Download citation
Download citation
link to html
The asymmetric unit of the title compound, (C14H13N2)[Ni(C6H4S2)2], contains two cations, one anion and two half-anions. One of the half-anions has Ni on a twofold rotation axis, while the other has Ni on a centre of symmetry. In the anions, the Ni ions are surrounded by four S atoms in a distorted square-planar geometry. In the crystal structure, the anions exhibit two different packing modes by stacking in face-to-face and side-by-side fashions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807023847/hk2244sup1.cif
Contains datablocks I, New_Global_Publ_Block

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807023847/hk2244Isup2.hkl
Contains datablock I

CCDC reference: 650700

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.060
  • wR factor = 0.078
  • Data-to-parameter ratio = 14.2

checkCIF/PLATON results

No syntax errors found



Alert level C RINTA01_ALERT_3_C The value of Rint is greater than 0.10 Rint given 0.113 PLAT020_ALERT_3_C The value of Rint is greater than 0.10 ......... 0.11 PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 40 Perc. PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT220_ALERT_2_C Large Non-Solvent N Ueq(max)/Ueq(min) ... 3.07 Ratio PLAT220_ALERT_2_C Large Non-Solvent N Ueq(max)/Ueq(min) ... 2.89 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for C47 - C48 .. 5.05 su PLAT230_ALERT_2_C Hirshfeld Test Diff for C47 - C50_b .. 5.05 su PLAT230_ALERT_2_C Hirshfeld Test Diff for C50 - C47_b .. 5.05 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C22 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C16 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C19 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C25 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 10 PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C1 - C2 ... 1.45 Ang. PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C15 - C16 ... 1.42 Ang.
Alert level G REFLT03_ALERT_1_G ALERT: Expected hkl max differ from CIF values From the CIF: _diffrn_reflns_theta_max 25.00 From the CIF: _reflns_number_total 8530 From the CIF: _diffrn_reflns_limit_ max hkl 47. 7. 36. From the CIF: _diffrn_reflns_limit_ min hkl -50. -8. -36. TEST1: Expected hkl limits for theta max Calculated maximum hkl 50. 8. 38. Calculated minimum hkl -50. -8. -38. PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni1 (3) 3.05 PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni2 (3) 3.05 PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni3 (3) 3.01
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 16 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 11 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 3 ALERT type 5 Informative message, check

Comment top

Since their discovery in 1963, square planar bis(benzene-1,2-dithiolato)metal complexes have received considerable attention due to their interesting and often unusual electronic structures. It has been established that the square planar complexes [M(L)2]2-, [M(L)2]-, and [M(L)2]0 (where M = Ni, Pt) form a three membered electron-transfer series, where the neutral species and the dianionic forms are diamagnetic (S = 0), whereas the monoanions are paramagnetic (S = 1/2) (de Caro et al., 2004; Ray et al., 2005). In our previous research using benzylpyridinium derivatives ([RBzPy]+) as the counter-cation of TCNQ- (where TCNQ = 7,7,8,8-tetracyanoquinodimethanide), a series of ion-pair compounds with segregated columnar stacks of cations and anions has been prepared (Liu, 2007; Liu et al., 2005; Wang et al., 2006). The quasi one-dimensional magnetic nature of these compounds was attributed to intermolecular-orbital interactions within the anionic columns. As an extension of our work on this series of complexes, we herein report the crystal structure of the title compound, (I).

The asymmetric unit of (I), contains two (C14H13N2)+ cations, one and two halves centrosymmetric [Ni(C6H4S2)2] anions. In the anions, the Ni ions are surrounded by four S atoms in a distorted square-planar geometry. The dihedral angle between (Ni1/S5/S6/C41/C46) and (Ni1/S5A/S6A/C41A/C46A) planes is 18.98 (2)° [symmetry code (A): -x, y, 1/2 - z]. It is peculiar and interesting. The Ni—S bond lengths and S—Ni—S bond angles (Table 1) are in agreement with the corresponding values in analogous complexes (Sellmann et al., 1991; Xie et al., 2002). The cations have Λ-shaped conformations with the dihedral angles of A/B = 65.03 (3), A/C = 46.37 (4), B/C = 86.96 (4) ° and D/E = 60.62 (3), D/F = 59.72 (3), E/F = 83.56 (4) ° between A (C5/C8/N1), B (C2—C7), C (N1/C9—C13) and D (C19/C22/N2), E (C16—C21), F (N2/C23—C28) planes.

In the crystal structure, the packing of the two anions is different (Fig. 2). The Ni1, Ni3-containing anions stack in a face-to-face fashion with an alternating arrangement of anions and cations, such that the pyridine ring of the cation lies above the benzene ring of the anion. The shortest distance between the adjacent NiIII ions is 7.245 (2) Å. The Ni2-containing anions stack in a side by side fashion with C—H···S interactions (Table 2).

Related literature top

For general backgroud, see: de Caro et al. (2004); Ray et al. (2005); Liu (2007); Liu et al. (2005); Wang et al. (2006). For related literature, see: Sellmann et al. (1991); Xie et al. (2002).

Experimental top

Benzene-1,2-dithiol (142 mg, 1.0 mmol) was added to a solution of sodium metal (46 mg, 2.0 mmol) in absolute ethanol (25 ml), under nitrogen atmosphere at room temperature, and then a solution of NiCl2.6H2O (120 mg, 0.5 mmol) in ethanol (25 ml) was added, resulting in a mixture turning a muddy red–brown color. Following this, [NCBzPyCH3]Br (289 mg, 1.0 mmol) was added and the mixture allowed to stand with stirring for 1 h, and then stirred for an additional 24 h in air. The color of the mixture gradually turned green, indicating oxidation from a dianionic species to the more stable monoanionic form. The precipitate was washed with absolute ethanol and diethyl ether and then dried. The crude product was recrystallized twice from dichloromethane to give the title compound (yield; 241 mg, 69%, m.p. 483–485 K).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Structure description top

Since their discovery in 1963, square planar bis(benzene-1,2-dithiolato)metal complexes have received considerable attention due to their interesting and often unusual electronic structures. It has been established that the square planar complexes [M(L)2]2-, [M(L)2]-, and [M(L)2]0 (where M = Ni, Pt) form a three membered electron-transfer series, where the neutral species and the dianionic forms are diamagnetic (S = 0), whereas the monoanions are paramagnetic (S = 1/2) (de Caro et al., 2004; Ray et al., 2005). In our previous research using benzylpyridinium derivatives ([RBzPy]+) as the counter-cation of TCNQ- (where TCNQ = 7,7,8,8-tetracyanoquinodimethanide), a series of ion-pair compounds with segregated columnar stacks of cations and anions has been prepared (Liu, 2007; Liu et al., 2005; Wang et al., 2006). The quasi one-dimensional magnetic nature of these compounds was attributed to intermolecular-orbital interactions within the anionic columns. As an extension of our work on this series of complexes, we herein report the crystal structure of the title compound, (I).

The asymmetric unit of (I), contains two (C14H13N2)+ cations, one and two halves centrosymmetric [Ni(C6H4S2)2] anions. In the anions, the Ni ions are surrounded by four S atoms in a distorted square-planar geometry. The dihedral angle between (Ni1/S5/S6/C41/C46) and (Ni1/S5A/S6A/C41A/C46A) planes is 18.98 (2)° [symmetry code (A): -x, y, 1/2 - z]. It is peculiar and interesting. The Ni—S bond lengths and S—Ni—S bond angles (Table 1) are in agreement with the corresponding values in analogous complexes (Sellmann et al., 1991; Xie et al., 2002). The cations have Λ-shaped conformations with the dihedral angles of A/B = 65.03 (3), A/C = 46.37 (4), B/C = 86.96 (4) ° and D/E = 60.62 (3), D/F = 59.72 (3), E/F = 83.56 (4) ° between A (C5/C8/N1), B (C2—C7), C (N1/C9—C13) and D (C19/C22/N2), E (C16—C21), F (N2/C23—C28) planes.

In the crystal structure, the packing of the two anions is different (Fig. 2). The Ni1, Ni3-containing anions stack in a face-to-face fashion with an alternating arrangement of anions and cations, such that the pyridine ring of the cation lies above the benzene ring of the anion. The shortest distance between the adjacent NiIII ions is 7.245 (2) Å. The Ni2-containing anions stack in a side by side fashion with C—H···S interactions (Table 2).

For general backgroud, see: de Caro et al. (2004); Ray et al. (2005); Liu (2007); Liu et al. (2005); Wang et al. (2006). For related literature, see: Sellmann et al. (1991); Xie et al. (2002).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The symmetry codes A in Ni1 and Ni3 anions are (-x, y, 1/2 - z) and (1/2 - x, 1/2 - y, 1 - z), respectively.
[Figure 2] Fig. 2. A packing diagram of (I). The C—H···S interactions are shown as dashed lines.
1-(4-Cyanobenzyl)-4-methylpyridinium bis(benzene-1,2-dithiolato)nickelate(III) top
Crystal data top
(C14H13N2)[Ni(C6H4S2)2]F(000) = 4528
Mr = 548.40Dx = 1.459 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1320 reflections
a = 42.344 (3) Åθ = 2.9–16.5°
b = 7.2455 (6) ŵ = 1.13 mm1
c = 32.768 (2) ÅT = 294 K
β = 96.480 (5)°Prism, dark green
V = 9988.9 (13) Å30.20 × 0.12 × 0.10 mm
Z = 16
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
8530 independent reflections
Radiation source: sealed tube3392 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.113
φ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 5047
Tmin = 0.806, Tmax = 0.896k = 87
27982 measured reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
8530 reflections(Δ/σ)max = 0.001
599 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
(C14H13N2)[Ni(C6H4S2)2]V = 9988.9 (13) Å3
Mr = 548.40Z = 16
Monoclinic, C2/cMo Kα radiation
a = 42.344 (3) ŵ = 1.13 mm1
b = 7.2455 (6) ÅT = 294 K
c = 32.768 (2) Å0.20 × 0.12 × 0.10 mm
β = 96.480 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
8530 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3392 reflections with I > 2σ(I)
Tmin = 0.806, Tmax = 0.896Rint = 0.113
27982 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 0.89Δρmax = 0.34 e Å3
8530 reflectionsΔρmin = 0.27 e Å3
599 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.56508 (13)0.25000.0602 (3)
Ni20.125597 (16)0.62664 (10)0.12628 (2)0.0551 (2)
Ni30.25000.25000.50000.0615 (3)
S10.11139 (3)0.88755 (19)0.09943 (4)0.0620 (4)
S20.09055 (4)0.48396 (19)0.08584 (5)0.0667 (5)
S30.16124 (4)0.7690 (2)0.16585 (5)0.0700 (5)
S40.13900 (3)0.3664 (2)0.15386 (4)0.0641 (4)
S50.04314 (4)0.5815 (2)0.22143 (4)0.0647 (5)
S60.02601 (4)0.5293 (2)0.30913 (4)0.0737 (5)
S70.22258 (4)0.1943 (2)0.44230 (4)0.0718 (5)
S80.29206 (4)0.19526 (19)0.47107 (5)0.0646 (5)
N10.31857 (14)0.6691 (6)0.45220 (15)0.0574 (13)
N20.06481 (13)1.1024 (6)0.20015 (15)0.0563 (13)
N30.17638 (18)0.9953 (13)0.3108 (2)0.177 (4)
N40.06790 (18)0.6563 (12)0.0635 (2)0.162 (3)
C10.1980 (2)0.9276 (13)0.3264 (2)0.118 (3)
C20.2261 (2)0.8448 (13)0.3481 (2)0.082 (2)
C30.22698 (19)0.6628 (13)0.3573 (2)0.098 (3)
H30.20910.59140.34940.118*
C40.2529 (2)0.5804 (10)0.3775 (2)0.087 (2)
H40.25260.45520.38370.105*
C50.27987 (16)0.6851 (10)0.38877 (17)0.0586 (17)
C60.27969 (15)0.8707 (9)0.37946 (17)0.0627 (17)
H60.29760.94240.38710.075*
C70.25306 (19)0.9490 (9)0.35900 (19)0.072 (2)
H70.25311.07380.35240.087*
C80.30959 (14)0.5990 (7)0.40965 (16)0.0659 (17)
H8A0.30660.46640.41070.079*
H8B0.32690.62290.39340.079*
C90.29658 (14)0.6769 (7)0.4786 (2)0.0640 (18)
H90.27550.64820.46980.077*
C100.30535 (18)0.7270 (7)0.5183 (2)0.071 (2)
H100.28990.73190.53630.085*
C110.3359 (2)0.7703 (8)0.5326 (3)0.074 (2)
C120.35750 (19)0.7611 (8)0.5045 (3)0.084 (2)
H120.37870.78970.51270.101*
C130.34874 (17)0.7113 (8)0.4649 (2)0.073 (2)
H130.36390.70650.44650.088*
C140.34560 (16)0.8237 (8)0.57622 (19)0.102 (2)
H14A0.36800.80390.58280.152*
H14B0.33420.74990.59400.152*
H14C0.34080.95170.58000.152*
C150.0476 (2)0.7422 (13)0.0787 (3)0.124 (3)
C160.0223 (2)0.8514 (12)0.09821 (19)0.076 (2)
C170.00624 (19)0.7662 (8)0.11170 (19)0.0665 (19)
H170.00880.64030.10770.080*
C180.03053 (14)0.8689 (9)0.13096 (16)0.0612 (17)
H180.04980.81220.14000.073*
C190.02699 (17)1.0549 (9)0.13723 (16)0.0556 (17)
C200.0010 (2)1.1392 (9)0.1235 (2)0.081 (2)
H200.00361.26540.12720.097*
C210.02549 (17)1.0359 (12)0.1041 (2)0.088 (2)
H210.04461.09330.09480.106*
C220.05457 (14)1.1652 (8)0.15794 (17)0.0750 (19)
H22A0.07231.15580.14180.090*
H22B0.04851.29410.15860.090*
C230.04440 (14)1.1099 (7)0.2284 (2)0.0643 (17)
H230.02371.14890.22080.077*
C240.05327 (16)1.0622 (7)0.2678 (2)0.0666 (19)
H240.03861.06580.28690.080*
C250.08412 (19)1.0082 (7)0.2799 (2)0.0576 (18)
C260.09546 (15)0.9591 (7)0.32383 (18)0.092 (2)
H26A0.10870.85120.32440.137*
H26B0.07750.93470.33840.137*
H26C0.10751.06000.33660.137*
C270.10478 (18)0.9985 (7)0.2500 (3)0.076 (2)
H270.12560.95980.25680.091*
C280.09443 (17)1.0457 (8)0.2108 (2)0.0685 (19)
H280.10841.03830.19080.082*
C290.08084 (13)0.8376 (9)0.06148 (16)0.0535 (15)
C300.06495 (15)0.9756 (8)0.0381 (2)0.0685 (19)
H300.07071.09850.04260.082*
C310.04077 (15)0.9301 (10)0.00835 (19)0.074 (2)
H310.03021.02340.00720.089*
C320.03178 (15)0.7498 (10)0.0011 (2)0.082 (2)
H320.01540.72140.01930.099*
C330.04738 (15)0.6106 (9)0.02449 (19)0.0724 (18)
H330.04150.48810.01970.087*
C340.07160 (13)0.6535 (8)0.05490 (16)0.0526 (15)
C350.18004 (13)0.5986 (9)0.19720 (17)0.0573 (16)
C360.16966 (13)0.4172 (9)0.19115 (16)0.0563 (16)
C370.18521 (16)0.2797 (8)0.2164 (2)0.074 (2)
H370.17860.15770.21300.089*
C380.20967 (17)0.3218 (10)0.2457 (2)0.085 (2)
H380.21960.22930.26210.102*
C390.21959 (16)0.5034 (11)0.2507 (2)0.086 (2)
H390.23630.53240.27050.103*
C400.20502 (15)0.6400 (9)0.2270 (2)0.0742 (18)
H400.21190.76140.23070.089*
C410.07300 (17)0.5359 (6)0.2607 (2)0.0542 (17)
C420.1047 (2)0.5224 (7)0.2529 (2)0.070 (2)
H420.10990.54080.22630.084*
C430.12827 (17)0.4822 (8)0.2840 (3)0.085 (2)
H430.14930.47260.27860.102*
C440.12051 (17)0.4560 (7)0.3236 (2)0.079 (2)
H440.13630.42800.34480.095*
C450.0897 (2)0.4715 (7)0.3313 (2)0.073 (2)
H450.08470.45510.35800.088*
C460.06564 (16)0.5109 (7)0.3005 (2)0.0590 (18)
C470.18323 (15)0.2118 (7)0.4527 (2)0.0563 (17)
C480.15871 (19)0.1752 (7)0.42208 (19)0.0690 (19)
H480.16330.14240.39590.083*
C490.12791 (17)0.1871 (8)0.4301 (2)0.0752 (19)
H490.11150.16330.40940.090*
C500.32329 (17)0.2401 (6)0.50796 (18)0.0539 (18)
C510.35497 (18)0.2307 (7)0.5006 (2)0.064 (2)
H510.35980.20000.47450.077*
C520.37907 (16)0.2653 (7)0.5308 (2)0.078 (2)
H520.40010.25710.52530.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0747 (9)0.0539 (7)0.0541 (7)0.0000.0170 (6)0.000
Ni20.0557 (5)0.0523 (5)0.0574 (5)0.0065 (4)0.0069 (4)0.0029 (4)
Ni30.0682 (9)0.0607 (7)0.0576 (8)0.0042 (6)0.0156 (6)0.0002 (5)
S10.0613 (11)0.0554 (10)0.0674 (11)0.0082 (9)0.0007 (9)0.0025 (8)
S20.0686 (13)0.0552 (10)0.0733 (12)0.0089 (8)0.0053 (10)0.0027 (8)
S30.0744 (13)0.0597 (11)0.0725 (12)0.0112 (9)0.0062 (10)0.0029 (9)
S40.0635 (12)0.0553 (10)0.0717 (11)0.0046 (8)0.0000 (9)0.0001 (8)
S50.0771 (13)0.0637 (11)0.0550 (10)0.0004 (9)0.0154 (9)0.0043 (8)
S60.0834 (14)0.0861 (13)0.0541 (11)0.0030 (9)0.0185 (10)0.0024 (8)
S70.0742 (13)0.0874 (13)0.0560 (11)0.0049 (9)0.0170 (10)0.0041 (8)
S80.0729 (13)0.0640 (11)0.0586 (11)0.0006 (9)0.0149 (9)0.0025 (8)
N10.065 (4)0.049 (3)0.062 (4)0.009 (3)0.023 (4)0.008 (2)
N20.064 (4)0.049 (3)0.056 (4)0.007 (3)0.009 (3)0.004 (3)
N30.097 (7)0.267 (10)0.159 (7)0.039 (6)0.030 (5)0.070 (6)
N40.128 (7)0.229 (9)0.125 (6)0.074 (6)0.003 (5)0.019 (6)
C10.090 (8)0.183 (9)0.079 (6)0.028 (7)0.001 (6)0.031 (6)
C20.072 (7)0.118 (7)0.057 (5)0.003 (6)0.016 (5)0.013 (5)
C30.082 (7)0.134 (8)0.075 (6)0.035 (6)0.013 (5)0.002 (5)
C40.097 (7)0.085 (6)0.080 (6)0.027 (6)0.008 (5)0.004 (4)
C50.061 (5)0.068 (5)0.050 (4)0.006 (4)0.017 (4)0.003 (4)
C60.067 (5)0.057 (5)0.065 (4)0.004 (4)0.007 (4)0.006 (4)
C70.072 (6)0.080 (5)0.066 (5)0.024 (5)0.012 (4)0.006 (4)
C80.092 (5)0.061 (4)0.046 (4)0.012 (4)0.013 (4)0.003 (3)
C90.058 (5)0.084 (5)0.052 (5)0.004 (3)0.012 (4)0.010 (4)
C100.087 (6)0.075 (5)0.053 (5)0.002 (4)0.019 (5)0.008 (4)
C110.082 (7)0.049 (4)0.087 (7)0.009 (4)0.001 (6)0.005 (4)
C120.075 (7)0.078 (5)0.093 (7)0.002 (4)0.011 (6)0.012 (4)
C130.053 (5)0.069 (5)0.100 (7)0.005 (4)0.021 (5)0.003 (4)
C140.156 (8)0.077 (5)0.065 (5)0.002 (5)0.016 (5)0.011 (4)
C150.120 (10)0.169 (10)0.082 (7)0.052 (7)0.011 (6)0.018 (6)
C160.082 (7)0.100 (7)0.046 (4)0.014 (6)0.002 (4)0.005 (4)
C170.078 (6)0.066 (5)0.058 (5)0.005 (5)0.018 (4)0.009 (4)
C180.055 (5)0.071 (5)0.056 (4)0.010 (4)0.003 (3)0.009 (4)
C190.070 (6)0.057 (5)0.039 (4)0.007 (4)0.004 (4)0.001 (3)
C200.089 (6)0.070 (5)0.080 (5)0.025 (5)0.004 (5)0.006 (4)
C210.052 (6)0.126 (8)0.083 (6)0.025 (5)0.006 (4)0.002 (5)
C220.104 (6)0.072 (5)0.049 (4)0.014 (4)0.009 (4)0.008 (3)
C230.069 (5)0.065 (4)0.060 (5)0.005 (4)0.012 (4)0.001 (4)
C240.071 (6)0.062 (4)0.068 (5)0.007 (4)0.012 (4)0.009 (4)
C250.081 (6)0.043 (4)0.045 (5)0.009 (4)0.011 (5)0.004 (3)
C260.127 (7)0.069 (5)0.073 (5)0.006 (4)0.017 (5)0.011 (4)
C270.067 (6)0.081 (5)0.076 (6)0.005 (4)0.005 (5)0.004 (4)
C280.065 (6)0.067 (5)0.075 (6)0.002 (4)0.015 (5)0.006 (4)
C290.042 (4)0.070 (5)0.049 (4)0.004 (4)0.005 (3)0.000 (3)
C300.061 (5)0.076 (5)0.068 (5)0.007 (4)0.007 (4)0.008 (4)
C310.057 (5)0.098 (6)0.065 (5)0.011 (4)0.005 (4)0.003 (4)
C320.058 (5)0.098 (6)0.088 (6)0.006 (5)0.004 (4)0.020 (5)
C330.059 (5)0.076 (5)0.081 (5)0.002 (4)0.002 (4)0.007 (4)
C340.042 (4)0.064 (4)0.050 (4)0.010 (3)0.003 (3)0.009 (3)
C350.037 (4)0.075 (5)0.061 (4)0.001 (4)0.009 (3)0.003 (4)
C360.049 (4)0.062 (4)0.058 (4)0.003 (4)0.009 (3)0.004 (4)
C370.074 (6)0.075 (5)0.071 (5)0.012 (4)0.003 (4)0.005 (4)
C380.074 (6)0.099 (6)0.080 (6)0.014 (5)0.005 (4)0.016 (5)
C390.057 (5)0.117 (7)0.080 (6)0.005 (5)0.007 (4)0.004 (5)
C400.058 (5)0.085 (5)0.077 (5)0.004 (4)0.005 (4)0.009 (4)
C410.065 (6)0.040 (4)0.058 (5)0.001 (3)0.008 (4)0.004 (3)
C420.085 (7)0.062 (5)0.066 (6)0.008 (4)0.019 (5)0.002 (3)
C430.084 (7)0.083 (5)0.091 (6)0.001 (4)0.021 (6)0.005 (4)
C440.076 (6)0.074 (5)0.085 (6)0.013 (4)0.001 (5)0.004 (4)
C450.099 (7)0.059 (4)0.062 (5)0.009 (4)0.011 (5)0.004 (3)
C460.068 (6)0.049 (4)0.062 (5)0.001 (3)0.014 (4)0.001 (3)
C470.051 (5)0.049 (4)0.068 (5)0.004 (3)0.001 (4)0.011 (3)
C480.083 (6)0.065 (5)0.063 (5)0.000 (4)0.026 (5)0.012 (3)
C490.081 (6)0.081 (5)0.061 (5)0.005 (4)0.004 (4)0.010 (4)
C500.078 (6)0.046 (4)0.039 (5)0.002 (3)0.013 (4)0.006 (3)
C510.069 (6)0.075 (5)0.054 (5)0.005 (4)0.024 (5)0.003 (3)
C520.065 (6)0.082 (5)0.086 (6)0.010 (4)0.000 (5)0.012 (4)
Geometric parameters (Å, º) top
Ni1—S62.1337 (16)C19—C201.365 (7)
Ni1—S6i2.1338 (16)C19—C221.511 (7)
Ni1—S52.1477 (14)C20—C211.374 (8)
Ni1—S5i2.1478 (14)C20—H200.9300
Ni2—S42.1400 (16)C21—H210.9300
Ni2—S32.1405 (17)C22—H22A0.9700
Ni2—S22.1408 (17)C22—H22B0.9700
Ni2—S12.1424 (16)C23—C241.348 (7)
Ni3—S72.1424 (15)C23—H230.9300
Ni3—S7ii2.1424 (15)C24—C251.378 (7)
Ni3—S8ii2.1470 (14)C24—H240.9300
Ni3—S82.1470 (14)C25—C271.387 (8)
S1—C291.728 (6)C25—C261.508 (7)
S2—C341.731 (6)C26—H26A0.9600
S3—C351.741 (6)C26—H26B0.9600
S4—C361.719 (6)C26—H26C0.9600
S5—C411.732 (6)C27—C281.354 (8)
S6—C461.738 (6)C27—H270.9300
S7—C471.742 (6)C28—H280.9300
S8—C501.719 (6)C29—C301.387 (7)
N1—C131.333 (6)C29—C341.400 (6)
N1—C91.342 (6)C30—C311.371 (7)
N1—C81.492 (6)C30—H300.9300
N2—C281.328 (6)C31—C321.374 (7)
N2—C231.338 (6)C31—H310.9300
N2—C221.474 (6)C32—C331.388 (7)
N3—C11.109 (8)C32—H320.9300
N4—C151.129 (8)C33—C341.383 (7)
C1—C21.449 (9)C33—H330.9300
C2—C31.352 (9)C35—C401.388 (7)
C2—C71.381 (8)C35—C361.393 (7)
C3—C41.356 (8)C36—C371.410 (7)
C3—H30.9300C37—C381.364 (7)
C4—C51.385 (8)C37—H370.9300
C4—H40.9300C38—C391.386 (7)
C5—C61.379 (7)C38—H380.9300
C5—C81.499 (7)C39—C401.363 (7)
C6—C71.369 (7)C39—H390.9300
C6—H60.9300C40—H400.9300
C7—H70.9300C41—C461.386 (7)
C8—H8A0.9700C41—C421.400 (8)
C8—H8B0.9700C42—C431.375 (8)
C9—C101.361 (7)C42—H420.9300
C9—H90.9300C43—C441.387 (7)
C10—C111.363 (8)C43—H430.9300
C10—H100.9300C44—C451.360 (7)
C11—C121.370 (9)C44—H440.9300
C11—C141.494 (8)C45—C461.381 (8)
C12—C131.357 (8)C45—H450.9300
C12—H120.9300C47—C481.385 (7)
C13—H130.9300C47—C50ii1.394 (7)
C14—H14A0.9600C48—C491.362 (7)
C14—H14B0.9600C48—H480.9300
C14—H14C0.9600C49—C52ii1.389 (7)
C15—C161.426 (9)C49—H490.9300
C16—C211.359 (8)C50—C511.391 (7)
C16—C171.384 (8)C50—C47ii1.394 (7)
C17—C181.365 (7)C51—C521.362 (8)
C17—H170.9300C51—H510.9300
C18—C191.374 (7)C52—C49ii1.389 (7)
C18—H180.9300C52—H520.9300
S6—Ni1—S6i166.03 (9)N2—C22—H22A109.0
S6—Ni1—S591.45 (6)C19—C22—H22A109.0
S6i—Ni1—S589.32 (6)N2—C22—H22B109.0
S6—Ni1—S5i89.33 (6)C19—C22—H22B109.0
S6i—Ni1—S5i91.45 (6)H22A—C22—H22B107.8
S5—Ni1—S5i173.64 (10)N2—C23—C24121.4 (6)
S4—Ni2—S391.93 (7)N2—C23—H23119.3
S4—Ni2—S288.17 (6)C24—C23—H23119.3
S3—Ni2—S2178.93 (8)C23—C24—C25120.0 (6)
S4—Ni2—S1178.82 (6)C23—C24—H24120.0
S3—Ni2—S188.26 (6)C25—C24—H24120.0
S2—Ni2—S191.66 (6)C24—C25—C27117.7 (7)
S7—Ni3—S7ii179.998 (1)C24—C25—C26122.0 (7)
S7—Ni3—S8ii91.76 (6)C27—C25—C26120.3 (7)
S7ii—Ni3—S8ii88.25 (6)C25—C26—H26A109.5
S7—Ni3—S888.25 (6)C25—C26—H26B109.5
S7ii—Ni3—S891.75 (6)H26A—C26—H26B109.5
S8ii—Ni3—S8179.998 (1)C25—C26—H26C109.5
C29—S1—Ni2105.3 (2)H26A—C26—H26C109.5
C34—S2—Ni2105.2 (2)H26B—C26—H26C109.5
C35—S3—Ni2105.1 (2)C28—C27—C25119.7 (7)
C36—S4—Ni2104.7 (2)C28—C27—H27120.2
C41—S5—Ni1104.5 (2)C25—C27—H27120.2
C46—S6—Ni1105.7 (3)N2—C28—C27121.4 (6)
C47—S7—Ni3104.4 (3)N2—C28—H28119.3
C50—S8—Ni3105.4 (2)C27—C28—H28119.3
C13—N1—C9120.0 (6)C30—C29—C34119.5 (6)
C13—N1—C8120.2 (5)C30—C29—S1121.6 (5)
C9—N1—C8119.6 (6)C34—C29—S1118.9 (5)
C28—N2—C23119.7 (6)C31—C30—C29119.8 (6)
C28—N2—C22120.7 (6)C31—C30—H30120.1
C23—N2—C22119.5 (6)C29—C30—H30120.1
N3—C1—C2177.6 (12)C30—C31—C32121.4 (6)
C3—C2—C7118.4 (8)C30—C31—H31119.3
C3—C2—C1120.9 (9)C32—C31—H31119.3
C7—C2—C1120.7 (9)C31—C32—C33119.4 (7)
C2—C3—C4122.5 (8)C31—C32—H32120.3
C2—C3—H3118.7C33—C32—H32120.3
C4—C3—H3118.7C34—C33—C32120.1 (7)
C3—C4—C5119.1 (7)C34—C33—H33119.9
C3—C4—H4120.4C32—C33—H33119.9
C5—C4—H4120.4C33—C34—C29119.8 (6)
C6—C5—C4119.4 (6)C33—C34—S2121.3 (5)
C6—C5—C8119.3 (6)C29—C34—S2118.9 (5)
C4—C5—C8121.2 (7)C40—C35—C36120.5 (6)
C7—C6—C5119.8 (6)C40—C35—S3121.5 (5)
C7—C6—H6120.1C36—C35—S3118.0 (5)
C5—C6—H6120.1C35—C36—C37117.6 (6)
C6—C7—C2120.7 (7)C35—C36—S4120.3 (5)
C6—C7—H7119.6C37—C36—S4122.1 (5)
C2—C7—H7119.6C38—C37—C36121.5 (6)
N1—C8—C5113.4 (5)C38—C37—H37119.3
N1—C8—H8A108.9C36—C37—H37119.3
C5—C8—H8A108.9C37—C38—C39119.5 (7)
N1—C8—H8B108.9C37—C38—H38120.3
C5—C8—H8B108.9C39—C38—H38120.3
H8A—C8—H8B107.7C40—C39—C38120.6 (7)
N1—C9—C10119.5 (6)C40—C39—H39119.7
N1—C9—H9120.2C38—C39—H39119.7
C10—C9—H9120.2C39—C40—C35120.3 (7)
C9—C10—C11122.4 (7)C39—C40—H40119.8
C9—C10—H10118.8C35—C40—H40119.8
C11—C10—H10118.8C46—C41—C42119.1 (7)
C10—C11—C12116.0 (8)C46—C41—S5120.1 (6)
C10—C11—C14122.4 (8)C42—C41—S5120.8 (6)
C12—C11—C14121.6 (8)C43—C42—C41120.6 (7)
C13—C12—C11121.6 (8)C43—C42—H42119.7
C13—C12—H12119.2C41—C42—H42119.7
C11—C12—H12119.2C42—C43—C44119.7 (7)
N1—C13—C12120.5 (7)C42—C43—H43120.2
N1—C13—H13119.7C44—C43—H43120.2
C12—C13—H13119.7C45—C44—C43119.7 (7)
C11—C14—H14A109.5C45—C44—H44120.2
C11—C14—H14B109.5C43—C44—H44120.2
H14A—C14—H14B109.5C44—C45—C46121.7 (7)
C11—C14—H14C109.5C44—C45—H45119.2
H14A—C14—H14C109.5C46—C45—H45119.2
H14B—C14—H14C109.5C45—C46—C41119.3 (7)
N4—C15—C16179.3 (11)C45—C46—S6122.9 (6)
C21—C16—C17119.4 (7)C41—C46—S6117.8 (6)
C21—C16—C15121.8 (9)C48—C47—C50ii120.4 (6)
C17—C16—C15118.8 (9)C48—C47—S7120.0 (6)
C18—C17—C16119.3 (7)C50ii—C47—S7119.5 (6)
C18—C17—H17120.3C49—C48—C47120.3 (6)
C16—C17—H17120.3C49—C48—H48119.9
C17—C18—C19121.0 (6)C47—C48—H48119.9
C17—C18—H18119.5C48—C49—C52ii120.1 (6)
C19—C18—H18119.5C48—C49—H49119.9
C20—C19—C18119.7 (6)C52ii—C49—H49119.9
C20—C19—C22120.7 (7)C51—C50—C47ii117.9 (6)
C18—C19—C22119.6 (6)C51—C50—S8123.3 (5)
C19—C20—C21119.4 (7)C47ii—C50—S8118.8 (6)
C19—C20—H20120.3C52—C51—C50121.5 (7)
C21—C20—H20120.3C52—C51—H51119.2
C16—C21—C20121.3 (7)C50—C51—H51119.2
C16—C21—H21119.4C51—C52—C49ii119.7 (7)
C20—C21—H21119.4C51—C52—H52120.2
N2—C22—C19112.9 (5)C49ii—C52—H52120.2
S3—Ni2—S1—C29178.71 (17)C24—C25—C27—C281.5 (8)
S2—Ni2—S1—C290.22 (17)C26—C25—C27—C28179.0 (5)
S4—Ni2—S2—C34179.64 (18)C23—N2—C28—C271.4 (8)
S1—Ni2—S2—C340.82 (19)C22—N2—C28—C27175.8 (5)
S4—Ni2—S3—C350.44 (18)C25—C27—C28—N20.4 (9)
S1—Ni2—S3—C35178.39 (18)Ni2—S1—C29—C30178.1 (4)
S3—Ni2—S4—C360.29 (18)Ni2—S1—C29—C340.6 (4)
S2—Ni2—S4—C36179.22 (18)C34—C29—C30—C311.1 (8)
S6—Ni1—S5—C415.32 (18)S1—C29—C30—C31179.8 (4)
S6i—Ni1—S5—C41160.73 (17)C29—C30—C31—C320.1 (9)
S6i—Ni1—S6—C4687.36 (18)C30—C31—C32—C330.3 (10)
S5—Ni1—S6—C465.65 (19)C31—C32—C33—C340.4 (9)
S5i—Ni1—S6—C46179.34 (19)C32—C33—C34—C291.4 (8)
S8ii—Ni3—S7—C473.25 (18)C32—C33—C34—S2177.6 (4)
S8—Ni3—S7—C47176.75 (18)C30—C29—C34—C331.8 (8)
S7—Ni3—S8—C50176.17 (17)S1—C29—C34—C33179.5 (4)
S7ii—Ni3—S8—C503.83 (17)C30—C29—C34—S2177.3 (4)
C7—C2—C3—C41.5 (10)S1—C29—C34—S21.4 (6)
C1—C2—C3—C4179.9 (6)Ni2—S2—C34—C33179.5 (4)
C2—C3—C4—C51.0 (11)Ni2—S2—C34—C291.5 (4)
C3—C4—C5—C60.4 (9)Ni2—S3—C35—C40179.4 (4)
C3—C4—C5—C8177.5 (6)Ni2—S3—C35—C360.6 (4)
C4—C5—C6—C70.4 (8)C40—C35—C36—C370.5 (8)
C8—C5—C6—C7177.5 (5)S3—C35—C36—C37179.4 (4)
C5—C6—C7—C21.0 (9)C40—C35—C36—S4179.3 (4)
C3—C2—C7—C61.5 (9)S3—C35—C36—S40.4 (6)
C1—C2—C7—C6179.9 (6)Ni2—S4—C36—C350.0 (4)
C13—N1—C8—C5136.2 (6)Ni2—S4—C36—C37179.8 (4)
C9—N1—C8—C548.6 (7)C35—C36—C37—C380.3 (8)
C6—C5—C8—N166.0 (6)S4—C36—C37—C38179.5 (5)
C4—C5—C8—N1116.1 (6)C36—C37—C38—C390.2 (10)
C13—N1—C9—C100.4 (8)C37—C38—C39—C400.4 (11)
C8—N1—C9—C10174.9 (5)C38—C39—C40—C350.2 (10)
N1—C9—C10—C110.0 (9)C36—C35—C40—C390.3 (9)
C9—C10—C11—C120.2 (9)S3—C35—C40—C39179.2 (5)
C9—C10—C11—C14179.4 (5)Ni1—S5—C41—C463.9 (4)
C10—C11—C12—C130.2 (9)Ni1—S5—C41—C42175.7 (4)
C14—C11—C12—C13179.5 (6)C46—C41—C42—C431.0 (8)
C9—N1—C13—C120.4 (8)S5—C41—C42—C43178.6 (4)
C8—N1—C13—C12174.8 (5)C41—C42—C43—C440.4 (9)
C11—C12—C13—N10.2 (10)C42—C43—C44—C450.4 (9)
C21—C16—C17—C180.6 (9)C43—C44—C45—C460.7 (9)
C15—C16—C17—C18179.1 (6)C44—C45—C46—C410.2 (8)
C16—C17—C18—C190.2 (8)C44—C45—C46—S6179.3 (4)
C17—C18—C19—C201.0 (8)C42—C41—C46—C450.7 (8)
C17—C18—C19—C22178.8 (5)S5—C41—C46—C45178.9 (4)
C18—C19—C20—C210.9 (9)C42—C41—C46—S6179.8 (4)
C22—C19—C20—C21178.8 (5)S5—C41—C46—S60.6 (6)
C17—C16—C21—C200.7 (10)Ni1—S6—C46—C45174.7 (4)
C15—C16—C21—C20179.1 (6)Ni1—S6—C46—C414.8 (4)
C19—C20—C21—C160.1 (10)Ni3—S7—C47—C48177.0 (4)
C28—N2—C22—C19121.6 (6)Ni3—S7—C47—C50ii1.9 (4)
C23—N2—C22—C1961.2 (7)C50ii—C47—C48—C490.5 (8)
C20—C19—C22—N2120.5 (6)S7—C47—C48—C49179.4 (4)
C18—C19—C22—N261.7 (7)C47—C48—C49—C52ii0.5 (9)
C28—N2—C23—C240.4 (8)Ni3—S8—C50—C51176.4 (4)
C22—N2—C23—C24176.8 (5)Ni3—S8—C50—C47ii3.7 (4)
N2—C23—C24—C251.5 (9)C47ii—C50—C51—C520.6 (8)
C23—C24—C25—C272.4 (8)S8—C50—C51—C52179.3 (4)
C23—C24—C25—C26178.1 (5)C50—C51—C52—C49ii0.6 (9)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula(C14H13N2)[Ni(C6H4S2)2]
Mr548.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)42.344 (3), 7.2455 (6), 32.768 (2)
β (°) 96.480 (5)
V3)9988.9 (13)
Z16
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.20 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.806, 0.896
No. of measured, independent and
observed [I > 2σ(I)] reflections
27982, 8530, 3392
Rint0.113
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.078, 0.89
No. of reflections8530
No. of parameters599
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.27

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXTL (Bruker, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
Ni1—S62.1337 (16)Ni2—S22.1408 (17)
Ni1—S6i2.1338 (16)Ni2—S12.1424 (16)
Ni1—S52.1477 (14)Ni3—S72.1424 (15)
Ni1—S5i2.1478 (14)Ni3—S7ii2.1424 (15)
Ni2—S42.1400 (16)Ni3—S8ii2.1470 (14)
Ni2—S32.1405 (17)Ni3—S82.1470 (14)
S6—Ni1—S6i166.03 (9)S4—Ni2—S1178.82 (6)
S6—Ni1—S591.45 (6)S3—Ni2—S188.26 (6)
S6i—Ni1—S589.32 (6)S2—Ni2—S191.66 (6)
S6—Ni1—S5i89.33 (6)S7—Ni3—S7ii179.998 (1)
S6i—Ni1—S5i91.45 (6)S7—Ni3—S8ii91.76 (6)
S5—Ni1—S5i173.64 (10)S7ii—Ni3—S8ii88.25 (6)
S4—Ni2—S391.93 (7)S7—Ni3—S888.25 (6)
S4—Ni2—S288.17 (6)S7ii—Ni3—S891.75 (6)
S3—Ni2—S2178.93 (8)S8ii—Ni3—S8179.998 (1)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, °). top
D—H···AD—HH···AD···AD—H···A
C8—H8B···S4i0.972.8463.721 (3)150.63
Symmetry code: (i) 1/2 - x, y + 1/2, 1/2 - z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds