Download citation
Download citation
link to html
The title compound, C15H16N2S, was prepared by the reaction of 3,5-dimethyl­phenyl­amine with 1-isothio­cyanato­benzene. In the mol­ecule, all bond lengths and angles are within normal ranges. The dihedral angle between the two aromatic rings is 48.77 (1)°. The crystal packing is stabilized by van der Waals forces.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807019290/hg2224sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807019290/hg2224Isup2.hkl
Contains datablock I

CCDC reference: 651392

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.043
  • wR factor = 0.135
  • Data-to-parameter ratio = 18.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 3000 Deg. PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C1 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C2 PLAT420_ALERT_2_C D-H Without Acceptor N1 - H1A ... ?
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Thiosemicarbazides are able to form complexes with biological activities (Shen et al., 1998). Thiourea derivatives have been successful screened for various biological activities (Antholine & Taketa,1982), and some of them have shown promising anti-HIV properties (Mao et al., 1999). The title compound was synthesized as part of our study of these ligands. Here we report the crystal structure of (I).

In (I) (Fig. 1),the bond lengths and angles are usual for this type of compound (Ji et al., 2002). The mean planes p1(S1,N1,N2,C8,C9,C10) and p2 (N1,C1,C2,C3,C4,C5,C6,C7) make a dihedral angle of 59.69 (1)°. The dihedral angles formed by phenyl ring (C3,C4,C5,C6,C7,C8) and phenyl ring (C10,C11,C12,C13,C14,C15) with p1 are 59.82 (2)and 52.72 (2)° respectively. The dihedral angles between the benzene rings is 48.77 (1)°. The crystal packing is stabilized by van der Waals forces.

Related literature top

For related literature, see: Antholine & Taketa (1982); Ji et al. (2002); Mao et al. (1999); Shen et al. (1998).

Experimental top

A mixture of 3,5-Dimethyl-phenylamine (0.02 mol) and 1-isothiocyanatobenzeneat (0.02 mol) was stirred in refluxing ethanol (30 ml) for 0.5 h to afford the title compound (4.35 g, yield 85%). Single crystals suitable for X-ray measurementswere obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their parent atoms, with N—H and C—H distances of 0.86 and 0.93–0.96 Å, respectively, and with Uiso=1.2–1.5Ueq of the parent atoms.

Structure description top

Thiosemicarbazides are able to form complexes with biological activities (Shen et al., 1998). Thiourea derivatives have been successful screened for various biological activities (Antholine & Taketa,1982), and some of them have shown promising anti-HIV properties (Mao et al., 1999). The title compound was synthesized as part of our study of these ligands. Here we report the crystal structure of (I).

In (I) (Fig. 1),the bond lengths and angles are usual for this type of compound (Ji et al., 2002). The mean planes p1(S1,N1,N2,C8,C9,C10) and p2 (N1,C1,C2,C3,C4,C5,C6,C7) make a dihedral angle of 59.69 (1)°. The dihedral angles formed by phenyl ring (C3,C4,C5,C6,C7,C8) and phenyl ring (C10,C11,C12,C13,C14,C15) with p1 are 59.82 (2)and 52.72 (2)° respectively. The dihedral angles between the benzene rings is 48.77 (1)°. The crystal packing is stabilized by van der Waals forces.

For related literature, see: Antholine & Taketa (1982); Ji et al. (2002); Mao et al. (1999); Shen et al. (1998).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-labeling scheme for (I), with displacement ellipsoids drawn at the 30% probability level.
1-(3,5-Dimethylphenyl)-3-phenylthiourea top
Crystal data top
C15H16N2SZ = 2
Mr = 256.36F(000) = 272
Triclinic, P1Dx = 1.197 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3740 (17) ÅCell parameters from 25 reflections
b = 9.1870 (18) Åθ = 4–14°
c = 9.889 (2) ŵ = 0.21 mm1
α = 107.57 (3)°T = 293 K
β = 98.57 (3)°Block, colourless
γ = 94.42 (3)°0.20 × 0.18 × 0.15 mm
V = 711.2 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.014
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 2.2°
Graphite monochromatorh = 09
ω scansk = 1010
3177 measured reflectionsl = 1111
2975 independent reflections3 standard reflections every 100 reflections
2373 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0792P)2 + 0.1571P]
where P = (Fo2 + 2Fc2)/3
2975 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C15H16N2Sγ = 94.42 (3)°
Mr = 256.36V = 711.2 (2) Å3
Triclinic, P1Z = 2
a = 8.3740 (17) ÅMo Kα radiation
b = 9.1870 (18) ŵ = 0.21 mm1
c = 9.889 (2) ÅT = 293 K
α = 107.57 (3)°0.20 × 0.18 × 0.15 mm
β = 98.57 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.014
3177 measured reflections3 standard reflections every 100 reflections
2975 independent reflections intensity decay: none
2373 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
2975 reflectionsΔρmin = 0.26 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.38703 (6)0.61876 (6)0.35631 (5)0.05568 (19)
N10.17597 (19)0.76385 (18)0.51155 (16)0.0481 (4)
H1A0.13400.78290.58830.058*
N20.31741 (19)0.59706 (19)0.60148 (16)0.0499 (4)
H2A0.38500.53040.58840.060*
C10.2911 (3)1.1300 (3)0.2466 (3)0.0826 (8)
H1B0.39841.13340.29870.124*
H1C0.25841.23120.27280.124*
H1D0.29151.09430.14490.124*
C20.2810 (3)0.8645 (4)0.1871 (3)0.0815 (8)
H2B0.30120.92630.12510.122*
H2C0.34520.89110.26170.122*
H2D0.31010.75760.13180.122*
C30.2287 (2)0.9438 (2)0.3790 (2)0.0477 (4)
H3A0.33810.96090.42180.057*
C40.1728 (2)1.0214 (2)0.2835 (2)0.0513 (5)
C50.0072 (2)0.9943 (2)0.2225 (2)0.0507 (5)
H5A0.03101.04530.15840.061*
C60.1017 (2)0.8935 (2)0.2548 (2)0.0492 (4)
C70.0428 (2)0.8165 (2)0.34959 (19)0.0452 (4)
H7A0.11380.74830.37240.054*
C80.1213 (2)0.84127 (19)0.40996 (18)0.0419 (4)
C90.2877 (2)0.6635 (2)0.49727 (18)0.0417 (4)
C100.2511 (2)0.6231 (2)0.73090 (18)0.0418 (4)
C110.3591 (3)0.6609 (3)0.8603 (2)0.0635 (6)
H11A0.47070.67490.86190.076*
C120.3007 (3)0.6779 (3)0.9874 (2)0.0723 (7)
H12A0.37360.70211.07400.087*
C130.1356 (3)0.6592 (2)0.9868 (2)0.0579 (5)
H13A0.09730.67291.07280.069*
C140.0281 (2)0.6203 (2)0.8582 (2)0.0531 (5)
H14A0.08330.60640.85720.064*
C150.0849 (2)0.6016 (2)0.7296 (2)0.0461 (4)
H15A0.01170.57470.64290.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0619 (3)0.0785 (4)0.0472 (3)0.0398 (3)0.0248 (2)0.0356 (2)
N10.0564 (9)0.0570 (9)0.0464 (8)0.0294 (7)0.0211 (7)0.0282 (7)
N20.0534 (9)0.0676 (10)0.0466 (8)0.0331 (8)0.0205 (7)0.0327 (7)
C10.0739 (16)0.0851 (17)0.114 (2)0.0088 (13)0.0233 (15)0.0667 (17)
C20.0535 (13)0.102 (2)0.0914 (19)0.0119 (13)0.0059 (12)0.0430 (16)
C30.0422 (9)0.0523 (10)0.0547 (10)0.0127 (8)0.0092 (8)0.0241 (8)
C40.0566 (11)0.0489 (10)0.0591 (11)0.0140 (8)0.0172 (9)0.0280 (9)
C50.0606 (12)0.0508 (10)0.0497 (10)0.0219 (9)0.0094 (8)0.0259 (8)
C60.0462 (10)0.0501 (10)0.0525 (10)0.0155 (8)0.0061 (8)0.0169 (8)
C70.0464 (10)0.0440 (9)0.0508 (10)0.0130 (7)0.0136 (8)0.0194 (8)
C80.0473 (10)0.0430 (9)0.0436 (9)0.0193 (7)0.0144 (7)0.0193 (7)
C90.0412 (9)0.0495 (9)0.0404 (8)0.0167 (7)0.0095 (7)0.0196 (7)
C100.0472 (9)0.0451 (9)0.0417 (9)0.0138 (7)0.0131 (7)0.0220 (7)
C110.0443 (10)0.1004 (17)0.0518 (11)0.0002 (10)0.0069 (8)0.0360 (11)
C120.0680 (14)0.1048 (19)0.0416 (11)0.0103 (13)0.0039 (10)0.0279 (11)
C130.0745 (14)0.0600 (12)0.0488 (11)0.0094 (10)0.0270 (10)0.0236 (9)
C140.0512 (11)0.0538 (11)0.0683 (13)0.0142 (8)0.0252 (9)0.0313 (9)
C150.0456 (10)0.0492 (10)0.0482 (10)0.0111 (7)0.0084 (7)0.0212 (8)
Geometric parameters (Å, º) top
S1—C91.6897 (17)C4—C51.398 (3)
N1—C91.356 (2)C5—C61.388 (3)
N1—C81.439 (2)C5—H5A0.9300
N1—H1A0.8600C6—C71.393 (2)
N2—C91.350 (2)C7—C81.386 (3)
N2—C101.432 (2)C7—H7A0.9300
N2—H2A0.8600C10—C111.383 (3)
C1—C41.512 (3)C10—C151.388 (3)
C1—H1B0.9600C11—C121.386 (3)
C1—H1C0.9600C11—H11A0.9300
C1—H1D0.9600C12—C131.378 (3)
C2—C61.518 (3)C12—H12A0.9300
C2—H2B0.9600C13—C141.375 (3)
C2—H2C0.9600C13—H13A0.9300
C2—H2D0.9600C14—C151.390 (3)
C3—C81.384 (3)C14—H14A0.9300
C3—C41.395 (2)C15—H15A0.9300
C3—H3A0.9300
C9—N1—C8125.94 (14)C7—C6—C2120.04 (19)
C9—N1—H1A117.0C8—C7—C6120.14 (17)
C8—N1—H1A117.0C8—C7—H7A119.9
C9—N2—C10128.50 (14)C6—C7—H7A119.9
C9—N2—H2A115.8C3—C8—C7120.93 (16)
C10—N2—H2A115.8C3—C8—N1120.63 (16)
C4—C1—H1B109.5C7—C8—N1118.36 (16)
C4—C1—H1C109.5N2—C9—N1117.07 (15)
H1B—C1—H1C109.5N2—C9—S1119.88 (12)
C4—C1—H1D109.5N1—C9—S1123.04 (13)
H1B—C1—H1D109.5C11—C10—C15119.58 (17)
H1C—C1—H1D109.5C11—C10—N2117.76 (16)
C6—C2—H2B109.5C15—C10—N2122.50 (16)
C6—C2—H2C109.5C10—C11—C12119.82 (19)
H2B—C2—H2C109.5C10—C11—H11A120.1
C6—C2—H2D109.5C12—C11—H11A120.1
H2B—C2—H2D109.5C13—C12—C11120.8 (2)
H2C—C2—H2D109.5C13—C12—H12A119.6
C8—C3—C4119.93 (17)C11—C12—H12A119.6
C8—C3—H3A120.0C14—C13—C12119.49 (18)
C4—C3—H3A120.0C14—C13—H13A120.3
C3—C4—C5118.50 (17)C12—C13—H13A120.3
C3—C4—C1119.87 (19)C13—C14—C15120.41 (18)
C5—C4—C1121.63 (18)C13—C14—H14A119.8
C6—C5—C4121.90 (16)C15—C14—H14A119.8
C6—C5—H5A119.1C10—C15—C14119.91 (17)
C4—C5—H5A119.1C10—C15—H15A120.0
C5—C6—C7118.59 (17)C14—C15—H15A120.0
C5—C6—C2121.36 (18)
C8—C3—C4—C50.8 (3)C10—N2—C9—N13.0 (3)
C8—C3—C4—C1178.3 (2)C10—N2—C9—S1177.62 (15)
C3—C4—C5—C60.2 (3)C8—N1—C9—N2176.96 (17)
C1—C4—C5—C6179.3 (2)C8—N1—C9—S12.4 (3)
C4—C5—C6—C70.7 (3)C9—N2—C10—C11126.3 (2)
C4—C5—C6—C2179.7 (2)C9—N2—C10—C1558.1 (3)
C5—C6—C7—C80.2 (3)C15—C10—C11—C120.4 (3)
C2—C6—C7—C8179.1 (2)N2—C10—C11—C12176.1 (2)
C4—C3—C8—C71.3 (3)C10—C11—C12—C130.8 (4)
C4—C3—C8—N1178.10 (17)C11—C12—C13—C141.3 (4)
C6—C7—C8—C30.9 (3)C12—C13—C14—C150.8 (3)
C6—C7—C8—N1177.69 (16)C11—C10—C15—C140.9 (3)
C9—N1—C8—C363.1 (3)N2—C10—C15—C14176.39 (16)
C9—N1—C8—C7120.0 (2)C13—C14—C15—C100.4 (3)

Experimental details

Crystal data
Chemical formulaC15H16N2S
Mr256.36
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.3740 (17), 9.1870 (18), 9.889 (2)
α, β, γ (°)107.57 (3), 98.57 (3), 94.42 (3)
V3)711.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3177, 2975, 2373
Rint0.014
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.135, 1.05
No. of reflections2975
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.26

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CAD-4 Software, NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1990), WinGX (Farrugia, 1999).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds