3)1.96 (3)2.740 (2)170 (3)
O1—H1B···N20.76 (3)2.01 (3)2.745 (2)164 (6)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds